JPH0276267A - Amorphous solar cell - Google Patents

Amorphous solar cell

Info

Publication number
JPH0276267A
JPH0276267A JP63227498A JP22749888A JPH0276267A JP H0276267 A JPH0276267 A JP H0276267A JP 63227498 A JP63227498 A JP 63227498A JP 22749888 A JP22749888 A JP 22749888A JP H0276267 A JPH0276267 A JP H0276267A
Authority
JP
Japan
Prior art keywords
thin film
type semiconductor
type
semiconductor thin
transparent electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63227498A
Other languages
Japanese (ja)
Other versions
JP2688220B2 (en
Inventor
Makoto Konagai
誠 小長井
Nobuhiro Fukuda
福田 信弘
Kenji Miyaji
宮地 賢司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP63227498A priority Critical patent/JP2688220B2/en
Publication of JPH0276267A publication Critical patent/JPH0276267A/en
Application granted granted Critical
Publication of JP2688220B2 publication Critical patent/JP2688220B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

PURPOSE:To achieve a high open-edge voltage and improve photoelectric conversion efficiency by providing an n-type fine crystal thin film between a transparent electrode and a p-type semiconductor thin film. CONSTITUTION:In a photoelectric conversion element formed by laminating a light transmission type substrate 1, a transparent electrode 2, a p-type semiconductor thin film 4, an i-type semiconductor thin film 5, an n-type semiconductor thin film 6, and a rear-surface electrode 7 in this order, a highly conductive n-type semiconductor thin film 3 is placed between the transparent electrode 2 and the p-type semiconductor thin film 4. An n-type fine crystal silicon thin film, a fine crystal silicon carbide thin film, etc., can be effectively used as an n-type fine crystal thin film. These n-type fine crystal silicon thin films can be easily formed by the plasma CVD method using a compound containing silicon within the molecule, a V-family compound in the periodic table such as phospine, arsine, etc., and a mixed gas consisting of hydrogen as a raw material gas. Thus, it achieves a cell where the open-edge voltage is fully enhanced and the photoelectric conversion efficiency is high.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は非晶質太陽電池の高性能化に関し、とくに、開
放端電圧を高めることにより、非晶質太陽電池の高効率
化を図る技術に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to improving the performance of an amorphous solar cell, and in particular to a technique for increasing the efficiency of an amorphous solar cell by increasing the open circuit voltage.

〔背景技術〕[Background technology]

非晶質太陽電池は電卓や時計を駆動するための、出力の
小さいエネルギー供給源としてすでに実用化されている
。しかしながら、出力の大きいエネルギー供給源として
は、性能不足であり、性能向上をめざして、各種の検討
が実施されている。
Amorphous solar cells are already in practical use as low-output energy sources to power calculators and watches. However, as an energy supply source with a large output, its performance is insufficient, and various studies are being carried out with the aim of improving its performance.

しかして、太陽電池の光電変換効率は開放端電圧、短絡
電流ならびに曲線因子の積で表される。各種の検討の結
果、短絡電流ならびに曲線因子については、現在の達成
値は、理論的に予想される値に近づいてきたが、こと開
放端電圧は未だ改善されていない、太陽電池の信軌性向
上のために、近年、光入射側に2層を設けた、pin型
非晶質太陽電池が検討されている。この非晶質太陽電池
において、開放端電圧を改善するためには、p型半導体
薄膜の光電特性を改善せねばならず、とくに、その光学
バンドギャップの拡大と電気伝導率の向上を同時に行わ
ねばならないところに、技術の困難性があった。この理
由は、光学バンドギャップを拡大すると、−S的に電気
伝導率が低下して仕舞うからである。
Therefore, the photoelectric conversion efficiency of a solar cell is expressed as the product of open circuit voltage, short circuit current, and fill factor. As a result of various studies, the currently achieved values for short-circuit current and fill factor are approaching the theoretically expected values, but the open-circuit voltage has not yet been improved, and the reliability of solar cells has not yet been improved. In order to improve this, in recent years, pin-type amorphous solar cells with two layers on the light incident side have been studied. In order to improve the open-circuit voltage of this amorphous solar cell, it is necessary to improve the photoelectric properties of the p-type semiconductor thin film, and in particular, it is necessary to simultaneously widen its optical band gap and improve its electrical conductivity. This was not possible due to technical difficulties. The reason for this is that when the optical bandgap is expanded, the electrical conductivity decreases in terms of -S.

これらを満足する材料として、微結晶薄膜が堤案されて
いるが、我々は、プラズマCVD法や光CVD法のよう
な従来技術を用いて、透明電極上にP型機結晶薄膜を形
成すべき成膜条件で薄膜の形成を試みたが、結果的には
、非晶質太陽電池の開放端電圧は実質的には向上せず、
光電変換効率の改善にはつながらないことを見出した。
A microcrystalline thin film has been proposed as a material that satisfies these requirements, but we believe that a P-type microcrystalline thin film should be formed on a transparent electrode using conventional techniques such as plasma CVD and photoCVD. Although we attempted to form a thin film under different deposition conditions, the open circuit voltage of the amorphous solar cell did not substantially improve.
It was found that this did not lead to improvement in photoelectric conversion efficiency.

