JPH0280495A - Dry fractionation of nonlauric fat or oil - Google Patents

Dry fractionation of nonlauric fat or oil

Info

Publication number
JPH0280495A
JPH0280495A JP23331888A JP23331888A JPH0280495A JP H0280495 A JPH0280495 A JP H0280495A JP 23331888 A JP23331888 A JP 23331888A JP 23331888 A JP23331888 A JP 23331888A JP H0280495 A JPH0280495 A JP H0280495A
Authority
JP
Japan
Prior art keywords
oil
cooling
oils
fats
fat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23331888A
Other languages
Japanese (ja)
Inventor
Yuji Kuwabara
有司 桑原
Hiroshi Hidaka
博志 日高
Nobuo Sagi
信雄 鷺
Kazuto Asahara
浅原 和人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Oil Co Ltd
Original Assignee
Fuji Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Oil Co Ltd filed Critical Fuji Oil Co Ltd
Priority to JP23331888A priority Critical patent/JPH0280495A/en
Priority to US07/370,042 priority patent/US5045243A/en
Priority to MYPI89000852A priority patent/MY106302A/en
Priority to GB8915022A priority patent/GB2220672B/en
Publication of JPH0280495A publication Critical patent/JPH0280495A/en
Priority to SG810/92A priority patent/SG81092G/en
Pending legal-status Critical Current

Links

Landscapes

  • Fats And Perfumes (AREA)

Abstract

PURPOSE:To obtain nonflowing lumps of crystals having a high crystallinity by disintegrating lumps of crystals obtained by cooling molten nonlauric fat or oil and fractionating the product into a crystalline part and a liquid part by pressing. CONSTITUTION:Molten (>=50 deg.C) nonlauric fat or oil (e.g., palm oil) is fed to a heat-conductive container of a relatively small depth of liquid, allowed to settle and cooled to 35-20 deg.C at a cooling rate of 0.1-2.0 deg.C/min with chilled air or chilled water of 10-15 deg.C and crystallized to a desired degree of crystallinity to obtain lumps of crystals. These lumps are fed to a mixer or a kneader, disintegrated by a shearing force and frictional heat and compressed to fractionate them into a crystalline part of the higher melting side and a liquid part of the lower melting side.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、非ラウリン油脂を、経済的に構成油脂成分の
融解温度差により分離する方法に関する。 [従来の技術] (背景) 液状油脂、液体線その他、複数種類の類似成分の混合物
からなる油状物置を、各成分の融解温度差により分離す
る方法としては、■アセトン又はヘキサン等の溶剤を利
用する溶剤分別法、■界面活性剤を利用する乳化分別法
、及び■冷却によるウィンクリング法が知られている。 しかし上記■の方法は、精密な分別が可能である反面、
引火性のある溶媒を使用するため、危険であると共に、
コストが高くつくのが欠点である。■の方法は、分別精
度及び製品の品質共に■に比し劣るのみでなく、油脂と
界面活性剤溶液との分離及び排水処理が厄介である。■
の方法は、冷却タンクの設備に費用がかかり、かつ生産
性並びに分別効率及び製品の品質が前二者に比べて一段
と劣る。 (以下余白) CtM来技術の問題点) そこで近年に至り、加温、融解させた油脂に種結晶を添
加して結晶化を促進させる方法(特公昭56−1575
9号及び特開昭60−101197号等)が提案されて
いる。しかしこれらの方法においては、熟成後の結晶化
率が、特に40〜60重景%にも高くなると、油種によ
っては全く流動性を失い、晶析装置からの排出や、事後
の取扱が困難になるという欠点がある。 (発明が解決しようとする課題] よって本発明が解決しようとする課題は、圧搾時の濾過
特性を飛躍的に向上させることにより、結晶化度が高く
自体流動性のない油種(結晶塊)の乾式分別に工業的な
可能性を与えることである。
The present invention relates to a method for economically separating non-lauric fats and oils based on the difference in melting temperature of constituent fats and oils. [Prior Art] (Background) As a method for separating an oily container consisting of a mixture of multiple types of similar components, such as liquid oils and fats, liquid lines, etc., based on the difference in melting temperature of each component, ■Use of a solvent such as acetone or hexane is used. (1) emulsion fractionation method using surfactants, and (2) winkling method using cooling. However, while method ■ above allows for precise separation,
It is dangerous because it uses a flammable solvent, and
The disadvantage is that it is expensive. Method (2) is not only inferior to method (2) in terms of separation accuracy and product quality, but also requires troublesome separation of fats and oils from surfactant solution and wastewater treatment. ■
The second method requires expensive cooling tank equipment, and is much inferior in productivity, separation efficiency, and product quality compared to the first two methods. (Left below) Problems with CtM technology) Therefore, in recent years, a method has been developed in which seed crystals are added to heated and melted fats and oils to promote crystallization (Japanese Patent Publication No. 56-1575).
No. 9 and JP-A-60-101197, etc.) have been proposed. However, in these methods, when the crystallization rate after ripening becomes as high as 40 to 60%, depending on the oil type, the oil loses fluidity completely, making it difficult to discharge it from the crystallizer or handle it afterwards. It has the disadvantage of becoming (Problem to be Solved by the Invention) Therefore, the problem to be solved by the present invention is to dramatically improve the filtration characteristics during compression to eliminate oil species (crystalline lumps) with high crystallinity and no fluidity themselves. The aim is to give industrial possibilities to dry sorting.

