JPH0264374A - Heat transfer tube for absorber and manufacture thereof - Google Patents

Heat transfer tube for absorber and manufacture thereof

Info

Publication number
JPH0264374A
JPH0264374A JP21466188A JP21466188A JPH0264374A JP H0264374 A JPH0264374 A JP H0264374A JP 21466188 A JP21466188 A JP 21466188A JP 21466188 A JP21466188 A JP 21466188A JP H0264374 A JPH0264374 A JP H0264374A
Authority
JP
Japan
Prior art keywords
tube
heat exchanger
heat transfer
peaks
cylindrical tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21466188A
Other languages
Japanese (ja)
Inventor
Kiyoshi Nosetani
野世渓 精
Yukihide Kito
鬼頭 幸秀
Yoshihiro Hiramatsu
平松 義広
Yoshihiro Nishimoto
嘉弘 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP21466188A priority Critical patent/JPH0264374A/en
Publication of JPH0264374A publication Critical patent/JPH0264374A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make absorbing liquid in respective troughs flow down effectively and prevent the stagnation of the same by a method wherein a plurality of crests and troughs, extending axially on the outer surface of a tube, is formed alternately while a multitude of slant grooves, crossing diagonally respective crests formed on the outer surface of the tube respectively, is formed. CONSTITUTION:When a heat transfer tube is manufactured by a non-worked cylindrical tube, the tube is passed through a die, in which a plurality of axially extending crests and troughs is formed alternately, to form objective crests and troughs on the outer surface of the cylindrical tube. An indenting tool, provided with projected spiral threads on the inner surface or the outer surface thereof, is employed to push the projected threads against the crests, formed on the outer surface of the heat transfer tube, and form slant grooves on the crests while the outer surface of the cylindrical tube is recessed at positions corresponding to the slant grooves to make protrusions on the inner surface of the cylindrical tube at positions corresponding to the recesses formed on the outer surface of the same tube.

Description

【発明の詳細な説明】 (技術分野) 本発明は、伝熱性能に優れた吸収器用の伝熱管およびそ
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a heat exchanger tube for an absorber with excellent heat transfer performance and a method for manufacturing the same.

(背景技術) 吸収式ヒートポンプや吸収式冷凍器等の吸収器は、一般
に、多数の伝熱管が水平方向に延びる状態で密閉容器内
に並列的に配置された構造を有している。そして、それ
ら伝熱管内に冷却水等の冷却媒体が流通せしめられる一
方、それら伝熱管の外面にLiBr水溶液等の吸収液が
滴下せしめられるようになっており、その吸収液が蒸発
器で蒸発させられた水蒸気を吸収する際の吸収熱を、冷
却媒体で運び去るようになっている。
(Background Art) Absorbers such as absorption heat pumps and absorption refrigerators generally have a structure in which a large number of heat transfer tubes are arranged in parallel in a closed container in a horizontally extending state. While a cooling medium such as cooling water is allowed to flow through these heat transfer tubes, an absorption liquid such as an aqueous LiBr solution is dropped onto the outer surface of the heat transfer tubes, and the absorption liquid is evaporated in an evaporator. The heat absorbed when absorbing water vapor is carried away by the cooling medium.

ところで、このような吸収器では、その伝熱管として、
一般に、内外面が平滑な平滑管が採用されているが、か
かる平滑管の伝熱性能は低く、オクチルアルコール等の
界面活性剤を吸収液に添加して、吸収液の吸収能力を向
上させるようにしても、伝熱性能を充分向上させること
ができず、吸収器の高性能化や小型化を充分達成するこ
とができないといった問題があった。そこで、近年にお
いて、伝熱管の伝熱性能の向上を図って吸収器の高性能
化や小型化を達成するために、種々の構造の伝熱管が提
案されるに至っているが、未だ充分満足すべき構造のも
のが提案されているとは言い難いのが実情である。
By the way, in such an absorber, the heat transfer tube is
In general, smooth tubes with smooth inner and outer surfaces are used, but the heat transfer performance of such smooth tubes is low, so it is recommended that surfactants such as octyl alcohol be added to the absorption liquid to improve the absorption capacity of the absorption liquid. However, there were problems in that the heat transfer performance could not be sufficiently improved, and the absorber could not be sufficiently improved in performance or miniaturized. Therefore, in recent years, heat transfer tubes with various structures have been proposed in order to improve the heat transfer performance of heat transfer tubes and achieve higher performance and smaller absorbers. The reality is that it is difficult to say that a structure with an ideal structure has been proposed.

(解決課題) ここにおいて、本発明は、このような事情を背景として
為されたものであり、その課題とするところは、平滑管
に比べて伝熱性能を大幅に向上することのできる吸収器
用伝熱管の新規な構造を提供することにあり、またその
ような構造の吸収器用伝熱管を好適に製造するための方
法を提供することにある。
(Problem to be solved) The present invention has been made against the background of the above, and its object is to provide a material for absorbers that can significantly improve heat transfer performance compared to smooth tubes. It is an object of the present invention to provide a novel structure for a heat exchanger tube, and also to provide a method for suitably manufacturing a heat exchanger tube for an absorber having such a structure.

(解決手段) そして、かかる課題を解決するために、本発明において
は、管外面において、管軸方向に延びる複数の山部と谷
部とが管周方向に交互に形成されると共に、該管外面に
形成された冬山部をそれぞれ斜めに横切るように、多数
の斜め溝が形成され、且つ該斜め溝の形成部位における
管外面が凹陥させられて、該管外面の凹陥部に対応した
管内面部位が管内側に隆起せしめられてなる構造を、吸
収器用伝熱管の構造として採用したのである。
(Solution Means) In order to solve this problem, in the present invention, a plurality of peaks and troughs extending in the tube axis direction are alternately formed in the tube circumferential direction on the tube outer surface, and the tube A large number of diagonal grooves are formed so as to diagonally cross the winter mountain portions formed on the outer surface, and the tube outer surface is recessed at the portions where the diagonal grooves are formed, so that the tube inner surface corresponds to the recessed portions of the tube outer surface. A structure in which the portion is raised on the inside of the tube was adopted as the structure of the heat exchanger tube for the absorber.