このように、p型の微結晶薄膜を非晶質太陽電池に必要
十分な50人〜500人の膜厚において、透明電極上に
形成することは掻めて困難なのか、あるいはまた、p型
機結晶薄膜形成条件により、透明電極が損傷を受けたた
めに性能改善につながらなかったのか、現在の技術水準
においては明らかではないが、とにかく、p型機結晶薄
膜を用いての性能改善は十分達成されていないのである
In this way, is it extremely difficult to form a p-type microcrystalline thin film on a transparent electrode with a film thickness of 50 to 500 nm, which is sufficient for an amorphous solar cell? Although it is not clear at the current state of the art whether the transparent electrode was damaged due to the formation conditions of the machine crystalline thin film and did not lead to improved performance, in any case, the performance improvement using the p-type machined crystalline thin film was sufficiently achieved. It has not been done.

〔発明の基本的着想〕[Basic idea of the invention]

本発明者らは、かかる問題を解決するために、鋭意検討
をかさねた結果、n型の微結晶薄膜は掻めて形成され易
く、透明電極上にも容易に形成されるうえ、微結晶薄膜
のpn接合は整流性を示さないので、導電性の結晶性材
料として利用しうるであろうとの着想を得、かかる着想
に基づき、n型の微結晶薄膜を透明電極上に形成した後
、P型の微結晶薄膜を形成して非晶質太陽電池を形成す
ることにより、高い開放端電圧を有する非晶質太陽電池
の形成が可能になることを見出し、本発明を完成した。
In order to solve this problem, the present inventors have made intensive studies and found that an n-type microcrystalline thin film is easily formed by scratching, is easily formed on a transparent electrode, and that a microcrystalline thin film Since the p-n junction does not exhibit rectification, it was conceived that it could be used as a conductive crystalline material.Based on this idea, after forming an n-type microcrystalline thin film on a transparent electrode, The inventors have discovered that it is possible to form an amorphous solar cell with a high open circuit voltage by forming an amorphous solar cell by forming a microcrystalline thin film of the same type, and have completed the present invention.

〔発明の開示〕[Disclosure of the invention]

すなわち、本発明は、透光性基板、透明電極、p型半導
体薄膜、i型半導体薄膜、n型半導体薄膜、電極の順に
積層して形成された非晶質太陽電池において、透明電極
とp型半導体薄膜の間に、n型微結晶薄膜を介在せしめ
てなる非晶質太陽電池である。
That is, the present invention provides an amorphous solar cell formed by laminating a transparent substrate, a transparent electrode, a p-type semiconductor thin film, an i-type semiconductor thin film, an n-type semiconductor thin film, and an electrode in this order. This is an amorphous solar cell in which an n-type microcrystalline thin film is interposed between semiconductor thin films.

これにより、解放端電圧が充分高められた、高い光電変
換効率を有する電池が提供される。
Thereby, a battery having a sufficiently increased open end voltage and high photoelectric conversion efficiency is provided.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の光電変換素子の構成を模式的に示したものが、
第1図である。
The structure of the photoelectric conversion element of the present invention is schematically shown below.
FIG.

すなわち、透光性基板1、透明電極2、p型半導体薄膜
4、n型半導体薄膜5、n型半導体薄膜6、裏面を極7
の順に積層して形成された光電変換素子において、該透
明電極2とP型半導体薄膜4の間に、n型の微結晶薄膜
を介在せしめてなる素子である。
That is, a transparent substrate 1, a transparent electrode 2, a p-type semiconductor thin film 4, an n-type semiconductor thin film 5, an n-type semiconductor thin film 6, and a pole 7 on the back surface.
In a photoelectric conversion element formed by laminating layers in this order, an n-type microcrystalline thin film is interposed between the transparent electrode 2 and the P-type semiconductor thin film 4.

なお、第2図は、従来の光電変換素子の構成を示し、高
導電性のn型の半導体薄膜3の介在のない、単なる透光
性基板1、透明電極2、p型半導体薄膜4、n型半導体
薄膜5、n型半導体薄膜6、裏面電極7の順に積層して
形成された光電変換素子を示す。
Note that FIG. 2 shows the configuration of a conventional photoelectric conversion element, which consists of a simple transparent substrate 1, a transparent electrode 2, a p-type semiconductor thin film 4, an n-type semiconductor thin film 3, and no intervening highly conductive n-type semiconductor thin film 3. A photoelectric conversion element is shown in which a type semiconductor thin film 5, an n-type semiconductor thin film 6, and a back electrode 7 are laminated in this order.

本発明のもっとも特徴とするところは、透明電極2とp
型半導体薄膜4の間に、n型の微結晶薄膜3を介在せし
める点にあるが、かかるn型の微結晶薄膜としては、n
型の微結晶シリコン薄膜、炭素含有微結晶シリコン薄膜
、微結晶シリコンカーバイド薄膜等を有効に用いること
ができる。
The most characteristic feature of the present invention is that the transparent electrode 2 and p
The n-type microcrystalline thin film 3 is interposed between the n-type semiconductor thin films 4.
A type of microcrystalline silicon thin film, a carbon-containing microcrystalline silicon thin film, a microcrystalline silicon carbide thin film, etc. can be effectively used.