【課題を解決するための手段】[Means to solve the problem]

(概念) そこで本発明者らは、上記油種に流動性を付与するため
の手段につき種々研究した結果、パーム油等の非ラウリ
ン油脂においては、これを風冷もしくは水冷して徐々に
結晶化させると、高融点部の微結晶が樹枝状に成長する
と共に、該樹枝状黴細横遣間に非晶状態の低融点部が包
摂された巨視的な球状品結晶塊が形成され、この結晶塊
に剪断力を加えるだけで高融点部に富む結晶部と、低融
点部に富む油状部とに簡単に分離するのみでなく、全体
としてポンプ輸送の可能な程度の低粘度スラリー化する
ことを知った0本発明に係る油性物質の乾式分別法はこ
れらの知見を基礎とするものである。 (概要) 以上の知見に基づき、本発明に1系る非ラウリン油脂の
乾式分別法は、伝熱性容器内に静置された均一な融解非
ラウリン油脂を、風冷らしくは水冷して所望の結晶化率
まで結晶化させ、得られた結晶塊を解砕後、圧搾して結
晶部分と液体部分とに分別することを特徴とする。 以下、発明に関連する主要事項に付き、項分けして記述
する。 〈以下余白) (非ラウリン油脂) 本発明の対象となる非ラウリン油脂としては、CI2飽
和脂肪酸残基を実質的に含有しない油脂、具体的には、
例えば牛脂、豚脂、乳脂等の動物性油脂、パーム油、大
豆油、ナタネ油、シア脂、サル脂等の植物性脂肪、エス
テル交換油又はそれらの硬化油若しくは分別硬化油等を
挙げることができるが、勿論例示の油脂だけに限定され
るものて゛はない。 (冷却) 本発明では、冷却手段として風冷法もしくは水冷法を採
用する。風冷法では、冷媒として冷気体、殊に冷空気を
使用する風冷法は、空気の伝熱係数が小であるため、時
間をかけて大型の油脂結晶を析出させるのに適し、かつ
後述の如く1発明の好ましい実施態様である冷却曲線の
直線部における冷却速度を定常化するのに有利である。 しかし、伝熱係数が大きい水その他の液体を用いる液冷
法でも、品温の低下につれて冷媒温度や流速を微妙に調
節することにより、冷却曲線の直線部の冷却速度を定常
Cヒさせることができる。 本発明の方法を工業的に実施するには、対象非ラウリン
油脂をバットやトレイその他の比較的液深の浅い容器に
入れ、冷風又は温度制御された水もしくは冷媒を用いて
ゆっくり冷却する。例えばパーム分別油の烏合、ステン
レス製の浅いトレイに入れた対象油脂を、初期温度50
’C以上、冷風温度10〜15℃、液深10ttrm以
上、品温35℃から20℃迄の冷却速度が1分間当たり
0.1〜2.0 ’C/分程度の緩和な条件下に行うの
が好ましい。但しここに冷却速度というのは、添付第2
図のように、対象被処理油脂の冷却曲線(クーリングカ
ーブ)におけるA−8間の平均冷却速度を云い、この速
度が一定であれば、カーブは直線乃至卓面線状となる。 そしてこの区間は、対象油脂中の高融点画分の微結晶が
一次結晶核を形成する領域である。温度がこの領域より
低下し、カーブの最低点Cに達したとき、発生する結晶
熱により品温は一時的にD点まで上昇した後、再び徐々
に降下して冷風温度と略々等しい温度の点Eに達し、そ
の後、力一ブは時間軸に平行するようになる。結晶は、
D点を過ぎた後も徐々に成長し、この間(熟成期間中)
に上述した結晶状高融点部と非晶状低融点部との分離が
一層完全となる(バーム油における上記35℃はA点に
、20°CはB点に夫々相当する。)。 以上の冷却条件は、パーム分別油に限らず他の非ラウリ
ン油脂についても共通であるが、具体的な実施条件は、
対象非ラウリン油脂の種類、バット又はトレイの材質及
び厚さ、初期温度の高低、希望する分別油の性状等の要
因によりかなり変動するから、異種の非ラウリン油脂の
場合は、当該油種毎に実験的に最適の値を設定すべきで
ある。 但し、ここで述べておかねばならない重要事項は、被処
理油脂を事前に充分な液化温度にまで昇温させて均質化
させる必要があることである。即ち、若し被処理油脂中
に高融点油脂の微結晶が存在していると、この微結晶が
結晶核となって早期の結晶化を誘発し、この結果、先行
技術に関し述べたと同様の状態になり、思わしい分別処
理ができなくなる。上記パーム分別油の例では、30℃
程度の温度では外観的に澄明であってら、1.3−ジパ
ルミトー2−オレイン、トリバルミチン等の高融点分子
種が微視的な結晶として分散している不均一状態にある
から、少なくとら全体が均一の状態になるまで加熱され
ている必要がある。尤も、1麦者のトリパルミチンの量
は微量であって、混晶又は共晶状態をなしていると推定
されるので、実際にはβ型結晶の融点である65.5℃
以上の温度にまで昇温される必要はなく、通常は50°
C程度の加熱で足りる。 以上の冷却工程で生成した結晶塊は、上述の如く、樹枝
状に成長した高融点部油脂からなる微細構造間に非晶状
態の低融点部油脂が包摂された巨視的な球状品結晶塊で
ある(第1図参照)。 (解砕) 解砕は、小規模にはミキサーを用いて行うことができる
が、大規模には混捏機を用いて行う。油種は、機械の内
部を通過する過程で、剪断力及び摩擦熱の作用により分
割されて、高融点部油脂を主とする小油種と一部融解し
た液状の低融点部油脂とから成るスラリー状となるので
、そのままポンプ輸送することができる。 なお、本工程を省略し、直接次段の圧搾工程にかけると
、ケーキからの液体部の脱離が不充分となるため、液体
部の沃素価が低い割に固体部(結晶部)の沃素価(1v
)が上昇する。 (圧搾) 以上の非ラウリン油脂スラリーは、次いで圧搾され、高
融点側の固体脂と低融点側の液体油とに分離される。こ
の分離には四分式濾過機が適当であり、かつ多量処理の
ためには、多数の温室が並列している圧搾型濾過機、殊
に容積変化型又はメンブレン型と呼ばれる耐圧ゴム製の
ダイアフラムにより温室を静圧的に圧搾するように1−
た形式のものが適当である。この形式の濾過機は、単位
温室の厚さが数十1111と薄く、伝熱効率が良好であ
るから、温室内の温度制御が容易である。加えて、−基
当たりの容積は小であっても、これを多数並列すること
により、−度に数トン乃至数十トンもの大量の非ラウリ
ン油脂を処理できるので発明の実施に好適である。しか
し他形式の圧搾濾過機、例えばX−プレスフィルタ、オ
ートマットプレス、チューブレスリCフィルタ又はピス
トンプレスの如き濾過機も同様に利用できる。 [作用] 本発明の原理を模型的に説明する添付第1図を参照して
、油脂中の高融点部(高融点分子種に富む部分)Hは、
冷却により次第に樹枝状に成長して低融点部(低融点分
子種に富む部分)Lを包摂した小泊塊Pを形成し、この
ような小浦塊Pの多数がさらに低融点部しにより接合さ
れて大油種を形成する(同図A)。この状態で剪断力を
加えると、大油種は単位小泊塊Pに分離すると共に、接
合に与った低融点部りが先ず遊離する。このため、小油
種Pが恰も接合用セメントを失った状態となって流動性
を得るようになる(同図8)。 次いで、これを圧搾すると、各小油種P内の低融点部り
が圧力により油種外へ押し出されるので、結晶状の高融
点部と液状の低融点部とに分離し、後者は濾布を通って
温室外へ排出されることになる(同(2IC)。 発明者の知見によれば、以上の解砕による高融点部と低
融点部との分離現象は、非ラウリン油脂に独特のもので
あって、パーム核油の如きラウリン油脂を徐冷後、解砕
しても決してスラリー状態とはならない。これが如何な
る理由に因るものか不明であるが、ともあれ発明者の得
た知見は、油脂の乾式分別を成功させる上で重要な特性
の発見であると称しうる。 なお、本圧搾工程においては、ケーキ側への濾液の残存
率をできるだけ減少させるため、成るべく大きな結晶粒
子を形成させる<B要がある。結晶粒子の大きさは、結
晶核の個数濃度と結晶比率に主として依存するが、前者
は、特に初期冷却曲線における直線乃至塗置線状の区間
で決まり、冷却速度が大きい程結晶核数が急増するので
、結果として、大きな結晶粒子に成長し難くなる。発明
者の知見によれば、この冷却速度が概ね2.0℃/分以
下であれば、好ましい圧搾性の結晶が得られる。しかし
この値が著しく小さくなると、結晶成長に伴う結晶熱の
ため油脂温度が大きく上昇し。 従って冷却が困難となり、晶析に長時間と要することに
なる。従って、工業的には概ね0.1 ”C/分未溝の
条件は採用し難い。 以上要するに、本発明によれば、高結晶化率の非ラウリ
ン系凝固油脂であっても、徐冷及び解砕によりポンプ輸
送が可能となる程度の流動状態が得られるため、流動性