また、未加工の円筒管からかかる構造の吸収器用伝熱管
を製造するに際して、(a)軸心方向に延びる複数の山
部と谷部とが周方向において交互に形成されたダイを用
い、該ダイに前記円筒管を通過させることにより、該円
筒管の管外面に前記伝熱管の山部と谷部に対応した山部
と谷部を形成する縦溝形成工程と、(b)内面若しくは
外面に螺旋状の突条を備えた圧刻工具を用い、該縦溝形
成工程にて前記円筒管の管外面に形成された山部に該圧
刻工具の螺旋状の突条を押し付けて、該山部に前記斜め
溝を形成すると同時に、該斜め溝の形成部位における円
筒管の管外面を凹陥させて、該管外面の凹陥部に対応す
る円筒管の管内面部位を管内側に隆起させる斜め溝圧刻
工程とを、含むようにしたのである。
In addition, when manufacturing an absorber heat exchanger tube having such a structure from an unprocessed cylindrical tube, (a) a die in which a plurality of peaks and valleys extending in the axial direction are alternately formed in the circumferential direction is used; a vertical groove forming step of forming peaks and valleys corresponding to the peaks and valleys of the heat transfer tube on the outer surface of the cylindrical tube by passing the cylindrical tube through a die; (b) an inner or outer surface; A stamping tool equipped with a spiral protrusion is used to press the spiral protrusion of the stamping tool against the peak formed on the outer surface of the cylindrical tube in the vertical groove forming step. At the same time as forming the diagonal groove in the mountain portion, the outer surface of the cylindrical tube is recessed at the region where the diagonal groove is formed, and the inner surface of the cylindrical tube corresponding to the recessed portion of the outer surface is raised toward the inside of the tube. This includes a groove stamping process.

(作用および発明の詳細な説明) かかる本発明に従う伝熱管においては、その外面に吸収
液が滴下されると、その滴下された吸収液が、管外面に
形成された谷部(縦溝)を伝わって管軸方向に効果的に
流動せしめられると共に、谷部を隔てる山部に形成され
た斜め溝を優先的に伝わって管周方向に流下せしめられ
て、撹乱・対流現象を効果的に惹起せしめられつつ、管
外表面の広い面積に拡散させられる。従って、伝熱管の
外表面の広い面積において、吸収液による水蒸気の良好
な吸収作用が安定して持続させられて、伝熱性能が大幅
に向上せしめられるのである。
(Detailed Description of Function and Invention) In the heat exchanger tube according to the present invention, when an absorbent liquid is dropped on the outer surface of the tube, the dropped absorbent liquid penetrates the valleys (vertical grooves) formed on the outer surface of the tube. It is transmitted to the pipe and is effectively caused to flow in the axial direction of the pipe, and is also preferentially transmitted through the diagonal grooves formed in the peaks that separate the valleys to flow down in the pipe circumferential direction, effectively causing disturbance and convection phenomena. It is diffused over a wide area of the extraluminal surface while being stimulated. Therefore, over a wide area of the outer surface of the heat transfer tube, the good water vapor absorption effect of the absorption liquid is maintained stably, and the heat transfer performance is greatly improved.

しかも、本発明に従う伝熱管においては、斜め溝の形成
部位における伝熱管の外面が凹陥させられていることか
ら、そのような凹陥部を設けない場合に比べて、各谷部
に滴下乃至流動・流下せしめられた吸収液が一層斜め溝
を通じて流下し易くなるのであり、従って、そのような
凹陥部を設けない場合に比べて、吸収液の撹乱・対流現
象をより効果的に惹起して、より優れた伝熱性能を得る
ことができるのであり、また各谷部の吸収液をより効果
的に流下させて、吸収液が各谷部に滞留することをより
良好に防止することができるのである。
Furthermore, in the heat exchanger tube according to the present invention, since the outer surface of the heat exchanger tube is recessed at the portion where the diagonal grooves are formed, dripping or flowing/flowing occurs in each trough compared to a case where such a recess is not provided. This makes it easier for the absorbed liquid to flow down through the diagonal grooves, and therefore, the disturbance and convection phenomena of the absorbed liquid are more effectively induced, resulting in a higher Excellent heat transfer performance can be obtained, and the absorption liquid in each valley can be made to flow down more effectively, thereby better preventing the absorption liquid from stagnation in each valley. .

また、本発明に従う伝熱管においては、管外面の凹陥部
に対応した内面部位が管内側に隆起せしめられているこ
とから、管内側に流通せしめられる冷却媒体にその隆起
部によって乱流を効果的に惹起することができるのであ
り、従ってその隆起部による冷却媒体の乱流促進効果に
よっても、伝熱管の伝熱性能が向上せしめられるのであ
る。
In addition, in the heat transfer tube according to the present invention, since the inner surface corresponding to the concave portion on the outer surface of the tube is raised on the inside of the tube, the raised portion effectively prevents turbulence in the cooling medium flowing inside the tube. Therefore, the heat transfer performance of the heat transfer tube is improved by the effect of promoting turbulent flow of the cooling medium due to the raised portion.

なお、ここで、伝熱管の管外面の山部に形成される斜め
溝の溝深さが、谷部の深さに比べて浅過ぎると、吸収液
が斜め溝を通じて管周方向に流下し難くなって、吸収液
に対する撹乱・対流促進効果が低下すると共に、各谷部
に吸収液が滞留し易くなるといった問題を生じ、逆に谷
部の深さに比べて深過ぎると、管肉厚が必然的に厚くな
って、経済的に不利になるといった問題を生じることか
ら、かかる斜め溝の溝深さは、通常、谷部の深さの略7
0〜130%程度の深さ、好ましくは谷部の深さと路間
等の深さに設定されることとなる。
Note that if the groove depth of the diagonal grooves formed in the peaks on the outer surface of the heat transfer tube is too shallow compared to the depth of the valleys, it will be difficult for the absorption liquid to flow down in the circumferential direction of the tube through the diagonal grooves. This causes problems such as the disturbance and convection promotion effect on the absorbent decreases, and the absorbent tends to accumulate in each valley.On the other hand, if the depth is too deep compared to the depth of the valley, the pipe wall thickness increases. The groove depth of such diagonal grooves is usually about 7 times the depth of the trough, since it inevitably becomes thicker and causes problems such as being economically disadvantageous.
The depth is set to about 0 to 130%, preferably the depth of the troughs and the depth of the gaps.