これら、n型の微結晶薄膜は分子内にシリコンを有する
化合物、ホスフィンやアルシン等の周期律表の第■族の
化合物、ならびに水素からなる混合ガスを原料ガスとし
て、プラズマCVD (化学気相堆積)法や光CVD 
(化学気相堆積)法を行うことにより容易に形成される
。これらの混合ガスに、必要に応じて炭化水素ガスやヘ
リウムやアルゴン等の不活性ガスを添加することを、本
発明は、なんら、妨げるものではない。形成条件は、形
成温度は150〜400°C1好ましくは175〜30
0°C1とくに好ましくは200〜250°Cであり、
形成圧力は0.01〜5 Torr、好ましくは0.0
3〜1.5 Torr。
These n-type microcrystalline thin films are produced by plasma CVD (chemical vapor deposition) using a mixed gas consisting of a compound containing silicon in its molecules, a compound in group Ⅰ of the periodic table such as phosphine or arsine, and hydrogen as a raw material gas. ) Law and optical CVD
(chemical vapor deposition) method. The present invention does not preclude adding hydrocarbon gas or an inert gas such as helium or argon to these mixed gases as necessary. The formation conditions include a formation temperature of 150 to 400°C, preferably 175 to 30°C.
0°C1, particularly preferably 200 to 250°C,
Forming pressure is 0.01 to 5 Torr, preferably 0.0
3-1.5 Torr.

特に好ましくは0.035〜1.Q Torrで行われ
る。
Particularly preferably 0.035 to 1. Performed at Q Torr.

本発明において、n型微結晶薄膜の必要厚みは5Å以上
高々100人で十分である。好ましくは、10人〜50
人である。5人未満では、薄膜形成の効果を奏すること
は出来ないし、また、逆に100人を越えて形成した場
合には、開放端電圧の改善効果を電流の低下が打ち消し
て発明の効果を達成できない、現在の技術では、100
Å以下のn型半導体薄膜の形成自体を直接十分に証拠だ
てることは困難である。しかしながら、本発明において
は、n型微結晶薄膜として有効な薄膜は、1000Å以
上の膜厚に形成したときに、n型微結晶薄膜の性質を示
すものであればよい、すなわち、1000Å以上の膜厚
に堆積することにより、X線回折を用いて、シリコン結
晶に起因する回折ピークを観測することができる。この
回折ピークが現れる形成条件(n型微結晶薄膜の形成条
件)におしくて、100Å以下で、必要膜厚に相当する
成膜時間を成膜速度から算出して、形成することによっ
て所望の厚みを有する本発明のn型微結晶薄膜を得るこ
とが可能である。また、このようなn型微結晶薄膜は通
常、0.137cm以上の高い導電率を有する。
In the present invention, the required thickness of the n-type microcrystalline thin film is 5 Å or more, and it is sufficient for at most 100 people. Preferably 10 to 50 people
It's a person. If less than 5 people are involved, the effect of thin film formation cannot be achieved, and conversely, if more than 100 people are involved, the effect of improving the open circuit voltage will be canceled out by the reduction in current, making it impossible to achieve the effects of the invention. , with current technology, 100
It is difficult to provide sufficient direct evidence of the formation of an n-type semiconductor thin film with a thickness of Å or less. However, in the present invention, a thin film that is effective as an n-type microcrystalline thin film only needs to exhibit the properties of an n-type microcrystalline thin film when formed to a thickness of 1000 Å or more. By depositing it thickly, diffraction peaks due to silicon crystals can be observed using X-ray diffraction. If the formation conditions under which this diffraction peak appears (formation conditions for n-type microcrystalline thin film) are satisfied, the desired thickness can be obtained by calculating the film formation time corresponding to the required film thickness from the film formation rate and forming the film at a thickness of 100 Å or less. It is possible to obtain the n-type microcrystalline thin film of the present invention having the following properties. Further, such an n-type microcrystalline thin film usually has a high conductivity of 0.137 cm or more.

本発明において、p型の半導体薄膜としては、p型の微
結晶薄膜を用いることが好ましい。p型の微結晶薄膜は
p型の微結晶シリコン薄膜、炭素含有微結晶シリコン薄
膜、微結晶シリコンカーバイド薄膜等を有効に用いるこ
とができる。p型機結晶薄膜の必要厚みは50Å以上高
々400人で十分である。好ましくは、100人〜25
0人である。50人未満の場合はt型の半導体薄膜とし
ての作用を充分奏することが出来ないし、また400人
を越えて形成した場合には、開放端電圧の改善効果を電
流の低下が打ち消してこれまた発明の効果を達成できな
い。現在の技術では、400Å以下のp型半導体薄膜自
体の形成を直接十分に証拠だてることは困難である。し
かしながら、本発明において、p型機結晶薄膜として有
効な薄膜は、1000Å以上の膜厚に形成したときに、
p型機結晶薄膜の性質を示すものであればよい。すなわ
ち、1000Å以上の膜厚に堆積することにより、X線
回折を用いて、シリコン結晶に起因する回折ピークを観
測することができる。この回折ピークが現れる形成条件
(p型機結晶薄膜の形成条件)において、400Å以下
で、必要膜厚に相当する成膜時間を成膜速度から算出し
て、形成することによって所望の厚みを有する本発明の
p型機結晶薄膜を得ることが可能である。また、このよ
うなp型機結晶薄膜は通常、光学的バンドギャンプが1
.9 eV以上と広い状態においても、0.0137c
m以上の高い導電率を有する。
In the present invention, it is preferable to use a p-type microcrystalline thin film as the p-type semiconductor thin film. As the p-type microcrystalline thin film, a p-type microcrystalline silicon thin film, a carbon-containing microcrystalline silicon thin film, a microcrystalline silicon carbide thin film, etc. can be effectively used. The required thickness of the p-type mechanical crystal thin film is 50 Å or more, and at most 400 people are sufficient. Preferably 100 to 25 people
There are 0 people. If there are fewer than 50 people, the function as a T-type semiconductor thin film cannot be achieved sufficiently, and if more than 400 people are involved, the reduction in current will cancel out the improvement in open circuit voltage, and the invention will not work. effect cannot be achieved. With current technology, it is difficult to provide sufficient direct evidence of the formation of a p-type semiconductor thin film itself with a thickness of 400 Å or less. However, in the present invention, a thin film that is effective as a p-type mechanical crystal thin film is formed to a thickness of 1000 Å or more.
Any material that exhibits the properties of a p-type mechanical crystal thin film may be used. That is, by depositing the film to a thickness of 1000 Å or more, diffraction peaks due to silicon crystal can be observed using X-ray diffraction. Under the formation conditions under which this diffraction peak appears (formation conditions for p-type mechano-crystalline thin films), the desired thickness can be obtained by calculating the film formation time corresponding to the required film thickness from the film formation rate and forming the film at a thickness of 400 Å or less. It is possible to obtain a p-type mechanical crystal thin film of the present invention. In addition, such p-type mechanical crystal thin films usually have an optical bandgap of 1.
.. Even in a wide range of 9 eV or more, 0.0137c
It has a high electrical conductivity of more than m.

p型の微結晶薄膜は分子内にシリコンを有する化合物、
ジボランに代表される周期律表の第■族の化合物、なら
びに水素からなる混合ガスを原料ガスとして、プラズマ
CVD (化学気相堆積)法や光CVD (化学気相堆
積)法を行うことにより容易に形成される。これらの混
合ガスに、必要に応じて炭化水素ガスやヘリウムやアル
ゴン等の不活性ガスが添加されることを、本発明は、な
んら、妨げるものではない、形成条件は、形成温度は1
50〜400°C1好ましくは175〜300°C1と
くに好ましくは200〜250 ’Cであり、形成圧力
は0.01〜5Torr1好ましくは0.03〜1.5
 Torr、特に好ましくは0.035〜1.0 To
rrで行われる。
P-type microcrystalline thin film is a compound containing silicon in the molecule,
It is easy to perform plasma CVD (chemical vapor deposition) method or photoCVD (chemical vapor deposition) method using a mixed gas consisting of hydrogen and a compound of group Ⅰ of the periodic table, represented by diborane, as a raw material gas. is formed. The present invention does not in any way prevent hydrocarbon gas or an inert gas such as helium or argon from being added to these mixed gases as necessary.The formation conditions are such that the formation temperature is 1.
50 to 400°C, preferably 175 to 300°C, particularly preferably 200 to 250'C, and the forming pressure is 0.01 to 5 Torr, preferably 0.03 to 1.5
Torr, particularly preferably 0.035 to 1.0 Torr
It is done in rr.

本発明において、i型半導体薄膜は、水素化シリコン薄
膜、水素化シリコンゲルマン薄膜、水素化シリコンカー
ボン薄膜等であり、非晶質太陽電池の光活性領域を形成
するものである。これらi型半導体薄膜は、分子内にシ
リコンを有する化合物;ゲルマン、シリルゲルマン等の
分子内にゲルマニウムを存する化合物;炭化水素ガス等
から、目的の半導体薄膜に応じて適宜選択される原料ガ
スに、プラズマCVD (化学気相堆積)法や光CVD
(化学気相堆積)法を適用することにより容易に形成さ
れる。原料ガスを水素やヘリウム等で希釈して用いるこ
とや原料ガスにごく微量のジボランを添加すること等、
i型半導体薄膜形成における従来技術を併用することに
ついては、なんら、本発明の効果を妨げるものではない
。形成条件は、形成温度は150〜400 ’C1好ま
しくは175〜350°Cであり、形成圧力は0.01
〜5 Torr、好ましくは0.03〜1.5 Tor
rで行われる。i型半導体yl膜の膜厚は太陽電池の用
途に応じて適宜決定されるものであり、本発明の限定条
件ではない。本発明の効果を達成するためには、100
0〜10000人で十分である。
In the present invention, the i-type semiconductor thin film is a hydrogenated silicon thin film, a hydrogenated silicon germane thin film, a hydrogenated silicon carbon thin film, etc., and forms a photoactive region of an amorphous solar cell. These i-type semiconductor thin films are made by using a raw material gas that is appropriately selected depending on the desired semiconductor thin film from compounds having silicon in the molecule; compounds having germanium in the molecule such as germane and silylgermane; and hydrocarbon gases. Plasma CVD (chemical vapor deposition) method and optical CVD
(chemical vapor deposition) method. For example, diluting the raw material gas with hydrogen or helium, adding a very small amount of diborane to the raw material gas, etc.
The combined use of conventional techniques in forming an i-type semiconductor thin film does not impede the effects of the present invention. The forming conditions are as follows: the forming temperature is 150-400°C, preferably 175-350°C, and the forming pressure is 0.01°C.
~5 Torr, preferably 0.03-1.5 Torr
It is done in r. The thickness of the i-type semiconductor yl film is appropriately determined depending on the use of the solar cell, and is not a limiting condition of the present invention. In order to achieve the effects of the present invention, 100
0 to 10,000 people is sufficient.