を与える目的で予め低融点油脂を添加する必要がない。 このため、晶析、圧搾装置の処理能力が向上するのみで
なく、圧搾濾過効率も著しく向上することは、その特筆
すべき利点である。 [実施例] 以下、実施例により発明実施の態様を説明するが、例示
は単なる説明用のものであって、発明の技術的範囲の解
釈に直接係るものではない。 方 L1〜3  び      1 パーム油の液状部(I VS2.0)を下表−1記載の
種々な冷却条件で15℃±0.5℃の冷風(風速1〜1
.5 ta/秒)の条件にて冷却後、解砕を行い又は行
うことなしに、枠厚20a+mの小型フィルタープレス
を用い、28kg/r:rdの加圧条件下に1時間加圧
圧搾し、固体部と液体部とに分けた。結果を併せて下表
−1に示す。 表−1 *35℃→25℃の平均値(上記説明参照)上表から窺
えるように、解砕・混練を経た実施例2のものの沃素価
は、該工程を経ない比較例1のものに比し、液体部にお
いて同等であるにも拘らず、固体部では4.4も低い値
となっている。 また実施Ml及び3の結果が示すように、液体部の沃素
価が更に高い場合、即ち、結晶化率がより進んでいる場
合でも、上記工程を経れば固体部の沃素価がより低くな
ること、換言すれば、圧搾性が著しく潰れていることを
示している。 なお、比較例1及び実施rIA2における濾過率を経時
的に追跡し、その結果を添付第3図に示した。同図から
明らかなように、解砕処理した場合の濾過速度は、未処
理の場合の約二倍にも増大している。 夾11目二二[ 前例と同様のパーム油液体部を種々の液深になるように
トレイ中にいれ、初期冷却速度を0.5〜2.5℃/分
の間で変化させて凝固させた油清を解砕後、前例と同様
に圧搾、濾過し、得られた固体部と液体部の沃素価を調
べた。結果を下表−2に示す、該表から明らかなように
、固体部の品質(沃素価)は冷却速度に大きく影響され
ている。 好ましい冷却速度は、概ね01〜2.0 ’C/分であ
る。 (以下余白) 表 外の各図中のパラメータその他の説明は、夫々各図中に
記入済み: P:小油種、H:高融点部、L:低融点部。
(Concept) Therefore, the present inventors conducted various studies on means for imparting fluidity to the above-mentioned oil types. As a result, in non-lauric oils and fats such as palm oil, they were gradually crystallized by air-cooling or water-cooling. As a result, the microcrystals in the high melting point part grow in a dendritic shape, and a macroscopic spherical crystal mass is formed in which the amorphous low melting point part is included between the dendritic molds. By simply applying shearing force to the mass, it is possible to not only easily separate it into a crystalline part rich in high melting points and an oily part rich in low melting points, but also to turn the whole into a slurry with a low viscosity that can be transported by pump. The dry fractionation method for oily substances according to the present invention is based on these findings. (Summary) Based on the above findings, the dry fractionation method for non-lauric fats and oils according to the present invention is based on a method for dry fractionation of non-lauric fats and oils according to the present invention. It is characterized by crystallizing to a crystallization rate, crushing the resulting crystal mass, and then squeezing it to separate it into a crystal part and a liquid part. Below, the main matters related to the invention will be described in sections. (Hereinafter in the margin) (Non-lauric fats and oils) The non-lauric fats and oils that are the subject of the present invention include fats and oils that do not substantially contain CI2 saturated fatty acid residues, specifically,
Examples include animal fats and fats such as beef tallow, lard and milk fat, vegetable fats such as palm oil, soybean oil, rapeseed oil, shea butter and monkey fat, transesterified oils, and their hydrogenated or fractionated hydrogenated oils. However, it is of course not limited to the exemplified fats and oils. (Cooling) In the present invention, an air cooling method or a water cooling method is employed as a cooling means. The wind cooling method uses cold gas, especially cold air, as a refrigerant, and since the heat transfer coefficient of air is small, it is suitable for precipitating large oil crystals over a long period of time, and as described below. This is advantageous in stabilizing the cooling rate in the straight part of the cooling curve, which is a preferred embodiment of the invention. However, even with liquid cooling methods that use water or other liquids with large heat transfer coefficients, it is possible to maintain a constant cooling rate in the straight part of the cooling curve by delicately adjusting the refrigerant temperature and flow rate as the product temperature decreases. can. To carry out the method of the present invention industrially, the target non-lauric fat or oil is placed in a vat, tray, or other relatively shallow container and slowly cooled using cold air or temperature-controlled water or a refrigerant. For example, when mixing palm fractionated oil, the target oil is placed in a shallow stainless steel tray at an initial temperature of 50.
