JPH0278283A - Laser device - Google Patents

Laser device

Info

Publication number
JPH0278283A
JPH0278283A JP22840388A JP22840388A JPH0278283A JP H0278283 A JPH0278283 A JP H0278283A JP 22840388 A JP22840388 A JP 22840388A JP 22840388 A JP22840388 A JP 22840388A JP H0278283 A JPH0278283 A JP H0278283A
Authority
JP
Japan
Prior art keywords
mirror
laser
output
excitation
gain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22840388A
Other languages
Japanese (ja)
Inventor
Shigenori Fujiwara
藤原 重徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22840388A priority Critical patent/JPH0278283A/en
Publication of JPH0278283A publication Critical patent/JPH0278283A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/07Construction or shape of active medium consisting of a plurality of parts, e.g. segments

Abstract

PURPOSE:To improve a laser output by a method wherein an intermediate mirror is provided to a halfway point of an exciting region, an optimum resonator is constituted in the exciting region, an optimum reflectivity is given to the mirror, and the resonator is effectively utilized. CONSTITUTION:An exciting section 3 constitutes a resonator being sandwiched in between a total reflection mirror 2 and an intermediate mirror 5, and an exciting section 4 is provided between an output mirror 1 and the intermediate mirror 5. The region of the exciting section 3 is composed of the laser medium large in a gain coefficient and small in a saturation gain, and the region of the exciting section 4 consists of the laser medium small in a gain coefficient and Large in a saturation gain. And, the intermediate mirror 5 has a specified transmittance, laser rays of the exciting section 4 penetrate into the exciting section 3 and are reflected by the total reflection mirror 2 to return to the exciting section 3. Then, if the reflectivity of the intermediate mirror 5 is made large in a gain coefficient and the reflectivity of the output mirror 1 is made small in a gain coefficient, an adequate resonator can be obtained. Then, a laser output can be obtained independently of the volume of an exciting input, and a laser device can operate up to at a high output power.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は複数種のレーザ媒質を有するレーザ発振器にお
いて、その励起部の構成に改良を施したレーザ装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a laser device having an improved configuration of an excitation section in a laser oscillator having a plurality of types of laser media.

(従来の技術) 従来のレーザ装置では、そのレーザ媒質はひとつである
ものが多く、その励起部での特性は用いたその一つの媒
質のみにより決定されていた。そのため、利1q係数が
大きく飽和利得が小さいレーザ媒質の励起部を持つレー
ザ装置では、発1辰はしやすいが得られるレーザ出力は
低くなり、また、利得係数が小ざく飽和利得が大きいレ
ーザ媒質の励起部を持つレーザ装置では、大きな出力が
得られるがなかなか発振が起こしずらいという特性があ
った。
(Prior Art) Conventional laser devices often have one laser medium, and the characteristics at the excitation section are determined only by the one medium used. Therefore, in a laser device that has a pumping part of a laser medium with a large gain coefficient and a small saturation gain, the laser output is easy to emit but the obtained laser output is low; Laser devices with an excitation section have the characteristic that although large outputs can be obtained, oscillation is difficult to occur.

また、これらの特性を補うため二つの励起領域を持つレ
ーザ装置も従来から考えられてきた。
Additionally, in order to compensate for these characteristics, laser devices having two excitation regions have been considered.

第8図に従来から用いられてぎたレーザ装置のうち、利
得係数が大きく飽和利得が小さいレーザ媒質の励起部を
持つレーザ装置の例を示した。このレーザ装置では、利
得係数が大きく飽和利得が小さいレー+j:媒質の励起
部3の一方に全反射ミラー2が設けられ、他方に出力ミ
ラー1が設けられている。この時、出力ミラー1の反射
率は、70%から99%というようにやや高めに設定さ
れる。
FIG. 8 shows an example of a conventionally used laser device having a pumping section of a laser medium with a large gain coefficient and a small saturation gain. In this laser device, a total reflection mirror 2 is provided on one side of an excitation section 3 of a laser medium with a large gain coefficient and a small saturation gain, and an output mirror 1 is provided on the other side. At this time, the reflectance of the output mirror 1 is set to be somewhat high, such as 70% to 99%.