本発明において、裏面電極に接して設けられるn型半導
体薄膜としては、n型の微結晶薄膜やn型のアモルファ
ス薄膜が有効に用いられる。これらは、n型の微結晶シ
リコン薄膜、炭素含有微結晶シリコン1膜、微結晶シリ
コンカーバイドi]!膜、アモルファスシリコン薄膜、
アモルファスシリコンカーボン薄膜、アモルファスシリ
コンゲルマン薄膜等を有効に用いることができる。これ
らn型半導体薄膜は、分子内にシリコンを有する化合物
;ゲルマン、シリルゲルマン等の分子内にゲルマニウム
を有する化合物;炭化水素ガス等から、目的とする半導
体Ff膜に応じて適宜選択される原料に、ホスフィンや
アルシン等の周期律表の第■族の化合物、ならびに水素
を混合して、プラズマCVD (化学気相堆積)法や光
CVD (化学気相堆積)法を適用することにより容易
に形成されるのである。さらに、当該原料ガスをヘリウ
ムやアルゴン等の不活性ガスで希釈することは、なんら
、本発明の効果を妨げるものではない、形成条件は、形
成温度は150〜400°C1好ましくは175〜35
0 ’Cであり、形成圧力は0.01〜5 Torr、
好ましくは0.03〜1,5 Torrで行われる。n
型半導体薄膜の膜厚は、200〜500人で十分である
In the present invention, an n-type microcrystalline thin film or an n-type amorphous thin film is effectively used as the n-type semiconductor thin film provided in contact with the back electrode. These are n-type microcrystalline silicon thin film, carbon-containing microcrystalline silicon 1 film, and microcrystalline silicon carbide i]! membrane, amorphous silicon thin film,
An amorphous silicon carbon thin film, an amorphous silicon german thin film, etc. can be effectively used. These n-type semiconductor thin films are made of raw materials selected from compounds containing silicon in the molecule; compounds containing germanium in the molecule such as germane and silylgermane; and hydrocarbon gas, depending on the desired semiconductor Ff film. It can be easily formed by mixing compounds from group Ⅰ of the periodic table such as phosphine and arsine, and hydrogen, and applying plasma CVD (chemical vapor deposition) or photoCVD (chemical vapor deposition). It will be done. Furthermore, diluting the raw material gas with an inert gas such as helium or argon does not impede the effects of the present invention.The formation conditions include a formation temperature of 150 to 400°C, preferably 175 to 35°C.
0'C, and the forming pressure is 0.01-5 Torr,
It is preferably carried out at 0.03 to 1.5 Torr. n
The thickness of the type semiconductor thin film is sufficient for 200 to 500 people.

本発明において、用いるに好ましい原料ガスについてさ
らに具体的な示例をあげて説明する。分子内にシリコン
を有する化合物については、モノシラン、ジシラン、ト
リシラン等の水素化シリコン;モノメチルシラン、ジメ
チルシラン、トリメチルシラン、テトラメチルシラン、
エチルシラン、ジエチルシラン等のアルキル基置換の水
素化シリコン; ビニルシラン、ジビニルシラン、トリ
メチルシラン、ビニルジシラン、ジビニルジシラン、プ
ロペニルシラン、エチニルシラン等のラジカル重合可能
の不飽和炭化水素基を分子内に有する水素化シリコン:
これら水素化シリコンの水素が一部またはすべてフッ素
で置換されたフッ化シリコンを有効に用いることができ
る。
In the present invention, the raw material gas preferably used will be explained by giving more specific examples. For compounds containing silicon in the molecule, hydrogenated silicones such as monosilane, disilane, and trisilane; monomethylsilane, dimethylsilane, trimethylsilane, tetramethylsilane,
Hydrogenated silicon substituted with alkyl groups such as ethylsilane and diethylsilane; Hydrogen containing radically polymerizable unsaturated hydrocarbon groups in the molecule such as vinylsilane, divinylsilane, trimethylsilane, vinyldisilane, divinyldisilane, propenylsilane, and ethynylsilane Chemical silicon:
Silicon fluoride in which hydrogen in these silicon hydrides is partially or completely replaced with fluorine can be effectively used.

また、炭化水素ガスの具体的示例として、メタン、エタ
ン、プロパン、エチレン、プロピレン、アセチレン等の
炭化水素ガスが有用である。これら炭化水素ガスは、炭
素含有微結晶シリコンIll、微結晶シリコンカーバイ
ド薄膜等の形成において、光学的バンドギャップを変更
するときに用いると便利である。また、この目的におい
ては、アルキル基置換の水素化シリコン、ラジカル重合
可能の不飽和炭化水素基を分子内に有する水素化シリコ
ン、これら水素化シリコンの水素が一部またはすべてフ
ッ素で置換されたフン化シリコン等の材料も有用である
Furthermore, as specific examples of hydrocarbon gases, hydrocarbon gases such as methane, ethane, propane, ethylene, propylene, and acetylene are useful. These hydrocarbon gases are conveniently used when changing the optical band gap in forming carbon-containing microcrystalline silicon Ill, microcrystalline silicon carbide thin films, and the like. In addition, for this purpose, silicon hydrides substituted with alkyl groups, silicon hydrides having a radically polymerizable unsaturated hydrocarbon group in the molecule, and silicon hydrides in which hydrogen in these silicon hydrides has been partially or completely replaced with fluorine are also used. Materials such as silicon oxide are also useful.

本発明において、透光性基板、透明電極、裏面電極等に
ついては、とくに、限定される条件はない。透光性基板
としては青板ガラス、ホウケイ酸ガラス、石英ガラス等
従来用いられているガラス基板材料が有用であるが、さ
らに、金属やプラスチックスも基板材料として用いるこ
とができる。
In the present invention, there are no particular limitations on the light-transmitting substrate, transparent electrode, back electrode, etc. As the light-transmitting substrate, conventionally used glass substrate materials such as blue plate glass, borosilicate glass, and quartz glass are useful, but metals and plastics can also be used as the substrate material.

プラスチックス材料においては、100°C以上の温度
に耐える材料をさらに有効に用いることができる。透明
電極としては、酸化スズ、酸化インジウム、酸化亜鉛等
の金属酸化物や透光性の金属等を有効に用いることがで
きる。裏面電極としては、必ずしも透光性である必要が
ないので、アルミニウム、クロム、ニッケルークロム、
銀、金、白金等の金属や酸化スズ、酸化インジウム、酸
化亜鉛等の金属酸化物の中から適宜、選択して用いるこ
とができる。
As for plastic materials, materials that can withstand temperatures of 100° C. or more can be used more effectively. As the transparent electrode, metal oxides such as tin oxide, indium oxide, and zinc oxide, translucent metals, and the like can be effectively used. The back electrode does not necessarily have to be transparent, so aluminum, chromium, nickel-chromium,
An appropriate material can be selected from among metals such as silver, gold, and platinum, and metal oxides such as tin oxide, indium oxide, and zinc oxide.

(実施例1) 以下、本発明を実施例により、さらに具体的に説明する
(Example 1) Hereinafter, the present invention will be explained in more detail with reference to Examples.

(実施例1〕 太陽電池の形成装置としては、プラズマCVD法ならび
に光CVD法を適用できる成膜装置を用いた。絶縁性の
ガラス基板が光CVD法を適用できる形成装置内に設置
された。真空排気ならびに原料ガスを導入して、基板加
熱を行い、基板温度200°C2反応圧力0.2 To
rrにおいて、低圧水銀灯により、紫外線を照射して光
CVDを実施した。
(Example 1) As a solar cell forming apparatus, a film forming apparatus capable of applying a plasma CVD method and a photo-CVD method was used. An insulating glass substrate was installed in a forming apparatus capable of applying a photo-CVD method. Vacuum exhaust and raw material gas are introduced to heat the substrate, and the substrate temperature is 200°C2 reaction pressure is 0.2 To
At rr, photoCVD was performed by irradiating ultraviolet rays with a low-pressure mercury lamp.

まず、n型の半導体薄膜の成膜条件を決定した。First, the conditions for forming an n-type semiconductor thin film were determined.

すなわち、原料ガスはジシラン/ホスフィン/水素を1
010.01/100の割合で導入した。2時間水銀灯
を照射して成膜した。膜厚を測定して、約3600人の
薄膜が形成されたことを%1itWした。この薄膜のX
線回折はシリコン結晶に起因する回折線が明瞭に現れて
おり、n型の微結晶薄膜であることを確認した。導電率
は15S/cmであった。また、膜厚を成膜時間で除し
て得られた平均の成膜速度は0.5人へであった。
In other words, the raw material gas contains 1 disilane/phosphine/hydrogen.
It was introduced at a ratio of 0.010.01/100. A film was formed by irradiation with a mercury lamp for 2 hours. The film thickness was measured and it was determined that a thin film of about 3,600 people was formed. This thin film
Linear diffraction clearly showed diffraction lines due to silicon crystals, confirming that it was an n-type microcrystalline thin film. The conductivity was 15 S/cm. Further, the average film formation rate obtained by dividing the film thickness by the film formation time was 0.5 people.