'C or higher, cold air temperature 10~15℃, liquid depth 10 ttrm or higher, and cooling rate from 35℃ to 20℃ with a cooling rate of about 0.1~2.0C/min per minute. is preferable. However, the cooling rate here is based on the attached No. 2.
As shown in the figure, it refers to the average cooling rate between A and 8 in the cooling curve of the target oil and fat to be treated, and if this rate is constant, the curve will be a straight line or a flat line. This section is a region where microcrystals of the high melting point fraction in the target oil and fat form primary crystal nuclei. When the temperature drops below this range and reaches the lowest point C of the curve, the product temperature temporarily rises to point D due to the crystal heat generated, and then gradually decreases again until it reaches a temperature approximately equal to the cold air temperature. Point E is reached, after which the force becomes parallel to the time axis. The crystal is
It grows gradually even after passing the D point, and during this period (during the ripening period)
The separation of the crystalline high melting point portion and the amorphous low melting point portion described above becomes more complete (35° C. corresponds to point A and 20° C. corresponds to point B in balm oil, respectively). The above cooling conditions are common not only to palm fractionated oil but also to other non-lauric oils and fats, but the specific implementation conditions are as follows:
This varies considerably depending on factors such as the type of target non-lauric oil, the material and thickness of the vat or tray, the initial temperature, and the desired properties of the fractionated oil. The optimum value should be set experimentally. However, an important point that must be mentioned here is that it is necessary to heat the fats and oils to be treated in advance to a sufficient liquefaction temperature to homogenize them. That is, if microcrystals of high melting point fats and oils are present in the processed fats and oils, these microcrystals become crystal nuclei and induce early crystallization, resulting in a situation similar to that described in relation to the prior art. This makes it impossible to properly sort and dispose of waste. In the above example of fractionated palm oil, 30℃
Although the appearance is clear at a certain temperature, it is in a non-uniform state with high melting point molecular species such as 1,3-dipalmito-2-olein and tribalmitin dispersed as microscopic crystals, so at least the whole It needs to be heated until it becomes uniform. However, the amount of tripalmitin in the single-wort person is very small, and it is presumed that it is in a mixed crystal or eutectic state, so it actually exceeds 65.5°C, which is the melting point of β-type crystals.
There is no need to raise the temperature above 50°.