そのときのレーザの励起入力に対する出力の関係を第9
図に示した。この様なレーザ装置では、し−ザ出力は励
起入力の低いところから直線的に入力に従って伸びてい
くような特性が得られる。
The relationship between the output and the excitation input of the laser at that time is shown in the ninth section.
Shown in the figure. In such a laser device, a characteristic is obtained in which the laser output starts from a low excitation input and increases linearly in accordance with the input.

一方、第10図に従来から用いられてきたレーザ装置の
うち、利得係数が小ざく飽和利得が大きいレーザ媒質の
励起部を持つレーザ装置の例を示した。このレーザ装置
では、利得係数が小さく飽和利得が大きいレーザ媒質の
励起部4の一方に全反射ミラー2が設けられ他方に出力
ミラー1が設けられている。この時出力ミラーの反射率
は10%から60%というようにやや低めに設定される
On the other hand, FIG. 10 shows an example of a conventionally used laser device having a pumping section of a laser medium with a small gain coefficient and a large saturation gain. In this laser device, a total reflection mirror 2 is provided on one side of a laser medium excitation section 4 with a small gain coefficient and a large saturation gain, and an output mirror 1 is provided on the other side. At this time, the reflectance of the output mirror is set to be somewhat low, such as 10% to 60%.

そのときのレーザの励起入力に対する出力の関係を第1
1図に示した。この様なレーザ装置では、レーザ出力は
励起入力の低いところではレーザ出力が得られず、ある
程度のしきい値を超えるところから急激に直線的に入力
に従って伸びていくような特性が得られる。
The relationship between the output and the excitation input of the laser at that time is expressed as
It is shown in Figure 1. In such a laser device, a laser output is not obtained at a low excitation input, but a characteristic is obtained in which the laser output rapidly increases linearly in accordance with the input after a certain threshold value is exceeded.

そしてこれらに合わせて利得係数が大きく飽和刊1qが
小さいレーザ媒質の励起領域と、利得係数が小さく飽和
利得が大きいレーザ媒質の励起領域の二つの励起領域を
持つレーザ装置も考えられてきた。第12図に二つの領
域を持っレーザ装置の例を示した。このレーザ装置では
、利得係数が大きく飽和利得が小さいレーザ媒質の励起
部3と、利得係数が小さく飽和利得が大きいレーザ媒質
の励起部4とからなる励起部の一方の端に全反射ミラー
2が設けられ、他方に出力ミラー1が設けられている。
In line with these, laser devices have also been considered that have two excitation regions: an excitation region of a laser medium with a large gain coefficient and a small saturation gain 1q, and an excitation region of a laser medium with a small gain coefficient and a large saturation gain. FIG. 12 shows an example of a laser device having two regions. In this laser device, a total reflection mirror 2 is provided at one end of an excitation section consisting of an excitation section 3 of a laser medium with a large gain coefficient and a small saturation gain, and an excitation section 4 of a laser medium with a small gain coefficient and a large saturation gain. An output mirror 1 is provided on the other side.

このレーザ装置からレーザ光を取り出すためには出力ミ
ラー1から取り出すしか方法がなく、その出力ミラー1
は一枚しか設けられてないので、その反射率はこの共娠
器に対して一種類に決まってしまった。この出力ミラー
1の反射率が決まってしまうと、この出力ミラーと励起
部の持つ利得係数と飽和利得の関係で出力特性は決定さ
れる。
The only way to extract the laser beam from this laser device is to extract it from the output mirror 1.
Since there is only one plate, its reflectivity has been decided to be one type for this co-pregnant organ. Once the reflectance of the output mirror 1 is determined, the output characteristics are determined by the relationship between the gain coefficient and saturation gain of the output mirror and the excitation section.

ところが、第12図のレーザ装置において高い反射率の
出力ミラー1を用いると、はぼ高い利得係数をもつ励起
領域により発振特性が決まり、その出力特性は第13図
で示したように励起入力の少ないところでも発振するよ
うになる。しかし、この様に反射率が高いミラーを用い
ると共概器内部のエネルギー密度が高くなりミラーがダ
メージを受Cプ出力が飽和する傾向が出てくる。
However, when the output mirror 1 with a high reflectance is used in the laser device shown in FIG. 12, the oscillation characteristics are determined by the excitation region with a very high gain coefficient, and the output characteristics change depending on the excitation input as shown in FIG. It starts to oscillate even in small places. However, when a mirror with such a high reflectance is used, the energy density inside the cocirculator becomes high, and the mirror tends to be damaged and the Cp output becomes saturated.

