JPH0269365A - Fiber-reinforced composite sintered compact - Google Patents

Fiber-reinforced composite sintered compact

Info

Publication number
JPH0269365A
JPH0269365A JP63217323A JP21732388A JPH0269365A JP H0269365 A JPH0269365 A JP H0269365A JP 63217323 A JP63217323 A JP 63217323A JP 21732388 A JP21732388 A JP 21732388A JP H0269365 A JPH0269365 A JP H0269365A
Authority
JP
Japan
Prior art keywords
whiskers
aspect ratio
silicon carbide
peak intensity
composite sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63217323A
Other languages
Japanese (ja)
Other versions
JP2652046B2 (en
Inventor
Shoji Kosaka
祥二 高坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP63217323A priority Critical patent/JP2652046B2/en
Publication of JPH0269365A publication Critical patent/JPH0269365A/en
Application granted granted Critical
Publication of JP2652046B2 publication Critical patent/JP2652046B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To increase the effect of addition of SiC whiskers by using SiC whiskers with scarce lamination defect in the crystal structure, having a specified aspect ratio and by composing it with ceramic material. CONSTITUTION:The silicon carbide whiskers having 2-100 aspect ratio and <=0.2h1/h2, where h1 and h2 are peak intensities of 2H type (100) and 3C type (200) of crystalline structure in curve of X-ray diffraction, respectively, are mixed and dispersed in the ceramic powder. After molding, the molded body is sintered to obtain fiber-reinforced composite sintered compact. In this case, the smaller peak intensity ratio h1/h2 results in more scarce lamination defect and the whiskers having >0.2 aspect ratio does not show the sufficient effect of addition of the whiskers. When the whiskers have <2 aspect ratio, they have a smaller effect of crack deflection and drawing in the composite body. On the other hand, when the aspect ratio is more than 100, the whiskers are difficulty dispersed in the matrix and that causes the lowering of strength of the composite body.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は炭化珪素ウィスカーを用いた繊維強化型複合焼
結体の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to improvements in fiber-reinforced composite sintered bodies using silicon carbide whiskers.

〔従来技術〕[Prior art]

従来から、セラミック材料は強度、耐摩耗性、耐酸化性
等機械的強度に優れた材料として注目されている反面、
致命的欠陥として脆性が大きいことから構造材料として
の十分な利用が阻害されている。
Ceramic materials have traditionally attracted attention as materials with excellent mechanical strength such as strength, wear resistance, and oxidation resistance.
Its fatal flaw is its high brittleness, which prevents its full use as a structural material.

そこで、セラミック材料の脆性を克服することを目的と
してセラミックス中に高ヤング率、高強度のセラミック
ウィスカーを分散含有させ、破壊に対する靭性を向上さ
せる試みがなされている。
Therefore, in order to overcome the brittleness of ceramic materials, attempts have been made to disperse and contain ceramic whiskers with high Young's modulus and high strength in ceramics to improve the toughness against fracture.

特に炭化珪素ウィスカーは高温強度、高温耐酸化性に優
れることから、これをセラミック焼結体中に分散させた
ものが検討されている。
In particular, since silicon carbide whiskers have excellent high-temperature strength and high-temperature oxidation resistance, studies are being conducted on dispersing them in ceramic sintered bodies.

通常、炭化珪素ウィスカーの製造方法は、Singを還
元する方法と気相での反応を利用する方法に大別される
。前者の方法としては、イネ科植物の灰化残さとカーボ
ンブラックとを混合し、非酸化性雰囲気で高温熱処理し
直接反応で製造する方法(特開昭57−209813号
)や、Journal of MateriaIs 5
cience 20 p1160−1166(1985
)に記載されるようにVLS機構で生成させる方法等が
あり、後者としては5iC1a +CC1*、CH35
IC12などを水素気流中で熱分解することによって生
成させる方法等が知られている。
Generally, methods for producing silicon carbide whiskers are broadly divided into methods that reduce Sing and methods that utilize reactions in the gas phase. The former method involves mixing the ash residue of grasses with carbon black, heat-treating the mixture at high temperature in a non-oxidizing atmosphere, and producing it by direct reaction (Japanese Patent Application Laid-open No. 57-209813), and the method described in Journal of Materia Is 5.
science 20 p1160-1166 (1985
), there are methods to generate it using the VLS mechanism, and the latter include 5iC1a +CC1*, CH35
A method of producing IC12 and the like by thermally decomposing it in a hydrogen stream is known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし乍ら、従来法によって得られる炭化珪素ウィスカ
ーを用いて複合焼結体を作製した場合、ウィスカー添加
による効果として靭性等の機械的強度の向上が顕著でな
く、ウィスカー本来の添加効果が不充分である可能性が
あるとして、その原因を追求した結果、その1つの原因
がウィスカー自体に多くの積層欠陥が存在しているため
であることをつきとめた。
However, when a composite sintered body is produced using silicon carbide whiskers obtained by conventional methods, the improvement in mechanical strength such as toughness is not noticeable as a result of whisker addition, and the original effect of whisker addition is insufficient. As a result of investigating the cause, we found that one of the causes was the presence of many stacking faults in the whisker itself.