また、かかる斜め溝の伝熱管の管軸に対する傾斜角度は
5〜45°に設定することが望ましく、その管軸方向に
おける形成間隔は、伝熱管の管外径寸法の0.7〜2.
0倍程度の大きさに設定することが望ましい。これは、
伝熱管の管軸に対する傾斜角度が小さくなり過ぎると、
斜め溝の形成が困難になると共に、かかる斜め溝を通じ
た吸収液の流下が効率良く行なわれなくなって、伝熱管
の伝熱性能の向上をそれ程期待できなくなるからであり
、またその傾斜角度が大きくなり過ぎると、特に肉厚の
薄い伝熱管において、管の剛性が低下して、伝熱管が曲
がり易くなるといった問題を生じると共に、水平方向(
管軸方向)における吸収液の撹乱効果が低減して、伝熱
性能の低下を招く恐れを生じるからである。さらに、伝
熱管の管軸方向における斜め溝の形成間隔は、それが狭
過ぎると、管軸方向における吸収液の広がりが極めて小
さく制限され、逆に、それが広過ぎると、斜め溝を通じ
て流下する吸収液が大幅に低減する恐れが生じるところ
から、上述のように、伝熱管の管外径の0.7〜2.0
倍程度の大きさに設定することが望ましいのである。
Further, it is desirable that the angle of inclination of the diagonal grooves with respect to the tube axis of the heat transfer tube is set to 5 to 45 degrees, and the formation interval in the tube axis direction is 0.7 to 2.0 degrees of the outside diameter of the heat transfer tube.
It is desirable to set the size to about 0 times. this is,
If the angle of inclination of the heat exchanger tube with respect to the tube axis becomes too small,
This is because it becomes difficult to form diagonal grooves, and the absorption liquid does not flow down efficiently through such diagonal grooves, making it difficult to expect much improvement in the heat transfer performance of the heat transfer tube. If it becomes too thick, the rigidity of the tube will decrease, especially in thin-walled heat exchanger tubes, making it easier to bend, as well as causing problems in the horizontal direction (
This is because the disturbance effect of the absorption liquid in the tube axis direction is reduced, which may lead to a decrease in heat transfer performance. Furthermore, if the interval between the diagonal grooves in the tube axis direction of the heat transfer tube is too narrow, the spread of the absorbed liquid in the tube axis direction will be extremely small, and conversely, if it is too wide, it will flow down through the diagonal grooves. Since there is a risk that the absorption liquid will be significantly reduced, as mentioned above, the outer diameter of the heat exchanger tube should be 0.7 to 2.0.
It is desirable to set it to about twice the size.

また、斜め溝は、適宜の配列形態で形成することが可能
であるが、通常、伝熱管の管軸方向において一定の形成
間隔(ピンチ)をもって、千鳥状の配列形態をもって形
成されることとなる。
In addition, although the diagonal grooves can be formed in an appropriate arrangement, they are usually formed in a staggered arrangement with a fixed interval (pinch) in the axial direction of the heat exchanger tube. .

また、斜め溝は、一般に、吸収液の滞留を招かない程度
以上の幅寸法、より具体的には、斜め溝の傾斜角度にも
よるが、管軸と平行な方向における幅寸法が0.5〜1
.5 m111程度となるように設定されることとなる
In addition, the width of the diagonal groove is generally at least a width that does not cause retention of the absorbent liquid, and more specifically, the width in the direction parallel to the tube axis is 0.5, depending on the inclination angle of the diagonal groove. ~1
.. It will be set to be approximately 5 m111.

ところで、本発明に従う吸収器用伝熱管は、任意の手法
に従って製造することが可能であるが、未加工の円筒管
から製造する場合には、軸心方向に延びる複数の山部と
谷部とが周方向において交互に形成されたダイを用い、
かかるダイに未加工の円筒管を通過させて、その円筒管
の管外面に目的とする伝熱管の山部と谷部に対応した山
部と谷部を形成した後、内面若しくは外面に螺旋状の突
条を備えた圧刻工具を用い、かかる圧刻工具の螺旋状の
突条を上記円筒管の管外面に形成された山部に押し付け
て、その管外面に形成された山部に斜め溝を形成すると
同時に、その斜め溝の形成部位における円筒管の管外面
を凹陥させ、その管外面の凹陥部に対応する円筒管の管
内面部位を管内側に隆起させるようにすることが、目的
とする伝熱管を良好な生産性をもって安定して製造する
上で望ましい。
Incidentally, the heat exchanger tube for an absorber according to the present invention can be manufactured by any method, but when manufactured from an unprocessed cylindrical tube, a plurality of peaks and valleys extending in the axial direction may be formed. Using dies alternately formed in the circumferential direction,
A raw cylindrical tube is passed through such a die to form peaks and valleys corresponding to the peaks and valleys of the desired heat transfer tube on the outer surface of the cylindrical tube, and then a spiral shape is formed on the inner or outer surface of the cylindrical tube. Using a stamping tool equipped with a protrusion, press the spiral protrusion of the stamping tool against the ridge formed on the outer surface of the cylindrical tube, and then press the ridge diagonally onto the ridge formed on the outer surface of the cylindrical tube. At the same time as forming the groove, the outer surface of the cylindrical tube is recessed at the portion where the diagonal groove is formed, and the inner surface of the cylindrical tube corresponding to the recessed portion of the outer surface of the tube is raised toward the inside of the tube. This is desirable for stably manufacturing heat exchanger tubes with good productivity.