一方、低い反射率のミラーを用いると、はぼ高い飽和利
得をもつ励起領域により発振特性が決まり、その出力特
性は第14図で示したように励起入力の少ないところで
は発振せず、励起入力の大きいところで発振を始めるよ
うになる。この時、反射率が低いので共]辰器内部のエ
ネルギー密度が高くならずミラーがダメージを受けるこ
とはなく、出力が飽和する傾向が出てくるおそれはない
。その反面、入力の低いところではレーザ出力は得られ
ないという問題が生じる。
On the other hand, when a mirror with a low reflectance is used, the oscillation characteristics are determined by the excitation region with a very high saturation gain, and its output characteristics do not oscillate in areas where the excitation input is small, as shown in Fig. Oscillation begins when the value is large. At this time, since the reflectance is low, the energy density inside the mirror will not increase, the mirror will not be damaged, and there is no possibility that the output will tend to be saturated. On the other hand, a problem arises in that no laser output can be obtained at low input levels.

この様な問題点は、二種のレーザ媒質を使用したレーザ
装置のみの問題ではなく、三種以上の異った特性を有す
るレーザ媒質を使用したレーザ装置全般に生じるもので
あった。
Such problems occur not only in laser devices that use two types of laser media, but also in laser devices in general that use three or more types of laser media with different characteristics.

(発明が解決しようとする課題) 本発明は、これらのレーザ媒質と出力ミラーとの関連を
うまく使い、各々の励起媒質の特性を十分に発揮させる
ことにより、レーザ出力の向上を可能としたレーザ装置
を提供することを目的とする。
(Problems to be Solved by the Invention) The present invention provides a laser that makes it possible to improve the laser output by making good use of the relationship between these laser media and the output mirror and fully demonstrating the characteristics of each excitation medium. The purpose is to provide equipment.

[発明の構成] (課題を解決するための手段) 本発明のレーザ装置は、複数種の異ったレーザ媒質によ
る複数の励起領域を持ち、これらの複数の励起領域が組
み合わされて一つのレーザ装置の励起部を構成し、その
励起部の一方の端に全反射ミラーを有し他方の端に出力
ミラーを持ち、なおかつ前記複数の励起領域の間に所定
の透過率を有する中間ミラーを設けたことを構成上の特
徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) The laser device of the present invention has a plurality of excitation regions using a plurality of different laser media, and these plurality of excitation regions are combined to form one laser. An excitation section of the device is configured, the excitation section has a total reflection mirror at one end, an output mirror at the other end, and an intermediate mirror having a predetermined transmittance is provided between the plurality of excitation regions. This is a structural feature.

(作用〉 以上のような構成を有する本発明の作用は次の通りであ
る。例えば、前記の従来技術で説明した二種のレーザ媒
質を有するレーザ装置に本発明を適用すれば、利得係数
が大ぎく飽和利得が小さいレーザ媒質の励起領域は全反
射ミラーと中間ミラーにより挟まれることになり、一つ
の共撮器を形成できる。また、利得係数が小さく飽和利
得が大きいレーザ媒質の励起領域は出力ミラーと中間ミ
ラーに挟まれることとなる。
(Operation) The operation of the present invention having the above-described configuration is as follows.For example, if the present invention is applied to a laser device having two types of laser media as explained in the above-mentioned prior art, the gain coefficient can be changed. The excitation region of a laser medium with a very small saturation gain is sandwiched between a total reflection mirror and an intermediate mirror, forming one common camera.In addition, the excitation region of a laser medium with a small gain coefficient and a large saturation gain It will be sandwiched between the output mirror and the intermediate mirror.

この場合、中間ミラーはある程度の透過率を持っている
ので、この励起領域中のレーザ光は中間ミラーからもう
一つの領域に進入していくが、その領域の端には全反射
ミラーがありそこで全反射され再度もとの領域中に返っ
てくる。そのため、利(d係数が小さく飽和利1qが大
ぎいレーザ媒質の励起領域は出力ミラーと全反射ミラー
とに挟まれたことと同じになる。
In this case, the intermediate mirror has a certain degree of transmittance, so the laser light in this excitation region enters the other region from the intermediate mirror, but there is a total reflection mirror at the end of that region. It is totally reflected and returns to the original area. Therefore, the excitation region of the laser medium where the gain (d coefficient is small and the saturation gain 1q is large) is the same as being sandwiched between the output mirror and the total reflection mirror.