即ち、複合化に際し、上記欠陥に基づき理論強度とずれ
が生じることに起因し、炭化珪素ウィスカー本来の特性
が引出されず、顕著な特性向上が得られていないのが現
状であった。
That is, when compounding, the original properties of silicon carbide whiskers are not brought out and no significant improvement in properties has been achieved due to the deviation from the theoretical strength due to the above-mentioned defects.

〔発明の目的〕[Purpose of the invention]

本発明は上記問題点を解決することを主たる目的とする
もので、具体的には炭化珪素ウィスカーの分散添加によ
る効果が十分発揮され高強度、高靭性の繊維強化型複合
焼結体を提供するにある。
The main purpose of the present invention is to solve the above problems, and specifically, to provide a fiber-reinforced composite sintered body with high strength and high toughness, in which the effects of dispersed addition of silicon carbide whiskers are fully exhibited. It is in.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者は上記問題点に対し研究を重ねた結果、炭化珪
素ウィスカーとして特定のアスペクト比を有するととも
に結晶構造中に積層欠陥の少ないものを用い、これを公
知のセラミック材料と複合化することによって、ウィス
カー添加の本来の効果である高強度化、高靭性化が十分
に達成された複合焼結体が得られることを知見した。
As a result of repeated research into the above-mentioned problems, the inventors of the present invention have found that by using silicon carbide whiskers that have a specific aspect ratio and few stacking faults in the crystal structure, and by combining this with a known ceramic material. It has been found that a composite sintered body can be obtained in which the original effects of whisker addition, such as high strength and high toughness, have been sufficiently achieved.

即ち、本発明は、炭化珪素ウィスカーとして、アスペク
ト比が2〜100で、且つ結晶構造がX線回折曲線にお
いて、2Hタイプの(100)のピーク強度をhい3C
タイプの(200)のピーク強度をh2とした時、h1
/h2で表わされるピーク強度比が0.2以下のものを
用い、これをセラミック材料中に分散して複合化したこ
とを特徴とするものである。
That is, the present invention provides silicon carbide whiskers that have an aspect ratio of 2 to 100 and a crystal structure that increases the (100) peak intensity of the 2H type in an X-ray diffraction curve.
When the peak intensity of type (200) is h2, h1
It is characterized by using a material having a peak intensity ratio expressed by /h2 of 0.2 or less and dispersing it in a ceramic material to form a composite.

以下、本発明を第1図を参照しつつ詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to FIG.

第1図は従来法による炭化珪素ウィスカー(A、B)及
び本発明による炭化珪素ウィスカー(C)のCu−にα
線によるX線口折パターンを示す図である。第1図から
も明らかなように従来の炭化珪素ウィスカーのX線回折
パターンには、2θ= 34(deg、)付近に六方晶
である2HタイプのSiCの(100)  ピークと、
2θ= 36(deg)付近に211(002)  と
3C(101)の合成ピークと、2θ=41.5(de
g、)付近に立方晶である30タイプの5iC(200
)ピークが顕著に観察される。
Figure 1 shows the Cu- α
FIG. 3 is a diagram showing an X-ray folding pattern using lines. As is clear from Fig. 1, the X-ray diffraction pattern of conventional silicon carbide whiskers includes a (100) peak of hexagonal 2H type SiC near 2θ = 34 (deg), and
There is a composite peak of 211 (002) and 3C (101) near 2θ = 36 (deg), and a peak of 2θ = 41.5 (deg).
30 types of 5iC (200
) peaks are clearly observed.