なお、内面に螺旋状の突条を備えた圧刻工具としては、
内面に螺旋状の突条を備えたダイを挙げることができ、
また外面に螺旋状の突条を備えた圧刻工具としては、外
面に螺旋状の突条を備えたローラを挙げることができる
In addition, as a stamping tool with a spiral protrusion on the inner surface,
Dies with spiral protrusions on the inner surface can be mentioned.
Further, examples of the stamping tool having a helical protrusion on its outer surface include a roller having a helical protrusion on its outer surface.

ここで、内面に螺旋状の突条を備えたダイを圧刻工具と
して用いる場合には、かかるダイを回転可能に保持した
状態で、管外面に山部と谷部が形成された円筒管を通過
させるようにすればよく、また、外面に螺旋状の突条を
備えたローラを圧刻工具として用いる場合には、円筒管
の回りに公転可能な状態で複数のローラを円筒管を取り
囲むように配置し、それら複数のローラをその円筒管の
外面に押し付けた状態で、円筒管をその管軸方向に移動
させるようにすればよい。
When using a die with spiral protrusions on the inner surface as a stamping tool, the die is rotatably held and a cylindrical tube with peaks and valleys formed on the outer surface of the tube is inserted. Alternatively, if a roller with a spiral protrusion on the outer surface is used as an stamping tool, a plurality of rollers may be arranged so as to surround the cylindrical tube so that they can revolve around the cylindrical tube. The cylindrical tube may be moved in the axial direction of the cylindrical tube with the plurality of rollers pressed against the outer surface of the cylindrical tube.

また、かかる伝熱管の製造に際して、ダイに未加工の円
筒管を通過させて、その管外面に管軸方向の山部と谷部
を形成する場合には、一般に、その円筒管内に、円筒管
の縮管量を規制するためのプラグが挿入されることとな
る。
In addition, when manufacturing such a heat exchanger tube, when passing an unprocessed cylindrical tube through a die to form peaks and valleys in the tube axis direction on the outer surface of the tube, generally the cylindrical tube is A plug will be inserted to regulate the amount of pipe contraction.

以下、本発明をより一層具体的に明らかにするために、
その実施例を示すが、本発明がかかる実施例の記載によ
って何等の制限をも受けるものではなく、本発明が、そ
の趣旨を逸脱しない範囲内において、他の態様によって
も実施され得ることが、理解されるべきである。
Hereinafter, in order to clarify the present invention more specifically,
Although the examples are shown below, it is understood that the present invention is not limited in any way by the description of the examples, and that the present invention can be implemented in other embodiments without departing from the spirit thereof. should be understood.

(実施例) 先ず、第1図乃至第3図には、本発明の一実施例である
吸収器用伝熱管2が示されている。この伝熱管2は、1
9.05 mmの外径を有しており、その外面には、管
軸方向に平行な20条の山部4が管周方向に等間隔に形
成されている。そして、これにより、それら山部4の間
において、0.45±0、05 mmの深さの谷部(縦
溝)6がそれぞれ形成されている。
(Example) First, FIGS. 1 to 3 show an absorber heat exchanger tube 2 which is an example of the present invention. This heat exchanger tube 2 has 1
It has an outer diameter of 9.05 mm, and on its outer surface, 20 peaks 4 parallel to the tube axis direction are formed at equal intervals in the tube circumferential direction. As a result, valleys (vertical grooves) 6 having a depth of 0.45±0.05 mm are formed between the peaks 4.

伝熱管2の外面に形成された山部4には、管軸に対する
捩じれ角がそれぞれ略13°の、管軸方向において相互
に30mmの距離を隔てた10条の螺旋に沿って、各山
部4をそれぞれ斜めに横切る状態で、谷部6と略同じ溝
深さの、具体的には略0.45+++mの深さの斜め溝
8が千鳥状の配列形態をもって形成されている。そして
、第2図に示されているように、かかる斜め溝8の形成
部位における伝熱管2の管外面が径方向内方に若干凹陥
させられて、各斜め溝8に対応する管外面に、斜め溝8
の深さよりも若干浅い滑らかな凹陥部10がそれぞれ形
成せしめられ、またそれら凹陥部10の形成部位に対応
する伝熱管2の内面側部位に、それらの凹陥部10に対
応した形状の滑らかな隆起部12がそれぞれ形成せしめ
られている。
The crests 4 formed on the outer surface of the heat exchanger tube 2 have 10 helical threads, each having a twist angle of approximately 13° with respect to the tube axis and separated by a distance of 30 mm from each other in the tube axis direction. Diagonal grooves 8 having approximately the same groove depth as the trough portion 6, specifically approximately 0.45+++ m, are formed in a staggered arrangement so as to diagonally cross each of the grooves 4. Then, as shown in FIG. 2, the outer surface of the heat transfer tube 2 at the portion where the diagonal grooves 8 are formed is slightly recessed inward in the radial direction, so that the outer surface of the tube corresponding to each diagonal groove 8 is Diagonal groove 8
Smooth recesses 10 slightly shallower than the depth of the recesses 10 are formed respectively, and smooth ridges with shapes corresponding to the recesses 10 are formed on the inner surface side of the heat exchanger tube 2 corresponding to the formation areas of the recesses 10. A portion 12 is formed respectively.

なお、斜め溝8の溝幅は、ここでは、斜め溝8の延び方
向と直角な方向の寸法が略0.6〜0.9 n+m程度
となるように設定されている。また、前述の説明から明
らかなように、ここでは、伝熱管2の管軸に対する斜め
溝8の傾斜角度:α(第1図参照)は、略13°に設定
されており、また各山部4における管軸方向の斜め溝8
の形成間隔は、30 mmに設定されている。
Note that the groove width of the diagonal groove 8 is set here so that the dimension in the direction perpendicular to the extending direction of the diagonal groove 8 is approximately 0.6 to 0.9 n+m. Furthermore, as is clear from the above description, here, the inclination angle α (see FIG. 1) of the diagonal groove 8 with respect to the tube axis of the heat exchanger tube 2 is set to approximately 13 degrees, and each peak Diagonal groove 8 in the tube axis direction in 4
The formation interval is set to 30 mm.

このような構造の伝熱管2を、を効長500 mmとし
て、1列5段の35+nmピッチで実験用の吸収器に水
平にセットし、伝熱管2の下側のものから5パスで冷却
媒体としての冷却水を流通させる一方、250PPMの
オクチルアルコールを添加した吸収液としてのLiBr
水溶液を、直径:2mmの滴下穴から最上段の伝熱管2
の管外面に滴下して、かかる構造の伝熱管2について、
下記(1)〜(3)式で定義される交換熱1.Q、熱通
過率二におよび管外面熱伝達率:hoを測定・演算して
、その結果を第6図および第7図に示した。また、これ
と比較するために、同一外径の平滑管について、交換熱
i:Q、熱通過率:におよび管外面熱伝達率:hoを同
様にして測定・演算した結果を第6図および第7図に併
せて示した。
The heat exchanger tubes 2 having such a structure were set horizontally in an experimental absorber with an effective length of 500 mm and a pitch of 35+ nm in 1 row and 5 stages, and the cooling medium was applied in 5 passes starting from the bottom of the heat exchanger tubes 2. LiBr as an absorption liquid to which 250 PPM of octyl alcohol was added while flowing cooling water as
Pour the aqueous solution into the top heat transfer tube 2 through the dripping hole with a diameter of 2 mm.
For the heat exchanger tube 2 having such a structure,
Exchange heat defined by the following formulas (1) to (3) 1. Q, heat transfer coefficient 2, and tube outer surface heat transfer coefficient: ho were measured and calculated, and the results are shown in FIGS. 6 and 7. In addition, in order to compare with this, for smooth tubes with the same outer diameter, exchange heat i: Q, heat transfer rate: and tube outer surface heat transfer coefficient: ho were measured and calculated in the same manner in Figure 6 and It is also shown in Figure 7.

Q=Cp・W−ρ(Tc0−Tc、)    ・・・(
1)K=Q/(S・ΔT)         ・・・(
2)1/h、−1/に一1/hi(d、/di)   
・・・(3)ただし、 Cpi比熱(kcal/kg”c ) W:冷却水量(m’/h) ρ;比重量(kg/m”) Tcoi冷却水吸収器出口温度(°C)Te日冷却水吸
収器入口温度(°C) S:管外表面積(m2) ΔT:対数平均温度差(°C) hii管内面熱伝達率(kca l/ m 2h ’C
)d o  i管外径(m) d i  i管内径(m) なお、管外表面積:Sは、下記(4)式で求められ、ま
た対数平均温度差:八Tは、LiBr濃溶液吸収器入口
平衡温度およびLiBr希溶液吸収器出口温度をそれぞ
れT its Twoとすると、下記(5)弐で表され
る。
Q=Cp・W−ρ(Tc0−Tc,) ...(
1) K=Q/(S・ΔT) ...(
2) 1/h, -1/to 1/hi (d, /di)
...(3) However, Cpi specific heat (kcal/kg"c) W: Cooling water amount (m'/h) ρ: Specific weight (kg/m") Tcoi Cooling water absorber outlet temperature (°C) Te day Cooling water absorber inlet temperature (°C) S: Tube outer surface area (m2) ΔT: Logarithmic average temperature difference (°C) hii tube inner heat transfer coefficient (kcal/m 2h'C
) d o i tube outer diameter (m) d i i tube inner diameter (m) In addition, the tube outer surface area: S is obtained by the following formula (4), and the logarithmic average temperature difference: 8T is the LiBr concentrated solution absorption When the equilibrium temperature at the inlet of the vessel and the temperature at the outlet of the LiBr dilute solution absorber are respectively T its Two, it is expressed by the following (5) 2.

S=πX0.019 XO,’5 X5     ・・
・(4)また、下記第1表は、前記以外の主要実験条件
を示している。
S=πX0.019 XO,'5 X5...
-(4) Table 1 below shows main experimental conditions other than those mentioned above.

男−」−一表 第6図および第7図の測定・演算結果から明らかなよう
に、本発明に従う伝熱管2は、平滑管に比べて、交換熱
N:Q、熱通過率二におよび管外面熱伝達率:hoが何
れも大幅に向上しており、これにより、平滑管に比べて
、伝熱性能が極めて優れていることが認められるのであ
る。
As is clear from the measurement and calculation results in Tables 6 and 7, the heat exchanger tube 2 according to the present invention has a higher exchange heat N:Q, a higher heat transfer rate, and a higher heat transfer rate than a smooth tube. The tube outer surface heat transfer coefficient (ho) is significantly improved in all cases, and it is recognized that the heat transfer performance is extremely superior to that of a smooth tube.

なお、実験用吸収器の側壁を透明なガラス板で構成して
、吸収液としてのLiBr水溶液が伝熱管2の外面を伝
わって流下する様子を観察したところ、各伝熱管2にお
いて、溶液が谷部6を伝わって管軸方向に効果的に流動
することが認められると共に、溶液が斜め溝8を優先的
に伝わって流下することが認められ、溶液に対して撹乱
・対流現象が効果的に惹起されていることが推察された
In addition, when the side wall of the experimental absorber was constructed with a transparent glass plate and the LiBr aqueous solution as the absorption liquid was observed to flow down along the outer surface of the heat exchanger tubes 2, it was found that in each heat exchanger tube 2, the solution It is observed that the solution flows effectively in the tube axis direction through the section 6, and it is also observed that the solution flows preferentially through the diagonal groove 8, and the disturbance and convection phenomena are effectively caused to the solution. It was inferred that this was caused.