この成膜条件を用いて非晶質太陽電池に適用するn型微
結晶薄膜を形成した。酸化スズからなる透明電極付きガ
ラス基板を同じく当該形成装置内に設置して、成膜時間
を20秒にして、n型微結晶薄膜を10人形成した。つ
いで、原料ガスの組成をホスフィンからジボランに変更
した。原料ガスはジシラン/ジボラン/水素を510.
01/200の割合で導入した。p型機結晶薄膜の形成
速度は0.2人/Sであり、成膜時間を850秒として
、膜厚170人に形成した6次にi型半導体薄膜形成室
に当該基板を移送し、モノシランを導入して、圧力0.
05Torr、形成温度240 ’Cの条件でプラズマ
CVD法によりアモルファスシリコン薄膜を約7000
人の膜厚に形成した。プラズマCVD法は13.56 
MHzのRF放電を利用した。このときの、RF電力は
10−であった。i型半導体薄膜形成後、n型半導体薄
膜形成室に当該基板を移送した。モノシラン/ホスフィ
ン/水素からなる原料ガスを、それぞれの流1が101
0.01/100の割合になるように導入した。圧力0
.2 Torr、形成温度240°Cの条件でプラズマ
CVD法によりn型半導体薄膜を500人の膜厚に形成
した。プラズマCVD法は13.56 MHzのRF放
電を利用した。このときの、RFt力は50讐であった
。ついで、薄膜形成装置から取り出し、金属電極を形成
した。AMI、100 mW/c+]の光をソーラーシ
ュミレータにより、照射して当該非晶質シリコン太陽電
池の光電特性を測定した。この結果、開放端電圧が0.
931 Vと非常に高い値を得て、本発明の効果を確認
したうえに、短絡光電流も17.07mA/c+flと
大きい値であり、また曲線因子は0.703であり、結
果として、光電変換効率は、11.17%と極めて優れ
たものであった。
Using these film forming conditions, an n-type microcrystalline thin film applied to an amorphous solar cell was formed. A glass substrate with a transparent electrode made of tin oxide was placed in the same forming apparatus, and an n-type microcrystalline thin film was formed by 10 people at a film forming time of 20 seconds. Then, the composition of the raw material gas was changed from phosphine to diborane. The raw material gas is disilane/diborane/hydrogen at 510%.
It was introduced at a rate of 01/200. The formation rate of the p-type mechano-crystalline thin film was 0.2 people/s, the film formation time was 850 seconds, and the substrate was transferred to the 6th i-type semiconductor thin film formation chamber where the film was formed to a thickness of 170 people, and monosilane was applied. was introduced to reduce the pressure to 0.
An amorphous silicon thin film was formed by plasma CVD at a temperature of about 7,000 Torr and a formation temperature of 240'C.
Formed to the thickness of a human. Plasma CVD method is 13.56
MHz RF discharge was used. At this time, the RF power was 10-. After forming the i-type semiconductor thin film, the substrate was transferred to an n-type semiconductor thin film forming chamber. Each stream 1 contains a feedstock gas consisting of monosilane/phosphine/hydrogen with a
They were introduced at a ratio of 0.01/100. pressure 0
.. An n-type semiconductor thin film was formed to a thickness of 500 nm by plasma CVD under conditions of 2 Torr and a formation temperature of 240°C. The plasma CVD method utilized 13.56 MHz RF discharge. At this time, the RFt force was 50 mm. Then, it was taken out from the thin film forming apparatus and a metal electrode was formed thereon. The photoelectric characteristics of the amorphous silicon solar cell were measured by irradiating it with light of AMI, 100 mW/c+] using a solar simulator. As a result, the open circuit voltage becomes 0.
In addition to obtaining a very high value of 931 V, confirming the effect of the present invention, the short-circuit photocurrent was also a large value of 17.07 mA/c+fl, and the fill factor was 0.703. The conversion efficiency was extremely excellent at 11.17%.

〔比較例1〕 実施例1において、n型微結晶薄膜を介在せしめること
なしに、透明電極付きガラス基板上に直接p型機結晶薄
膜を形成することから、はじめた以外は実施例1と全(
同し工程で非晶質シリコン太陽電池を形成した。得られ
た太陽電池の性能を測定したところ、開放@電圧が0.
762 V 、短絡光電流も15.20mA/cffl
に低下して、光電変換効率が7゜66%にまで、大きく
低下して仕舞った。
[Comparative Example 1] Example 1 and all procedures were repeated except that in Example 1, a p-type microcrystalline thin film was directly formed on a glass substrate with a transparent electrode without intervening an n-type microcrystalline thin film. (
An amorphous silicon solar cell was formed using the same process. When the performance of the obtained solar cell was measured, it was found that the open voltage was 0.
762 V, short circuit photocurrent is also 15.20 mA/cffl
The photoelectric conversion efficiency significantly decreased to 7.66%.