Heating at about C is sufficient. As mentioned above, the crystalline mass produced in the above cooling process is a macroscopic spherical crystalline mass in which amorphous low-melting point fats and oils are included between the fine structure of high-melting point fats and oils that have grown in a dendritic shape. Yes (see Figure 1). (Crushing) Crushing can be carried out using a mixer on a small scale, but on a large scale, it can be carried out using a kneading machine. During the process of passing through the inside of the machine, the oil is divided by the action of shearing force and frictional heat, and consists of small oil types mainly consisting of high melting point fats and oils and partially melted liquid low melting point fats and oils. Since it becomes a slurry, it can be pumped as is. Note that if this step is omitted and the cake is directly subjected to the next compression step, the liquid portion will not be sufficiently removed from the cake, so the iodine value of the solid portion (crystalline portion) will be lower than the iodine value of the liquid portion, which is lower than the iodine value of the liquid portion. Value (1v
) increases. (Expression) The above non-lauric fat slurry is then pressed and separated into solid fat on the high melting point side and liquid oil on the low melting point side. A four-compartment filter is suitable for this separation, and for large-scale processing, a press-type filter with many greenhouses arranged in parallel is suitable, especially a pressure-resistant rubber diaphragm called a volumetric type or membrane type. 1- so that the greenhouse is compressed statically by
A suitable format is appropriate. In this type of filtration machine, the thickness of the unit greenhouse is as thin as several tens of eleven thousandths of an inch, and the heat transfer efficiency is good, making it easy to control the temperature inside the greenhouse. In addition, even if the volume per group is small, by arranging a large number of them in parallel, a large amount of non-lauric fats and oils, from several tons to several tens of tons, can be processed at a time, which is suitable for carrying out the invention. However, other types of filter presses can be used as well, such as X-press filters, automat presses, tubeless filters or piston presses. [Function] With reference to the attached FIG. 1 which schematically explains the principle of the present invention, the high melting point portion (portion rich in high melting point molecular species) H in fats and oils is as follows:
As it cools, it gradually grows into a dendritic shape to form a small lump P that includes a low melting point part (a part rich in low melting point molecular species) L, and a large number of such Koura lumps P are further joined by the low melting point part L. A large oil seed is formed (A in the same figure). When shearing force is applied in this state, the large oil species will be separated into small unit lumps P, and the low melting point portion that was involved in the bonding will first be liberated. As a result, the small oil type P appears to have lost its bonding cement and gains fluidity (FIG. 8). Next, when this is squeezed, the low melting point part in each small oil type P is pushed out of the oil type by pressure, so it is separated into a crystalline high melting point part and a liquid low melting point part, and the latter is separated from the filter cloth. (2IC).According to the inventor's knowledge, the separation phenomenon of the high melting point portion and the low melting point portion due to the above-mentioned crushing is unique to non-lauric fats and oils. Even if lauric oil such as palm kernel oil is slowly cooled and then crushed, it will never become a slurry.It is unclear what the reason is for this, but in any case, the findings of the inventor are as follows. This can be said to be the discovery of an important characteristic for successful dry fractionation of fats and oils.In addition, in this squeezing process, in order to reduce the residual rate of filtrate on the cake side as much as possible, we tried to form crystal particles as large as possible. The