ところで、上記構造の伝熱管2は、次のようにして製造
した。以下、第4図および第5図に基づいて、かかる伝
熱管2の製造例を説明する。
By the way, the heat exchanger tube 2 having the above structure was manufactured as follows. Hereinafter, an example of manufacturing such a heat exchanger tube 2 will be explained based on FIGS. 4 and 5.

すなわち、伝熱管2の製造に際しては、先ず、第4図に
示されている如き、目的とする伝熱管2の山部4と谷部
6にそれぞれ対応する谷部14と山部16を備えたダイ
18を用意した。なお、谷部14と山部16は、ダイ1
8の軸心に平行に、周方向において交互に形成した。そ
して、このようなダイ18に、伝熱管2の外径よりも若
干外径の大きい未加工の円筒管(平滑管)17を通過さ
せ、円筒管17を縮管加工しつつ、その外面に伝熱管2
に対応した山部4と谷部6を形成した。なお、かかる山
部4と谷部6の形成に際しては、第4図に示されている
ように、円筒管17内にプラグ19を挿入し、かかるプ
ラグ19で円筒管17の縮管量を規制するようにした。
That is, when manufacturing the heat exchanger tube 2, first, as shown in FIG. Die 18 was prepared. Note that the troughs 14 and the peaks 16 are formed by the die 1.
8, and alternately formed in the circumferential direction. Then, an unprocessed cylindrical tube (smooth tube) 17 having an outer diameter slightly larger than the outer diameter of the heat transfer tube 2 is passed through the die 18, and while the cylindrical tube 17 is being shrink-processed, the heat transfer is applied to the outer surface of the tube. heat tube 2
A peak portion 4 and a valley portion 6 corresponding to the above were formed. When forming the peaks 4 and valleys 6, as shown in FIG. 4, a plug 19 is inserted into the cylindrical tube 17, and the amount of contraction of the cylindrical tube 17 is controlled by the plug 19. I decided to do so.

一方、上記ダイ18とは別に、軸心に対する涙しれ角が
略13°の螺旋状の突条20を等間隔に10条備えたダ
イ22を用意し、かかるダイ22を回転可能に保持した
状態で、前記ダイ18を通過させた円筒管17、すなわ
ち外面に伝熱管2と同様の山部4と谷部6が形成された
円筒管17を通過させ、ダイ22の各突条20を円筒管
17の山部4に食い込ませて、前記伝熱管2の斜め溝8
を圧刻形成した。その結果、管外面の斜め溝8の形成部
位が凹陥され、その凹陥部10に対応した管内面に隆起
部12が形成された、前述の如き構造の伝熱管2を得る
ことができた。
On the other hand, in addition to the die 18, a die 22 is prepared which is provided with ten spiral protrusions 20 having a weeping angle of approximately 13 degrees with respect to the axis at equal intervals, and the die 22 is rotatably held. Then, the cylindrical tube 17 passed through the die 18, that is, the cylindrical tube 17 having peaks 4 and troughs 6 similar to those of the heat transfer tube 2 on its outer surface, is passed through, and each protrusion 20 of the die 22 is inserted into the cylindrical tube. 17 into the diagonal groove 8 of the heat exchanger tube 2.
was formed by stamping. As a result, it was possible to obtain the heat exchanger tube 2 having the above-described structure, in which the portion where the diagonal groove 8 was formed on the outer surface of the tube was recessed, and the raised portion 12 was formed on the inner surface of the tube corresponding to the recessed portion 10.

なお、上述の説明から明らかなように、ここでは、ダイ
18に未加工の円筒管17を通過させて、その円筒管1
7の外面に山部4と谷部6を形成する工程が縦溝形成工
程であり、またかかる外面に山部4と谷部6が形成され
た円筒管17をダイ22に通過させて、円筒管17の山
部4に斜め溝8を形成する工程が斜め溝圧刻工程である
。また、このことから明らかなように、ここでは、内面
に螺旋状の突条20を備えたダイ22が圧刻工具として
の役割を果たしている。
Note that, as is clear from the above description, here, the unprocessed cylindrical tube 17 is passed through the die 18, and the cylindrical tube 1 is
The step of forming the peaks 4 and valleys 6 on the outer surface of the tube 7 is the vertical groove forming step, and the cylindrical tube 17 with the peaks 4 and valleys 6 formed on the outer surface thereof is passed through the die 22 to form a cylindrical tube. The process of forming the diagonal grooves 8 on the peak portion 4 of the tube 17 is a diagonal groove stamping process. Further, as is clear from this, here, the die 22 having the spiral protrusion 20 on its inner surface plays a role as a stamping tool.

このような手法によって製造された伝熱管2は、その寸
法精度が優れているのであり、また生産性にも優れてい
ることが1忍められている。
It is believed that the heat exchanger tube 2 manufactured by such a method has excellent dimensional accuracy and is also excellent in productivity.

なお、上側の伝熱管2においては、山部(4)と谷部(
6)がその外面に形成されているだけであるが、伝熱管
の管内面に、管外面の山部と谷部に対応した谷部と山部
を形成して、伝熱管を波形の断面形状とすることも可能
である。
In addition, in the upper heat exchanger tube 2, the peak part (4) and the valley part (
6) is only formed on the outer surface of the heat exchanger tube, but the inner surface of the heat exchanger tube has troughs and ridges corresponding to the ridges and troughs on the outer surface of the tube, giving the heat exchanger tube a corrugated cross-sectional shape. It is also possible to do this.