本発明において用いられる炭化珪素ウィスカーの特徴は
前述のXwA回折パターンにおいて、2Hタイプの(1
00)のピーク強度をhl、30タイプの(200)の
ピーク強度をh2とした時、h1/h2で表わされる強
度比が0.2以下であり、且つそのアスペクト比が2〜
100である点にある。
The silicon carbide whiskers used in the present invention are characterized by the 2H type (1
When the peak intensity of 00) is hl and the peak intensity of 30 type (200) is h2, the intensity ratio expressed by h1/h2 is 0.2 or less, and the aspect ratio is 2 to 2.
It is at a point where it is 100.

このピーク強度比はその値が小さい程積層欠陥が少ない
ことを意味するもので、ピーク強度比が0.2を超える
と積層欠陥が多いことに起因してウィスカーの強度が低
下し、セラミック等との複合体を作製した際、ウィスカ
ー添加による効果が十分に引き出せない。また、アスペ
クト比が2より小さいと複合体においてウィスカーとし
てのクランクの偏向、及びウィスカーの引き抜き効果が
少なくなり、アスペクト比が100を超えるとマトリッ
クス中への分散が困難となり、逆に強度の劣化を招く。
The smaller the value of this peak intensity ratio, the fewer the stacking faults.If the peak intensity ratio exceeds 0.2, the strength of the whisker decreases due to the large number of stacking faults, and the When creating a composite, the effect of whisker addition cannot be fully brought out. In addition, if the aspect ratio is smaller than 2, the deflection of the crank as a whisker in the composite and the pulling effect of the whisker will be reduced, and if the aspect ratio exceeds 100, it will be difficult to disperse into the matrix, and conversely, the strength will deteriorate. invite

一方、上記炭化珪素ウィスカーを分散し得るセラミック
スとしては周知の各種材料が適用でき、具体的には、助
剤として硼素、炭素、アルミニウム、第(IIa族元素
等の化合物を用いた炭化珪素質組成物や窒化珪素質組成
物、Alz(h質組成物、ZrO2質組成物、サーメッ
ト基組成物、w基超硬合金組成物等を所望により組合せ
て用いることできる。
On the other hand, various well-known materials can be used as ceramics capable of dispersing the silicon carbide whiskers, and specifically, silicon carbide compositions using compounds such as boron, carbon, aluminum, and group IIa elements as auxiliaries are applicable. A silicon nitride composition, an Alz (h-base composition, a ZrO2-base composition, a cermet-based composition, a w-base cemented carbide composition, etc.) can be used in combination as desired.

炭化珪素ウィスカーのマトリックスとしてのセラミック
スに対する添加量は用いるマトリックスによって多少異
なるが、マトリックスの特性を極度に劣化させないレベ
ルに調整されるべきで、はぼ5〜30体積%の割合で添
加することが望ましい。
The amount of silicon carbide whiskers added to the ceramic as a matrix varies somewhat depending on the matrix used, but it should be adjusted to a level that does not significantly deteriorate the properties of the matrix, and it is desirable to add it at a rate of about 5 to 30% by volume. .

複合焼結体の製造に当たっては用いるマトリックス成分
に応じて周知の方法を採用すれば良く、例えば、マトリ
ックス成分とウィスカー成分をそれぞれ個々にアルコー
ル等の有機溶媒中に所望により分散剤等を加えて分散し
た後、両者を所定の割合で混合して混合スラリーを調製
し、このスラリーを乾燥して成形、焼成を行う。
In manufacturing the composite sintered body, a well-known method may be adopted depending on the matrix component to be used. For example, the matrix component and the whisker component may be individually dispersed in an organic solvent such as alcohol by adding a dispersant etc. if desired. After that, both are mixed at a predetermined ratio to prepare a mixed slurry, and this slurry is dried, molded, and fired.