そこで、この中間ミラーの反射率を利得係数が大ぎいも
のに適切に選び、出力ミラーの反射率を飽和利得の大き
いものに適切に選択すれば、利得係数が小さく飽和利得
が大きいレーザ媒質の励起領域と利得係数が大きく飽和
利得が小さいレーザ媒質の励起領域の二つの励起領域に
対して、それぞれ最適な共振器構成及びミラーの反射率
を与えることができる。
Therefore, if the reflectance of this intermediate mirror is appropriately selected to have a large gain coefficient, and the reflectance of the output mirror is appropriately selected to be one with a large saturation gain, excitation of a laser medium with a small gain coefficient and a large saturation gain can be achieved. Optimal resonator configurations and mirror reflectances can be provided for two excitation regions: the excitation region of a laser medium with a large gain coefficient and a small saturation gain.

この様に、本発明においては、各励起領域の中間にその
励起領域を構成するレーザ媒質に適切な透過率を有する
中間ミラーを配設することにより、各励起領域ごとに適
切な共振器構成を与えることができる。
In this way, in the present invention, an appropriate resonator configuration can be achieved for each excitation region by disposing an intermediate mirror having an appropriate transmittance for the laser medium constituting the excitation region in the middle of each excitation region. can give.

(実施例) 以上説明したような本発明による二つの励起領域を持つ
レーザ装置の各実施例を第1図乃至第7図に示し、具体
的に説明する。なお、第8図から第12図に示した従来
技術と同一部分には、同一符号を付し説明を省略する。
(Example) Examples of the laser device having two excitation regions according to the present invention as described above are shown in FIGS. 1 to 7, and will be specifically described. Note that the same parts as in the prior art shown in FIGS. 8 to 12 are denoted by the same reference numerals, and explanations thereof will be omitted.

第1図に示す実施例は、本発明を炭酸ガスレーザおいて
適用したものでおる。
In the embodiment shown in FIG. 1, the present invention is applied to a carbon dioxide laser.

炭酸ガスレーザは、その動作圧力が低いものでは利得係
数が大きく飽和利得が小さい特性があり、動作圧力が高
いと利得係数が小さく飽和利得が大きいという特性がお
る。
A carbon dioxide laser has a characteristic that when the operating pressure is low, the gain coefficient is large and the saturation gain is small, and when the operating pressure is high, the gain coefficient is small and the saturation gain is large.

第1図では、動作ガス圧力が低い励起領域、即ち利得係
数が大きく飽和利得が小さいレー畳ア媒質の励起領域3
は、全反射ミラー2と中間ミラー5により挟まれて一つ
の共振器を形成できる。また、動作ガス圧力が高い励起
領域、即ち利得係数か小ざく飽和利得が大きいレーザ媒
質の励起領11J、4は、出力ミラー1と中間ミラー4
に挟まれている。ただし、この中間ミラー5はおる程度
の透過率を持ち、この励起領域中のレーザ光は中間ミラ
ー5からもう一つの領域に進入していくが、その領域の
端には全反射ミラー2がありそこで全反射され再度もと
の領域中に返ってくる。そのため、利得係数が小さく飽
和利得が大きいレーザts質の励起領I或4は、出力ミ
ラー1と全反射ミラー2とに挟まれ!こことと同じにな
る。
In FIG. 1, the excitation region 3 of the laser medium has a low operating gas pressure, that is, a large gain coefficient and a small saturation gain.
can be sandwiched between the total reflection mirror 2 and the intermediate mirror 5 to form one resonator. In addition, the excitation region 11J, 4 of the laser medium where the operating gas pressure is high, that is, the gain coefficient is small and the saturation gain is large, is the output mirror 1 and the intermediate mirror 4.
sandwiched between. However, this intermediate mirror 5 has a certain degree of transmittance, and the laser light in this excitation region enters another region from the intermediate mirror 5, but there is a total reflection mirror 2 at the end of that region. There, it is totally reflected and returns to the original area. Therefore, the excitation region I or 4 of the laser TS quality, which has a small gain coefficient and a large saturation gain, is sandwiched between the output mirror 1 and the total reflection mirror 2! It will be the same as here.