伝熱管の断面形状を波形とすれば、管外面に山部と谷部
を形成するだけのものに比べて、管肉厚を薄肉化して、
管重量の軽減化を効果的に図ることができるのであり、
また斜め溝(8)の溝深さをより深(設定することがで
きるのである。さらに、斜め溝(8)の形成により、管
外面がより効果的に凹陥せしめられると共に、管内面が
より効果的に隆起せしめられることから、吸収液に対す
る撹乱・対流現象の惹起効果がより向上するのであり、
また管内側に流通せしめられる冷却媒体に対して、乱流
をより効果的に惹起させることが可能となるのである。
If the cross-sectional shape of the heat exchanger tube is corrugated, the tube wall thickness will be thinner compared to a tube with only peaks and valleys formed on the outer surface of the tube.
It is possible to effectively reduce the weight of the pipe.
In addition, the groove depth of the diagonal groove (8) can be set deeper.Furthermore, by forming the diagonal groove (8), the outer surface of the tube can be more effectively depressed, and the inner surface of the tube can be more effectively recessed. The effect of inducing disturbance and convection phenomena on the absorbent liquid is further improved.
Moreover, it becomes possible to more effectively induce turbulence in the cooling medium flowing inside the tube.

なお、このような伝熱管は、例えば、第4図におけるプ
ラグ19として、ダイ18の山部16と谷部14に対応
した山部と谷部を備えたものを採用して、管外面の山部
と谷部の形成と同時に管内面に山部と谷部を形成し、し
かる後、第5図に示す如き手法に従って、管外面の山部
に斜め溝を形成することにより、製造されることとなる
In addition, such a heat exchanger tube employs, for example, a plug 19 in FIG. 4 that has peaks and valleys corresponding to the peaks 16 and valleys 14 of the die 18, so that the peaks on the outer surface of the tube are It is manufactured by forming peaks and valleys on the inner surface of the tube at the same time as forming the peaks and valleys, and then forming diagonal grooves on the peaks on the outer surface of the tube according to the method shown in FIG. becomes.

(発明の効果) 以上の説明から明らかなように、本発明に従う吸収器用
伝熱管は、管外面において、管軸方向に延びる複数の山
部と谷部とが管周方向に交互に形成されると共に、冬山
部をそれぞれ斜めに横切るように、多数の斜め溝が形成
され、さらに斜め溝の形成部位における管外面が凹陥さ
せられて、その凹陥部に対応した管内面部位が管内側に
隆起せしめられた構造のものであるため、平滑管に比べ
て伝熱性能を大幅に向上することができるのであり、そ
れ故吸収器の高性能化や小型化に大きく寄与することが
できるのである。
(Effects of the Invention) As is clear from the above description, in the heat exchanger tube for an absorber according to the present invention, a plurality of peaks and valleys extending in the tube axis direction are alternately formed in the tube circumferential direction on the tube outer surface. At the same time, a large number of diagonal grooves are formed diagonally across the winter mountain area, and the outer surface of the tube is recessed at the portion where the diagonal grooves are formed, and the inner surface of the tube corresponding to the recess is raised on the inside of the tube. Because of its unique structure, it can significantly improve heat transfer performance compared to smooth tubes, and therefore can greatly contribute to higher performance and smaller size absorbers.

また、未加工の円筒管から本発明に従う吸収器用伝熱管
を製造するに際して、先ず、軸心方向に延びる複数の山
部と谷部が形成されたダイを用い、かかるダイに未加工
の円筒管を通過させて、複数の山部と谷部をその管外面
に形成した後、内面若しくは外面に螺旋状の突条を備え
た圧刻工具を用いて、その円筒管の管外面に形成された
山部に斜め溝を圧刻形成し、かかる斜め溝の圧刻形成と
同時に管外面を凹陥させて管内面を隆起させるようにす
れば、本発明に従う吸収器用伝熱管を良好な寸法精度を
もって安定して、しかも良好な生産性をもって安価に製
造することができるのである。
Further, when manufacturing the heat exchanger tube for an absorber according to the present invention from an unprocessed cylindrical tube, first, a die in which a plurality of peaks and valleys extending in the axial direction are formed is used, and the unprocessed cylindrical tube is attached to the die. After forming a plurality of peaks and valleys on the outer surface of the cylindrical tube, a stamping tool having a spiral protrusion on the inner or outer surface is used to form a plurality of peaks and valleys on the outer surface of the cylindrical tube. By stamping diagonal grooves on the ridges and simultaneously making the diagonal grooves concave and raising the inner surface of the tube, the heat exchanger tube for an absorber according to the present invention can be stabilized with good dimensional accuracy. Moreover, it can be manufactured at low cost with good productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に従う吸収器用伝熱管の一例を示す外
観図であり、第2図および第3図は、それぞれ、その横
断面および縦断面の要部拡大図である。第4図および第
5図は、それぞれ、第1図に示す伝熱管の製造工程を説
明するための説明図である。第6図は、第1図の伝熱管
と平滑管とについての交換熱量の測定結果を比較して示
すグラフであり、第7図は、同しく、第1図の伝熱管と
平滑管とについての熱通過率および管外面熱伝達率の測
定結果を比較して示すグラフである。 2:伝熱管      4:山部 6:谷部(縦溝)   8:斜め溝 10:凹陥部     12:隆起部 14:谷部(ダイの) 16:山部(ダイの)17:円
筒管(平滑管) 18:ダイ      2o:突条 22:ダイ(圧刻工具) 第1図 出願人 住友軽金属工業株式会社 第2図 IiB図 ]2 第6図 i Br 溶濯−ジだ下1 iBr :@−L瀧千l
FIG. 1 is an external view showing an example of an absorber heat exchanger tube according to the present invention, and FIGS. 2 and 3 are enlarged views of main parts of the transverse and longitudinal sections, respectively. 4 and 5 are explanatory diagrams for explaining the manufacturing process of the heat exchanger tube shown in FIG. 1, respectively. FIG. 6 is a graph showing a comparison of the measurement results of the amount of heat exchanged between the heat exchanger tube and the smooth tube shown in FIG. 1, and FIG. 3 is a graph showing a comparison of the measurement results of the heat transfer coefficient and the tube outer surface heat transfer coefficient. 2: Heat transfer tube 4: Peak part 6: Valley part (vertical groove) 8: Diagonal groove 10: Concave part 12: Ridge part 14: Valley part (of the die) 16: Peak part (of the die) 17: Cylindrical tube (smooth Pipe) 18: Die 2o: Projection 22: Die (stamping tool) Figure 1 Applicant: Sumitomo Light Metal Industries, Ltd. Figure 2, Figure IiB] 2 Figure 6, i Br Molten rinser 1 iBr: @- L Taki Senl

Claims (2)

【特許請求の範囲】[Claims] (1)内側に冷却媒体が流通せしめられる一方、外面に
吸収液が滴下せしめられる吸収器用伝熱管であって、 管外面において、管軸方向に延びる複数の山部と谷部と
が管周方向に交互に形成されると共に、該管外面に形成
された各山部をそれぞれ斜めに横切るように、多数の斜
め溝が形成され、且つ該斜め溝の形成部位における管外
面が凹陥させられて、該管外面の凹陥部に対応した管内
面部位が管内側に隆起せしめられてなることを特徴とす
る吸収器用伝熱管。
(1) A heat exchanger tube for an absorber in which a cooling medium is allowed to flow inside and an absorption liquid is dripped on the outer surface, and the outer surface of the tube has a plurality of peaks and valleys extending in the tube axis direction in the tube circumferential direction. A large number of diagonal grooves are formed so as to diagonally cross each peak formed on the outer surface of the tube, and the outer surface of the tube is recessed at the portion where the diagonal grooves are formed, 1. A heat exchanger tube for an absorber, characterized in that an inner surface portion of the tube corresponding to a concave portion on the outer surface of the tube is raised on the inner side of the tube.
(2)未加工の円筒管から前記伝熱管を製造する方法で
あって、 軸心方向に延びる複数の山部と谷部とが周方向において
交互に形成されたダイを用い、該ダイに前記円筒管を通
過させることにより、該円筒管の管外面に前記伝熱管の
山部と谷部に対応した山部と谷部を形成する縦溝形成工
程と、内面若しくは外面に螺旋状の突条を備えた圧刻工
具を用い、該縦溝形成工程にて前記円筒管の管外面に形
成された山部に該圧刻工具の螺旋状の突条を押し付けて
、該山部に前記斜め溝を形成すると同時に、該斜め溝の
形成部位における円筒管の管外面を凹陥させて、該管外
面の凹陥部に対応する円筒管の管内面部位を管内側に隆
起させる斜め溝圧刻工程とを、 含むことを特徴とする請求項第1項記載の伝熱管の製造
方法。
(2) A method of manufacturing the heat exchanger tube from an unprocessed cylindrical tube, using a die in which a plurality of peaks and valleys extending in the axial direction are alternately formed in the circumferential direction, and the method includes: a step of forming vertical grooves corresponding to the peaks and valleys of the heat transfer tube on the outer surface of the cylindrical tube by passing the cylindrical tube; and a step of forming a spiral protrusion on the inner or outer surface. The helical protrusions of the stamping tool are pressed against the peaks formed on the outer surface of the cylindrical tube in the vertical groove forming step, thereby forming the diagonal grooves into the peaks. and at the same time, recessing the outer surface of the cylindrical tube at the portion where the diagonal groove is formed, and protruding the inner surface of the cylindrical tube corresponding to the recessed portion of the outer surface toward the inner side of the tube. 2. The method of manufacturing a heat exchanger tube according to claim 1, further comprising: .
JP21466188A 1988-08-29 1988-08-29 Heat transfer tube for absorber and manufacture thereof Pending JPH0264374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21466188A JPH0264374A (en) 1988-08-29 1988-08-29 Heat transfer tube for absorber and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21466188A JPH0264374A (en) 1988-08-29 1988-08-29 Heat transfer tube for absorber and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0264374A true JPH0264374A (en) 1990-03-05

Family

ID=16659468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21466188A Pending JPH0264374A (en) 1988-08-29 1988-08-29 Heat transfer tube for absorber and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0264374A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7651578B2 (en) * 2006-06-08 2010-01-26 Boston Scientific Scimed, Inc. Guidewire with polymer jacket and method of making
US7790705B2 (en) 2005-06-24 2010-09-07 Medicis Pharmaceutical Corporation Minocycline oral dosage forms for the treatment of acne

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7790705B2 (en) 2005-06-24 2010-09-07 Medicis Pharmaceutical Corporation Minocycline oral dosage forms for the treatment of acne
US7651578B2 (en) * 2006-06-08 2010-01-26 Boston Scientific Scimed, Inc. Guidewire with polymer jacket and method of making

Similar Documents

Publication Publication Date Title
US3217799A (en) Steam condenser of the water tube type
CA1150723A (en) Heat transfer surface and method of manufacture
US4438807A (en) High performance heat transfer tube
JP3315785B2 (en) Heat transfer tube for absorber
US6067832A (en) Process for the production of an evaporator tube
JP2005523414A (en) HEAT TRANSFER TUBE, INCLUDING METHOD OF MANUFACTURING AND USING HEAT TRANSFER TUBE
KR100472526B1 (en) Heat exchanger tube for absorber and its manufacturing method
JPH0264374A (en) Heat transfer tube for absorber and manufacture thereof
JPS6011800B2 (en) Manufacturing method for condensing heat exchanger tubes
JPS61265499A (en) Heat transfer tube
JP2960828B2 (en) Heat transfer tube for absorber
JP3587599B2 (en) Heat transfer tube for absorber
JPH02176378A (en) Heat transfer tube for absorber
JPH0140278B2 (en)
JP2000346579A (en) Heat transfer tube
CN208108902U (en) Half annular knurl finned condensation pipe
JPH06159862A (en) Absorber for freezer
JP3617538B2 (en) Heat exchanger tube for absorber
JP2000304485A (en) Heating tube for down-flow liquid film type heat exchanger
JP5255241B2 (en) Heat transfer tube
JPS61114092A (en) Heat exchanger
JP3617537B2 (en) Heat exchanger tube for absorber
JPH1078268A (en) Heat transfer tube
JPH11118382A (en) Heat transfer pipe for evaporator and manufacture thereof
JP2934160B2 (en) Heat transfer tubes for absorbers and regenerators