なお、前述した炭化珪素ウィスカーの製造に当たっては
積層欠陥を多く含む従来の炭化珪素ウィスカーに対し、
1800〜2300℃の非酸化性雰囲気で熱処理を行う
。この熱処理によってウィスカーのMi層大欠陥少なく
することができる。熱処理温度が1800℃より低いと
積層欠陥を減少させる効果が少なく 2300℃を超え
ると炭化珪素の昇華が生じ、好ましくない。
In addition, in manufacturing the silicon carbide whiskers mentioned above, compared to conventional silicon carbide whiskers that contain many stacking faults,
Heat treatment is performed in a non-oxidizing atmosphere at 1800 to 2300°C. By this heat treatment, large defects in the Mi layer of whiskers can be reduced. If the heat treatment temperature is lower than 1800°C, the effect of reducing stacking faults will be small, and if it exceeds 2300°C, sublimation of silicon carbide will occur, which is not preferable.

また、この熱処理では、積層欠陥を減少させるという効
果を有する反面、ウィスカーのアスペクト比が小さくな
るという現象が生じる。この現象は処理温度が高い程顕
著である。そこで、熱処理に際し、カーボンを共存させ
ることによって、アスペクト比の減少を抑制することが
できると共に積層欠陥の制御を行うことができる。
Furthermore, although this heat treatment has the effect of reducing stacking faults, it also causes a phenomenon in which the aspect ratio of whiskers decreases. This phenomenon becomes more pronounced as the processing temperature increases. Therefore, by allowing carbon to coexist during heat treatment, it is possible to suppress the decrease in aspect ratio and to control stacking faults.

カーボンの供給は、カーボンブラック等のカーボン粉末
やフェノール樹脂等の熱分解でカーボンを生成する有機
化合物を添加するか、或いは熱処理時、カーボンるつぼ
等を用いることによるカーボン雰囲気を使用することに
よって行われるが、アスペクト比、積層欠陥の制御を行
うためにはカーボン粉末や有機化合物を添加する方法が
望ましい。
Carbon is supplied by adding carbon powder such as carbon black or an organic compound that generates carbon by thermal decomposition such as phenol resin, or by using a carbon atmosphere by using a carbon crucible or the like during heat treatment. However, in order to control the aspect ratio and stacking faults, it is desirable to add carbon powder or organic compounds.

熱処理における雰囲気は非酸化性であることが必要であ
るが、特に減圧中もしくはアルゴンガス等の不活性ガス
中で行うことが望ましく、また、ガス加圧雰囲気で行っ
ても良い。但し、窒素ガスはウィスカーの表面が窒化さ
れ、窒化珪素が生成されるため望ましくない。
The atmosphere in the heat treatment needs to be non-oxidizing, but it is particularly desirable to carry out the heat treatment under reduced pressure or in an inert gas such as argon gas, and the heat treatment may also be carried out in a gas pressurized atmosphere. However, nitrogen gas is undesirable because the surface of the whisker is nitrided and silicon nitride is produced.

以下、本発明を次の例で説明する。The invention will now be explained with the following examples.

〔実施例〕〔Example〕

炭化珪素ウィスカーとして市販のものを用い、これに処
理条件の異なる熱処理を施し、第1表に示すようなアス
ペクト比、ピーク強度比の異なる6種のウィスカーを作
成した。なお、ht/ht強度比はCu−にα線による
X線回折測定から2H(100)と3C(200)のピ
ーク強度比h1/h2を算出し、アスペクト比はS8M
観察により求めた。
Commercially available silicon carbide whiskers were used and subjected to heat treatment under different processing conditions to create six types of whiskers with different aspect ratios and peak intensity ratios as shown in Table 1. The ht/ht intensity ratio is calculated from the peak intensity ratio h1/h2 of 2H (100) and 3C (200) from X-ray diffraction measurement using alpha rays on Cu-, and the aspect ratio is S8M.
Obtained by observation.

(以下空白) 第1表 さらにマトリックスとして第2表に示す組成物を用いた
(blank below) Table 1 Furthermore, the composition shown in Table 2 was used as a matrix.

第2表 カーはアルコールを溶媒とし分散剤と共に超音波分散機
にて分散処理を行い分散スラリーを得た。
Table 2 Kerr was subjected to dispersion treatment using an ultrasonic disperser using alcohol as a solvent and a dispersant to obtain a dispersion slurry.