そこで、この中間ミラー5の反射率を利得係数が大きい
ものに適切に選び、出力ミラー1の反射率を飽和利得の
大きいものに適切に選べばそれぞれに対して適切な共1
辰器が形成されることになる。
Therefore, if the reflectance of the intermediate mirror 5 is appropriately selected to have a large gain coefficient, and the reflectance of the output mirror 1 is appropriately selected to be one with a large saturation gain, an appropriate value of 1 can be obtained for each of them.
A dragonfly will be formed.

その結果、この様なレーザ装置は、小ざな励起入力でわ
ずかな出力を得るところから大きな励起入力の所で高い
出力を得るところまで区別なく滑らかに出力を得ること
ができる。なお、出願人が、第1図の実施例の構成にお
いて、中間ミラーの反射率を70%程度、出力ミラーの
反射率を30%程度に設定したときが、レーザの出力特
性が一番良好であった。
As a result, such a laser device can smoothly obtain an output without distinction, from a small output with a small excitation input to a high output with a large excitation input. The applicant found that the laser output characteristics were best when the reflectance of the intermediate mirror was set to about 70% and the reflectance of the output mirror was set to about 30% in the configuration of the embodiment shown in FIG. there were.

なお、前記実施例においては、共振器を直列にして接続
しであるが、第3図のように間に折り返しミラー6.6
を用いてコの字形に折り曲げた形にして共振器を構成し
ても良い。また、第4図のようにZ形に配置したり、第
5図のようにL字形に配置することもできる。ざらにL
字形に配置した場合に、第6図のようにコーナ一部に一
面に反射率を持たせたプリズム7を用いることもできる
In the above embodiment, the resonators are connected in series, but as shown in FIG.
The resonator may be constructed by bending it into a U-shape. Further, they can be arranged in a Z-shape as shown in FIG. 4, or in an L-shape as shown in FIG. Zarani L
When the prisms are arranged in a letter shape, it is also possible to use a prism 7 whose corner part has reflectance on one surface as shown in FIG.

また、第7図のように、波長選択性を持たせるため全反
射ミラー8をグレーティングとすることも可能である。
Furthermore, as shown in FIG. 7, the total reflection mirror 8 may be a grating in order to provide wavelength selectivity.

また、炭酸ガスレーザにおける利得特性の差を用いた場
合を示したが、これはレーザ媒質に利得特性の差がある
ものであればなんでも良い。例えば、エキシマレーザに
おいてエキシマガスとバファーガスとの混合比が異なる
もの、ガラスレーザ、YAGレーザでCrのドープ率の
異なるもの等種々のものが考えられる。
Further, although a case has been shown in which differences in gain characteristics in carbon dioxide lasers are used, any laser medium may be used as long as the laser medium has a difference in gain characteristics. For example, various types of lasers can be considered, such as excimer lasers with different mixing ratios of excimer gas and buffer gas, glass lasers and YAG lasers with different Cr doping rates.

ざらに、2つの媒質を持つレーザについて述べたが、こ
れらは同じ原理を用いて3つ以上の媒質を持つものに拡
張できることはもちろんである。
Although we have briefly described lasers with two media, it goes without saying that these can be extended to lasers with three or more media using the same principles.

[発明の効果] 以上説明したように、本発明においては、各励起領域の
中間に中間ミラーを設けるという簡単な手段で、励起領
域それぞれに対してそれぞれに最適な共撮器構成、ミラ
ーの反射率を与えることができ、各々の励起領域を有効
に利用することができると共に僅かな励起入力からもレ
ーザ出力が得られ連続に高い出力まで運転することがで
きる。
[Effects of the Invention] As explained above, in the present invention, by simply providing an intermediate mirror in the middle of each excitation region, it is possible to achieve the optimal co-imager configuration and mirror reflection for each excitation region. In addition, each excitation region can be used effectively, and a laser output can be obtained even with a small excitation input, allowing continuous operation to a high output.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるレーザ装置の基本的実施例を示す
構成図、第2図にはその特性図、第3図乃至第7図はそ
れぞれ本発明の他の実施例を示ず構成図、第9図乃至第
14図は従来から用いられてきたレーザ装置の構成図と
それらの特性を示す特性図でおる。 1・・・出力ミラー、2・・・全反射ミラー、3・・・
励起部(高飽和強度)、4・・・励起部(高利得強度)
、5・・・中間ミラー、6・・・折り返しミラー、7・
・・プリズム、8・・・グレーティング。
FIG. 1 is a block diagram showing a basic embodiment of a laser device according to the present invention, FIG. 2 is a characteristic diagram thereof, and FIGS. 3 to 7 are block diagrams showing other embodiments of the present invention, respectively. 9 to 14 are configuration diagrams of conventionally used laser devices and characteristic diagrams showing their characteristics. 1... Output mirror, 2... Total reflection mirror, 3...
Excitation section (high saturation intensity), 4...excitation section (high gain intensity)
, 5... intermediate mirror, 6... return mirror, 7.
... Prism, 8... Grating.