size of the crystal grains mainly depends on the number concentration of crystal nuclei and the crystal ratio, but the former is particularly determined by the straight or painted linear section of the initial cooling curve, and the cooling rate is The larger the number of crystal nuclei, the more rapidly the number of crystal nuclei increases, and as a result, it becomes difficult to grow into large crystal grains.According to the inventor's knowledge, if the cooling rate is approximately 2.0°C/min or less, preferable compressibility is achieved. Crystals can be obtained.However, if this value becomes extremely small, the temperature of the oil and fat will rise significantly due to the crystallization heat accompanying crystal growth.Therefore, cooling becomes difficult and crystallization takes a long time.Therefore, industrially It is difficult to adopt the condition of approximately 0.1 "C/min. As a result, it is not necessary to add low-melting point fats and oils in advance for the purpose of imparting fluidity.This not only improves the throughput of crystallization and compression equipment, but also improves compression filtration. A notable advantage is that the efficiency is significantly improved. [Examples] The embodiments of the invention will be explained below with reference to Examples. However, the examples are for mere explanation and do not exceed the technical scope of the invention. This does not directly relate to the interpretation of L1-3 and 1. The liquid part of palm oil (IV VS2.0) was cooled with cold air at 15°C ± 0.5°C (wind speed 1) under various cooling conditions listed in Table 1 below. ~1
.. After cooling under conditions of 5 ta/sec), the mixture was compressed for 1 hour under a pressure of 28 kg/r:rd using a small filter press with a frame thickness of 20 a+m, with or without crushing. It was divided into a solid part and a liquid part. The results are also shown in Table 1 below. Table-1 *Average value from 35°C to 25°C (see explanation above) As can be seen from the above table, the iodine value of Example 2 that underwent crushing and kneading was the same as that of Comparative Example 1 that did not undergo this process. In comparison, although the liquid part is equivalent, the solid part has a lower value of 4.4. Furthermore, as shown in the results of Examples M1 and 3, even if the iodine value of the liquid part is higher, that is, even if the crystallization rate is more advanced, the iodine value of the solid part can be lowered by going through the above steps. In other words, this shows that the compressibility is significantly impaired. The filtration rates in Comparative Example 1 and Implementation rIA2 were tracked over time, and the results are shown in the attached FIG. 3. As is clear from the figure, the filtration rate when subjected to crushing treatment is approximately twice as high as that when untreated. 11/22 [The same palm oil liquid part as in the previous example was placed in a tray at various liquid depths, and the initial cooling rate was varied between 0.5 and 2.5°C/min to solidify it. After crushing the oil liquid, it was squeezed and filtered in the same manner as in the previous example, and the iodine values of the solid and liquid parts obtained were examined. The results are shown in Table 2 below. As is clear from the table, the quality (iodine value) of the solid portion is greatly influenced by the cooling rate. A preferred cooling rate is approximately 01-2.0'C/min. (Margins below) Parameters and other explanations in each figure outside the table are written in each figure respectively: P: small oil type, H: high melting point part, L: low melting point part.

【発明の効果】【Effect of the invention】

以上説明した通り、本発明は、作業性及び分離効率に優
れた油状物質の乾式分別法を提供しえたことにより、油
脂分別技術の向上及び分別コストの低減に寄与しうる。
As explained above, the present invention provides a dry fractionation method for oily substances with excellent workability and separation efficiency, and thus can contribute to improving oil and fat fractionation technology and reducing fractionation costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の原理を模型的に説明する説明図、第
2図は、本発明冷却曲線の形態を模型的に示すグラフ、
第3図は、解砕・混線の有無による濾過速度の変化を示
すグラフである。第1図以第1図 菓 図 時 間 手続補正書 (P−649) 昭和63年 9月21日 圧 〃時 間 / 分 2゜ 3゜ 4゜ 昭和63年9月16日付提出の特許願 発明の名称 非ラウリン油脂の乾式分別法 補正をする者 事件との関係  特許出願人 住 所 大阪市南区へ幡町6番1 名 称 不二製油株式会社 代表者 久本 浩一部
FIG. 1 is an explanatory diagram schematically explaining the principle of the present invention, and FIG. 2 is a graph schematically showing the form of the cooling curve of the present invention.
FIG. 3 is a graph showing changes in filtration rate depending on the presence or absence of crushing and crosstalk. Figure 1 to Figure 1 Time Procedure Amendment (P-649) September 21, 1985 Pressure Hours/Minutes 2゜3゜4゜Name of the patented invention filed on September 16, 1988 Relationship with the case of a person amending the dry separation method for non-lauric oils and fats Patent applicant address 6-1 Hehata-cho, Minami-ku, Osaka Name Fuji Oil Co., Ltd. Representative Hiroshi Hisamoto

Claims (1)

【特許請求の範囲】 1 伝熱性容器内に静置された均一な融解非ラウリン油
脂を、風冷もしくは水冷して所望の結晶化率まで結晶化
させ、得られた結晶塊を解砕後、圧搾して結晶部分と液
体部分とに分別することを特徴とする非ラウリン油脂の
乾式分別法。 2 対象油脂の冷却曲線における直線部の冷却速度が0
.1〜2.0℃/分となるように、風温、風速、水温及
び/又は容器内の液深を調節する請求項1記載の分別法
。 3 解砕された油脂の圧搾を略々結晶化温度前後の温度
で行う請求項1記載の分別法。
[Scope of Claims] 1. A homogeneous molten non-lauric oil and fat placed in a heat conductive container is crystallized to a desired crystallization rate by cooling with air or water, and after crushing the obtained crystal mass, A dry fractionation method for non-lauric fats and oils, which is characterized by squeezing and separating into a crystalline part and a liquid part. 2 The cooling rate of the straight line part in the cooling curve of the target oil is 0.
.. The separation method according to claim 1, wherein the air temperature, air speed, water temperature, and/or liquid depth in the container are adjusted so that the rate is 1 to 2.0°C/min. 3. The fractionation method according to claim 1, wherein the crushed fats and oils are compressed at a temperature approximately around the crystallization temperature.
JP23331888A 1988-07-01 1988-09-16 Dry fractionation of nonlauric fat or oil Pending JPH0280495A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP23331888A JPH0280495A (en) 1988-09-16 1988-09-16 Dry fractionation of nonlauric fat or oil
US07/370,042 US5045243A (en) 1988-07-01 1989-06-22 Method for dry fractionation of fats and oils
MYPI89000852A MY106302A (en) 1988-07-01 1989-06-23 Method for dry fractionation of fats and oils.
GB8915022A GB2220672B (en) 1988-07-01 1989-06-30 Method for dry fractionation of fats and oils
SG810/92A SG81092G (en) 1988-07-01 1992-08-12 Method for dry fractionation of fats and oils

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23331888A JPH0280495A (en) 1988-09-16 1988-09-16 Dry fractionation of nonlauric fat or oil

Publications (1)

Publication Number Publication Date
JPH0280495A true JPH0280495A (en) 1990-03-20

Family

ID=16953255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23331888A Pending JPH0280495A (en) 1988-07-01 1988-09-16 Dry fractionation of nonlauric fat or oil

Country Status (1)

Country Link
JP (1) JPH0280495A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06228588A (en) * 1992-09-28 1994-08-16 Pall Corp Fractionation of fat composition
JP2005060523A (en) * 2003-08-12 2005-03-10 Asahi Denka Kogyo Kk Method for dry fractionation of oil-and-fat
WO2009031680A1 (en) 2007-09-07 2009-03-12 The Nisshin Oillio Group, Ltd. Method for separation of 1,3-disaturated-2-unsaturated triglyceride
US8980346B2 (en) 2007-09-07 2015-03-17 The Nisshin Oillio Group, Ltd. Process for preparing hard butter

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06228588A (en) * 1992-09-28 1994-08-16 Pall Corp Fractionation of fat composition
JP2005060523A (en) * 2003-08-12 2005-03-10 Asahi Denka Kogyo Kk Method for dry fractionation of oil-and-fat
JP4522064B2 (en) * 2003-08-12 2010-08-11 株式会社Adeka Method for dry separation of fats and oils
WO2009031680A1 (en) 2007-09-07 2009-03-12 The Nisshin Oillio Group, Ltd. Method for separation of 1,3-disaturated-2-unsaturated triglyceride
EP2388306A1 (en) 2007-09-07 2011-11-23 The Nisshin OilliO Group, Ltd. Fractionation method of 1,3-disaturated-2-unsaturated triglyceride
EP2388307A1 (en) 2007-09-07 2011-11-23 The Nisshin OilliO Group, Ltd. Fractionation method of 1,3-disaturated-2-unsaturated triglyceride
EP2399977A1 (en) 2007-09-07 2011-12-28 The Nisshin OilliO Group, Ltd. Fractionation method of 1,3-disaturated-2-unsaturated triglyceride
US8389754B2 (en) 2007-09-07 2013-03-05 The Nisshin Oillio Group, Ltd. Fractionation method of 1,3-disaturated-2-unsaturated triglyceride
US8980346B2 (en) 2007-09-07 2015-03-17 The Nisshin Oillio Group, Ltd. Process for preparing hard butter

Similar Documents

Publication Publication Date Title
US5045243A (en) Method for dry fractionation of fats and oils
CA1301775C (en) Fractionation of fat blends
US5401867A (en) Fractionation of a mixture of substances
EP0798369B1 (en) Process for dry fractionation of fats and oils
US4795569A (en) Method for dry fractionation of fatty material
JP4863997B2 (en) Method for dry separation of fats and oils
JP4682848B2 (en) Oil and fat dry separation method
JPH0280495A (en) Dry fractionation of nonlauric fat or oil
JPH0214290A (en) Method for dry fractionation of fats and oils
AU2021234620B2 (en) Dry fractionation of edible oil
EP0651046A1 (en) Method for dry fractionation of fatty substances
JP4887553B2 (en) Separation of edible oils and fats
US6072066A (en) Fat crystallization method and apparatus therefor
RU2505593C1 (en) Method of purifying vegetable oil
EP2787062B1 (en) A process for fractionating crude triglyceride oil
RU2459863C1 (en) Method for vegetable oils purification using sunflower husk
JP2005060523A (en) Method for dry fractionation of oil-and-fat
EP2787063B1 (en) A process for fractionating refined triglyceride oil
JP2002226886A (en) Method for crystallizing fat
AU725400B2 (en) Apparatus for formation of fat crystals
WO2022210602A1 (en) Method for crystallizing fat/oil
JPH0355520B2 (en)
WO2003077665A1 (en) Method of dry fractionation to reduce trans double bonds in vegetable oils