この2つのスラリーを第3表に示す割合に混合乾燥し、
成形した後、第3表に示す条件下でポットプレスして焼
結体を得た。各焼結体を研磨後、JISR1601の4
点曲げ抗折試験より抗折強度を、またマイクロインデン
テーション法により、靭性を測定した。
These two slurries were mixed and dried in the proportions shown in Table 3,
After molding, pot pressing was performed under the conditions shown in Table 3 to obtain a sintered body. After polishing each sintered body, JISR1601 4
The bending strength was measured by a point bending bending test, and the toughness was measured by a microindentation method.

結果は第3表に示す。The results are shown in Table 3.

(以下#色) (数値はモル比) 上記第2表に示すセラミックス粉末をアルコールを溶媒
としてボールミル混合を行い、均一分散混合スラリーを
得た。一方、第1表に示すウィス第3表 第3表の結果から明らかなように、炭化珪素ウィスカー
のアスペクト比が100を超えるり、Fを用いた試料1
4〜16.21〜23は試料1〜3との比較からも明ら
かなように抗折強度及び破壊靭性がいずれもほぼ同レベ
ルか或いは劣化している。また、ピーク強度比が0.2
を超えるEを用いた試料17〜20ではいずれも靭性向
上の効果はみられるがそのレベルは僅かである。
(Hereinafter referred to as #color) (Numbers are molar ratios) The ceramic powders shown in Table 2 above were mixed in a ball mill using alcohol as a solvent to obtain a uniformly dispersed mixed slurry. On the other hand, as is clear from the results in Table 1 and Wiss Table 3, the aspect ratio of silicon carbide whiskers exceeds 100, and sample 1 using F
As is clear from the comparison with Samples 1 to 3, Samples 4 to 16 and Samples 21 to 23 have bending strength and fracture toughness that are approximately the same or have deteriorated. Also, the peak intensity ratio is 0.2
Samples 17 to 20 in which E exceeds 20% show the effect of improving toughness, but the level thereof is slight.

これに対し、本発明の試料4〜13はいずれも優れた抗
折強度、破壊靭性を示し、マトリックス(イ)に対し抗
折強度が960MPa以上、破壊靭性8.3MPam”
”以上、マトリックス(ロ)に対し抗折強度が950t
lPa以上、破壊靭性8.2 MPam””以上、マト
リックス(ハ)に対し抗折強度が800MPa以上、破
壊靭性7.2 MPam””以上の複合焼結体が得られ
た。
On the other hand, samples 4 to 13 of the present invention all exhibited excellent bending strength and fracture toughness, with a bending strength of 960 MPa or more and a fracture toughness of 8.3 MPa for matrix (A).
``The bending strength is 950t against the matrix (b).
A composite sintered body having a fracture toughness of 8.2 MPam"" or more, a flexural strength of 800 MPa or more and a fracture toughness of 7.2 MPam"" or more relative to the matrix (c) was obtained.

〔発明の効果〕〔Effect of the invention〕

以上詳述した通り、本発明の複合焼結体はウィスカーと
してアスペクト比が2〜100、且つ積層欠陥の少ない
特定の炭化珪素ウィスカーを用い、これをセラミックス
からなるマトリックス中に分散含有させることによって
、ウィスカー本来の強度を保ちながら、マトリックス成
分に対し、クラックの偏向とウィスカーの引抜き効果が
十分に達成され、それにより優れた抗折強度と破壊靭性
を有する繊維強化型複合焼結体を得ることができる第1
As detailed above, the composite sintered body of the present invention uses specific silicon carbide whiskers with an aspect ratio of 2 to 100 and few stacking faults as whiskers, and by dispersing and containing them in a matrix made of ceramics, While maintaining the original strength of the whiskers, sufficient crack deflection and whisker pulling effects can be achieved with respect to the matrix components, thereby obtaining a fiber-reinforced composite sintered body with excellent flexural strength and fracture toughness. First thing you can do
figure

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の炭化珪素ウィスカー(A、B)と本発明
の炭化珪素ウィスカー(C)のX線回折パターンを示す
図である。
FIG. 1 is a diagram showing the X-ray diffraction patterns of conventional silicon carbide whiskers (A, B) and the silicon carbide whisker (C) of the present invention.