Claims (1)

【特許請求の範囲】[Claims] (1)複数種の異ったレーザ媒質による複数の励起領域
を持ち、これらの複数の励起領域が組み合わされて一つ
のレーザ装置の励起部を構成し、その励起部の一方の端
に全反射ミラーを有し他方の端に出力ミラーを持ち、な
おかつ前記複数の励起領域の間に所定の透過率を有する
中間ミラーを設けたことを特徴とするレーザ装置。
(1) It has multiple excitation regions using multiple different laser media, and these multiple excitation regions are combined to form an excitation section of a single laser device, and total reflection occurs at one end of the excitation section. 1. A laser device comprising a mirror, an output mirror at the other end, and an intermediate mirror having a predetermined transmittance between the plurality of excitation regions.
JP22840388A 1988-09-14 1988-09-14 Laser device Pending JPH0278283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22840388A JPH0278283A (en) 1988-09-14 1988-09-14 Laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22840388A JPH0278283A (en) 1988-09-14 1988-09-14 Laser device

Publications (1)

Publication Number Publication Date
JPH0278283A true JPH0278283A (en) 1990-03-19

Family

ID=16875920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22840388A Pending JPH0278283A (en) 1988-09-14 1988-09-14 Laser device

Country Status (1)

Country Link
JP (1) JPH0278283A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009540607A (en) * 2006-06-14 2009-11-19 サイマー インコーポレイテッド Driving laser for EUV light source
JP2019192792A (en) * 2018-04-25 2019-10-31 精電舎電子工業株式会社 Gas laser oscillation method, gas laser oscillation device using this method, laser deposition device, and laser processing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009540607A (en) * 2006-06-14 2009-11-19 サイマー インコーポレイテッド Driving laser for EUV light source
JP2019192792A (en) * 2018-04-25 2019-10-31 精電舎電子工業株式会社 Gas laser oscillation method, gas laser oscillation device using this method, laser deposition device, and laser processing device

Similar Documents

Publication Publication Date Title
US4942582A (en) Single frequency solid state laser
US4107628A (en) CW Brillouin ring laser
US6108356A (en) Intracavity optical parametric oscillators
WO1995034111A1 (en) Solid-state laser with active etalon and method therefor
JPH05218556A (en) Solid laser
CA2289695A1 (en) A single mode laser suitable for use in frequency multiplied applications and method
JP2505892B2 (en) Parametric pulse laser
CA2103630A1 (en) Self Aligning Intracavity Raman Laser
KR970072570A (en) Wavelength-Selectable Laser Oscillators in Tunable Lasers
JPS6016479A (en) Laser device of single frequency oscillation
JPH0278283A (en) Laser device
US7050476B2 (en) Waveguide laser resonator
US4598407A (en) Orthogonal type gas laser oscillator
JP3176682B2 (en) Tunable laser device
JPH06283798A (en) Fiber laser and optical fiber amplifier
JP2661147B2 (en) Excimer laser device
US3575667A (en) Single mode ring laser
US3551844A (en) Ring-type parametric oscillator
JPH03173486A (en) Narrow bandwidth laser
CN218123957U (en) Cascade multi-wavelength tunable laser for laser radar light source
JPH06186605A (en) Optical parametric oscillator
JPH04246875A (en) Laser
US4683576A (en) Optical pumping laser system
JPH0511286A (en) Wavelength conversion element
JPH0758380A (en) Solid laser device