〔発明の効果および産業上の利用可能性1以上の実施例
ならびに比較例から明らかなように、n型微結晶薄膜を
透明電極とp型半導体薄膜間に介在せしめて設けること
により、従来技術で実用化されている光CVD法ならび
にプラズマCVD法を用いて、高い開放端電圧を有する
本発明の非晶質太陽電池が形成されるものである。すな
わち、本発明は実用レベルにおいて、非晶質太陽電池の
光電変換効率の改善に大きく貢献するものである。この
ように、本発明は電力用太陽電池に要求される高変換効
率を可能にする技術を提供できるものであり、エネルギ
ー産業にとって、きわめて有用な発明であると言わざる
を得ない。
[Effects of the invention and industrial applicability] As is clear from the above embodiments and comparative examples, by interposing the n-type microcrystalline thin film between the transparent electrode and the p-type semiconductor thin film, it is possible to The amorphous solar cell of the present invention having a high open-circuit voltage is formed using a photo-CVD method and a plasma CVD method that have been put into practical use. That is, the present invention greatly contributes to improving the photoelectric conversion efficiency of amorphous solar cells at a practical level. As described above, the present invention can provide a technology that enables high conversion efficiency required for power solar cells, and it must be said that it is an extremely useful invention for the energy industry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の非晶質太陽電池の構成例を示す模式図
であり、第2図は従来技術による非晶質太陽電池の構成
例を示す模式図である。 図中1−・・・・−・−透光性の基板、2−−−−m−
・−・−透明電極、3・−・・−一一一−n型微結晶薄
膜、4・−−−一−−−−・p型半導体薄膜、5−・・
・・・・・・・i型半導体薄膜、6−・・・・−n型半
導体薄膜、7−−−−−・・−稟面電橿を示す。
FIG. 1 is a schematic diagram showing an example of the configuration of an amorphous solar cell according to the present invention, and FIG. 2 is a schematic diagram showing an example of the configuration of an amorphous solar cell according to the prior art. In the figure, 1-------translucent substrate, 2---m-
・--Transparent electrode, 3--111-n-type microcrystalline thin film, 4--1--p-type semiconductor thin film, 5--
. . . I-type semiconductor thin film, 6-.

Claims (1)

【特許請求の範囲】[Claims] (1)透光性基板、透明電極、p型半導体薄膜、i型半
導体薄膜、n型半導体薄膜、裏面電極の順に積層して形
成された非晶質太陽電池において、該透明電極とp型半
導体薄膜の間に、n型微結晶薄膜を介在せしめてなるこ
とを特徴とする非晶質太陽電池。
(1) In an amorphous solar cell formed by laminating a transparent substrate, a transparent electrode, a p-type semiconductor thin film, an i-type semiconductor thin film, an n-type semiconductor thin film, and a back electrode in this order, the transparent electrode and the p-type semiconductor An amorphous solar cell comprising an n-type microcrystalline thin film interposed between thin films.
JP63227498A 1988-09-13 1988-09-13 Amorphous solar cell Expired - Fee Related JP2688220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63227498A JP2688220B2 (en) 1988-09-13 1988-09-13 Amorphous solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63227498A JP2688220B2 (en) 1988-09-13 1988-09-13 Amorphous solar cell

Publications (2)

Publication Number Publication Date
JPH0276267A true JPH0276267A (en) 1990-03-15
JP2688220B2 JP2688220B2 (en) 1997-12-08

Family

ID=16861833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63227498A Expired - Fee Related JP2688220B2 (en) 1988-09-13 1988-09-13 Amorphous solar cell

Country Status (1)

Country Link
JP (1) JP2688220B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7560750B2 (en) 2003-06-26 2009-07-14 Kyocera Corporation Solar cell device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7560750B2 (en) 2003-06-26 2009-07-14 Kyocera Corporation Solar cell device
US7910916B2 (en) 2003-06-26 2011-03-22 Kyocera Corporation Multi-junction type solar cell device

Also Published As

Publication number Publication date
JP2688220B2 (en) 1997-12-08

Similar Documents

Publication Publication Date Title
JP2533639B2 (en) Method for producing amorphous silicon doped with P-type carbon
US5151255A (en) Method for forming window material for solar cells and method for producing amorphous silicon solar cell
US5391410A (en) Plasma CVD of amorphous silicon thin film
JP2688219B2 (en) Photoelectric conversion element
JP2003188400A (en) Crystalline silicon carbide film and manufacturing method thereof, and solar cell
JPH0276267A (en) Amorphous solar cell
JPH0364973A (en) Photovoltaic element
JPH0376166A (en) Photoelectric converter
JPH06260665A (en) Amorphous solar cell
JPH03235375A (en) Amorphous solar battery
JPH07183550A (en) Amorphous photoelectric conversion device
JPH03235374A (en) Photoelectric conversion element
JPH0653532A (en) Photoelectric conversion element
JPH02109376A (en) Amorphous solar cell
JPS6216514A (en) Manufacture of photoelectric conversion element
JP2688221B2 (en) Amorphous solar cell
JPH0393279A (en) Optoelectric transducer
JPS632385A (en) Multilayer structure p-type silicon film and solar cell
JPH0653533A (en) Amorphous solar cell
JPH02109375A (en) Photoelectric transducer element
JPH03235373A (en) Photovoltaic element
JPS63220578A (en) Photoelectric conversion element
JP2575397B2 (en) Method for manufacturing photoelectric conversion element
JP2966908B2 (en) Photoelectric conversion element
JPH08181079A (en) Forming method of amorphous semiconductor thin film

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

LAPS Cancellation because of no payment of annual fees