Claims (1)

【特許請求の範囲】[Claims] セラミック粉末と、アスペクト比が2〜100で、且つ
結晶構造がX線回折曲線において、2Hタイプの(10
0)のピーク強度をh_1、3Cタイプの(200)の
ピーク強度をh_2とした時、h_1/h_2で表わさ
れるピーク強度比が0.2以下の炭化珪素ウィスカーと
から成る成形体を焼成してなる繊維強化型複合焼結体。
Ceramic powder has an aspect ratio of 2 to 100 and a crystal structure of 2H type (10
When the peak intensity of 0) is h_1 and the peak intensity of 3C type (200) is h_2, a molded body made of silicon carbide whiskers with a peak intensity ratio expressed by h_1/h_2 of 0.2 or less is fired. A fiber-reinforced composite sintered body.
JP63217323A 1988-08-31 1988-08-31 Fiber reinforced composite sintered body Expired - Fee Related JP2652046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63217323A JP2652046B2 (en) 1988-08-31 1988-08-31 Fiber reinforced composite sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63217323A JP2652046B2 (en) 1988-08-31 1988-08-31 Fiber reinforced composite sintered body

Publications (2)

Publication Number Publication Date
JPH0269365A true JPH0269365A (en) 1990-03-08
JP2652046B2 JP2652046B2 (en) 1997-09-10

Family

ID=16702374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63217323A Expired - Fee Related JP2652046B2 (en) 1988-08-31 1988-08-31 Fiber reinforced composite sintered body

Country Status (1)

Country Link
JP (1) JP2652046B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6463232B1 (en) 1999-09-27 2002-10-08 Canon Kabushiki Kaisha Handle, process cartridge, handle attaching method and electrophotographic image forming apparatus
US6480687B1 (en) 1999-09-27 2002-11-12 Canon Kabushiki Kaisha Process cartridge, handle attaching method and electrophotographic image forming apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6463232B1 (en) 1999-09-27 2002-10-08 Canon Kabushiki Kaisha Handle, process cartridge, handle attaching method and electrophotographic image forming apparatus
US6480687B1 (en) 1999-09-27 2002-11-12 Canon Kabushiki Kaisha Process cartridge, handle attaching method and electrophotographic image forming apparatus

Also Published As

Publication number Publication date
JP2652046B2 (en) 1997-09-10

Similar Documents

Publication Publication Date Title
Inoue et al. Synthesis of Al4SiC4
JPH06508339A (en) High toughness - high strength sintered silicon nitride
US5439855A (en) Silicon nitride ceramics containing a dispersed pentamolybdenum trisilicide phase
US8197780B2 (en) Method of producing a boron suboxide material
JPH0269365A (en) Fiber-reinforced composite sintered compact
US5759933A (en) Gas pressure sintered silicon nitride having high strength and stress rupture resistance
Ha et al. A new process for Al2O3/SiC nanocomposites by polycarbosilane infiltration
EP0362375B1 (en) HIGH-STRENGTH, $g(b)-TYPE SILICON CARBIDE SINTER AND PROCESS FOR ITS PRODUCTION
JPH0254297B2 (en)
US5192719A (en) Method of producing high-strength β-type silicon carbide sintered bodies
JPS6212663A (en) Method of sintering b4c base fine body
JP2691283B2 (en) Silicon carbide whisker and method for manufacturing the same
JPS62875B2 (en)
JPH03109269A (en) Sialon-based ceramics composite material reinforced with carbon fiber
DE19806203C2 (en) Composite material and method for its production
JP3472802B2 (en) Manufacturing method of Sialon sintered body
JP2726694B2 (en) Conductive silicon carbide sintered body and method for producing the same
JP2742620B2 (en) Boride-aluminum oxide sintered body and method for producing the same
JPH05306172A (en) Silicon nitride sintered compact excellent in strength at high temperature and oxidation resistance and its production
JPH05178668A (en) Silicon nitride-titanium nitride composite sintered body and its production
KR20040034968A (en) Method for Manufacturing Silicon Carbide Whisker Using Disposed Silicon Slurgy
JPS6126566A (en) Method of sintering sic composite body
JPH05170543A (en) Silicon nitride-silicon carbide compound sintered product
JPH01122969A (en) Sintered si3n4-al2o3 complex ceramic and its production
JPH01131074A (en) Fiber-reinforced ceramic

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees