JPH0264001A - Rhombic oxide superconductor - Google Patents

Rhombic oxide superconductor

Info

Publication number
JPH0264001A
JPH0264001A JP63212051A JP21205188A JPH0264001A JP H0264001 A JPH0264001 A JP H0264001A JP 63212051 A JP63212051 A JP 63212051A JP 21205188 A JP21205188 A JP 21205188A JP H0264001 A JPH0264001 A JP H0264001A
Authority
JP
Japan
Prior art keywords
oxide superconductor
oxygen
phase
rhombic
twins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63212051A
Other languages
Japanese (ja)
Inventor
Shunichiro Tanaka
俊一郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63212051A priority Critical patent/JPH0264001A/en
Publication of JPH0264001A publication Critical patent/JPH0264001A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To obtain an oxide superconductor having an oxygen-deficient type perovskite structure excellent in superconductive characteristics with good reproducibility by introducing twins in a specific state into crystal grains in phase transition from a tetragonal to a rhombic phase. CONSTITUTION:Twins are introduced into crystal grains so as to intersect at about 90 deg. from >=2 [110] orientations in phase transition of an oxide superconductor having an oxygen-deficient type perovskite structure, e.g., YBa2Cu3O7-delta, to a rhombic phase to provide a rhombic oxide superconductor. Release of strains and sufficient oxygen supply in the phase transition are required to introduce the twins in this state. For example, the introduction can be realized by regulating the density of a calcined compact to about 80-93.5% of the theoretical density in preparing the calcined compact, subjecting the calcined compact to annealing treatment under pressure of oxygen, etc.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、安定して超電導特性が得られる斜方晶系酸
化物超電導体に関する。
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to an orthorhombic oxide superconductor that can stably obtain superconducting properties.

(従来の技術) 1986年に40に以上の高い臨界温度を有するLa−
Ba−Cu−0系の層状ペロブスカイト型の酸化物超電
導体が発表されて以来、酸化物系の超電導材料が注目を
集めた。また、1987年にはY−Ba−Cu−0系で
代表される酸素欠陥を有する欠陥ペロブスカイト型((
1、nBa  Cu  O型)(δは酸素欠陥を表23
7−δ し通常 1以下、Lnは、Y s La5Sc、 Nd
、 Sm、 Eu。
(Prior art) In 1986, La-
Since the Ba-Cu-0-based layered perovskite-type oxide superconductor was announced, oxide-based superconducting materials have attracted attention. Furthermore, in 1987, a defective perovskite type ((
1, nBa Cu O type) (δ is oxygen defect as shown in Table 23
7-δ is usually 1 or less, Ln is Ys La5Sc, Nd
, Sm, Eu.

Gd、 Dy、 +10SEr、 Tag、 Ybおよ
びLuから選ばれた少なくとも 1種の元素、Baの一
部はSrなどで置換可能))の酸化物超電導体の臨界温
度が液体窒素温度(−77K)より高い、90に以上で
あることか確認された。この発見により冷媒として高価
な液体ヘリウムに代えて、より安価な液体窒素を用いた
超電導体の応用が可能となり、各所で盛んに研究が行わ
れている。
At least one element selected from Gd, Dy, +10SEr, Tag, Yb and Lu, a part of Ba can be replaced with Sr, etc.) The critical temperature of the oxide superconductor is lower than the liquid nitrogen temperature (-77K). It was confirmed that it was high, over 90. This discovery has made it possible to apply superconductors using cheaper liquid nitrogen instead of expensive liquid helium as a refrigerant, and research is being actively conducted in various places.

このような酸化物超電導体は結晶性の酸化物であるため
、これらを各種形状の超電導部材として利用する場合に
は、次のような方法により焼結体を作製して利用するこ
とが考えられている。
Since such oxide superconductors are crystalline oxides, when using them as superconducting members in various shapes, it is possible to prepare sintered bodies using the following method. ing.

すなわち、まず目的とする酸化物超電導体の構成元素を
含有する出発原料を所定の比率で混合し、この混合粉末
を一旦仮焼して結晶化させる。次いで、この仮焼物を粉
砕した後にプレス成形などにより所要の形状に成形する
。この後、この成形体を所定の温度で焼成し、さらに必
要に応じて充分に酸素の供給できる雰囲気中でアニーリ
ングを行い超電導特性を向上させ、酸化物超電導体の焼
結体を得る。
That is, first, starting materials containing the constituent elements of the desired oxide superconductor are mixed at a predetermined ratio, and this mixed powder is once calcined to crystallize it. Next, this calcined product is pulverized and then molded into a desired shape by press molding or the like. Thereafter, this molded body is fired at a predetermined temperature, and if necessary, annealed in an atmosphere where sufficient oxygen can be supplied to improve the superconducting properties and obtain a sintered body of an oxide superconductor.

しかし、このように酸化物超電導体を焼結体として利用
すると、焼結時における温度、時間、雰囲気、さらには
アニーリング工程での条件など、変動要因が多く、得ら
れた超電導部材の特性にバラツキが生じやすいという問
題があった。また、上述した欠陥ペロブスカイト型構造
の酸化物超電導体においては、高温での結晶構造は正方
晶相で、アニーリング工程などにおいて斜方晶相に変態
し、この斜方晶相が超電導特性を示すと考えられており
、この変態過程における相転移率が超電導特性に大き(
影響を与え、これによっても超電導特性にバラツキが生
じていた。
However, when oxide superconductors are used as sintered bodies in this way, there are many variable factors such as temperature, time, atmosphere during sintering, and conditions during the annealing process, resulting in variations in the properties of the obtained superconducting members. There was a problem in that it was easy for this to occur. In addition, in the above-mentioned oxide superconductor with a defective perovskite structure, the crystal structure at high temperatures is a tetragonal phase, which transforms into an orthorhombic phase during an annealing process, and this orthorhombic phase exhibits superconducting properties. It is believed that the phase transition rate during this transformation process has a large effect on superconducting properties (
This also caused variations in superconducting properties.

(発明が解決しようとする課題) このように、欠陥ペロブスカイト型構造を有する斜方晶
系酸化物超電導体は、超電導部材として焼結体を利用す
る際に、その製造工程や結晶相など、超電導特性を変動
させる要因が多いため、超電導特性にバラツキが生じや
すいという問題があった。このため、臨界温度測定など
を実施して超電導特性の優劣を決定してからでなければ
超電導部材として使用することができなかった。
(Problems to be Solved by the Invention) As described above, when using a sintered body as a superconducting member, an orthorhombic oxide superconductor having a defective perovskite structure has a superconducting process, crystal phase, etc. Since there are many factors that change the characteristics, there is a problem in that the superconducting characteristics tend to vary. For this reason, it was not possible to use it as a superconducting member until the critical temperature was measured to determine the superiority or inferiority of the superconducting properties.

酸化物超電導体の焼結体を超電導部材として利用する際
には、たとえばマイスナー効果などの超電導特性を均一
にかつ充分に利用できることが、各種超電導利用機器の
性能を高める上で重要な条件となる。
When using a sintered body of oxide superconductor as a superconducting member, being able to utilize superconducting properties such as the Meissner effect uniformly and sufficiently is an important condition for improving the performance of various superconducting devices. .

この発明はこのような従来技術の課題に対処するために
なされたもので、良好な超電導特性が臨界温度などの実
flF1によらずとも再現性よく得られる斜方晶系酸化
物超電導体を提供することを目的としている。
This invention was made to address the problems of the prior art, and provides an orthorhombic oxide superconductor in which good superconducting properties can be obtained with good reproducibility without depending on the actual flF1 such as critical temperature. It is intended to.

[発明の構成] (課題を解決するための手段) この発明の斜方晶系酸化物超電導体は、酸素欠陥型ペロ
ブスカイト構造を有する斜方晶系酸化物超電導体であっ
て、結晶粒内に正方晶相から斜方晶相への変態に伴う 
2以上の [110]方位からおおよそ90″で交差す
るような形態で双晶が導入されていることを特徴として
いる。
[Structure of the Invention] (Means for Solving the Problems) The orthorhombic oxide superconductor of the present invention is an orthorhombic oxide superconductor having an oxygen-deficient perovskite structure, in which the orthorhombic oxide superconductor has oxygen-deficient perovskite structure. Accompanying the transformation from tetragonal phase to orthorhombic phase
It is characterized by the introduction of twin crystals in a form that intersects at approximately 90'' from two or more [110] directions.

酸化物超電導体としては、多数のものが知られているか
、この発明における斜方晶系酸化物超電導体は、希土類
元素含有の酸素欠陥型ペロブスカイト構造の酸化物超電
導体が適用される。
Many oxide superconductors are known, and the orthorhombic oxide superconductor used in the present invention is an oxide superconductor containing a rare earth element and having an oxygen-deficient perovskite structure.

ここでいう希土類元素を含有し酸素欠陥型ペロブスカイ
ト構造を有する斜方晶系酸化物超電導体は、超電導状態
を実現できるものであればよく、たとえばLnBa  
Cu  O系(LnはY% La、 Sc。
The orthorhombic oxide superconductor containing a rare earth element and having an oxygen-deficient perovskite structure may be any material that can realize a superconducting state, such as LnBa.
CuO system (Ln is Y% La, Sc.

237−δ Nds 311% Eu5GdSDySHos Ers
 T10% Ybs Lu等の希土類元素から選ばれた
少なくとも lFiの元素を、δは酸素欠陥を表し通常
1以下の数、Baの一部はS「、Caなどで、Cuの一
部はT1、V % Cr、 Mn、 Fe。
237-δ Nds 311% Eu5GdSDySHos Ers
T10% Ybs At least 1Fi element selected from rare earth elements such as Lu, δ represents oxygen defect and is usually a number less than 1, part of Ba is S, Ca, etc., part of Cu is T1, V %Cr, Mn, Fe.

Co−、旧、Znなどで置換可能。)などの酸化物が例
示される。なお希土類元素は広義の定義とし、Sc、Y
およびLa系を含むものとする。代表的な系としてY−
Ba−Cu−0系のほかに、YをE u 、D y s
 Ho s E r 5Tll1% Yb、 Luなど
の希土類で置換した系などが挙げられる。 この発明の
斜方晶系酸化物超電導体は、たとえば以下のようにして
作製される。
Can be replaced with Co-, old, Zn, etc. ) and other oxides are exemplified. Note that rare earth elements are defined in a broad sense, and include Sc, Y
and La-based. Y- as a representative system
In addition to the Ba-Cu-0 system, Y is E u , D y s
Examples include systems substituted with rare earth elements such as HosEr5Tll1% Yb and Lu. The orthorhombic oxide superconductor of the present invention is produced, for example, as follows.

ます、Y 、ua、 Cuなどの酸化物超電導体の構成
元素を十分混合する。混合の際には、y2o3、BaC
01、Cu0などの酸化物や炭酸塩を原料として用いる
ことができるほか、他の焼成後酸化物に転化する硝酸塩
、水酸化物などの化合物を用いてもよい。さらには共沈
法などで得たシュウ酸塩などを用いてもよい。酸化物超
電導体を構成する元素は、基本的に化学量論比の組成と
なるように混合するが、多少製造条件などとの関係です
れていても差支えない。たとえば、Y−Ba−Cu−0
系ではYImolに対しBa 2n+ol 、Cu 3
molが標準組成であるが、実用上はY 1molに対
して、Ba 2± 0.8mol 、Cu 3± 0.
4mol程度のずれは問題ない。
First, the constituent elements of the oxide superconductor, such as Y, ua, and Cu, are thoroughly mixed. When mixing, y2o3, BaC
In addition to using oxides and carbonates such as 01 and Cu0 as raw materials, other compounds such as nitrates and hydroxides that are converted into oxides after firing may also be used. Furthermore, oxalate obtained by a coprecipitation method or the like may also be used. The elements constituting the oxide superconductor are basically mixed so as to have a stoichiometric composition, but there is no problem even if the composition is slightly different depending on the manufacturing conditions. For example, Y-Ba-Cu-0
In the system, Ba 2n+ol, Cu 3 for YImol
mol is the standard composition, but in practice, for 1 mol of Y, 2± 0.8 mol of Ba and 3± 0.8 mol of Cu are used.
A deviation of about 4 mol is not a problem.

次いで、前述の原料を十分に混合した後、850℃〜9
80℃程度の温度で焼成して結晶化させる。
Next, after thoroughly mixing the above-mentioned raw materials, the mixture was heated to 850℃~9.
It is fired and crystallized at a temperature of about 80°C.

この後、必要に応じて酸素を充分に供給することが可能
な雰囲気中で熱処理するか、または同様な雰囲気中で3
00℃程度まで徐冷することにより、酸素欠陥δへ酸素
を供給し、超電導特性を向上させる。
After this, if necessary, heat treatment is performed in an atmosphere where oxygen can be sufficiently supplied, or 3 hours in a similar atmosphere.
By slowly cooling to about 00°C, oxygen is supplied to the oxygen defects δ and the superconducting properties are improved.

この焼成物をボールミル、サンドグラインダ、その他公
知の手段により粉砕し、酸化物超電導体粉末を得る。
This fired product is pulverized using a ball mill, a sand grinder, or other known means to obtain oxide superconductor powder.

このようにして得た酸化物超電導体粉末や前述した酸化
物超電導体の原料となる混合粉末を用いて、プレス成形
法、射出成形法、スリップキャスティング法などの各種
成形手段により、ブロック状、線状、管状などの目的に
応じた形状の成形体を作製する。
Using the oxide superconductor powder obtained in this way and the mixed powder that is the raw material for the oxide superconductor described above, it is molded into blocks, wires, etc. by various molding methods such as press molding, injection molding, and slip casting. A molded body with a shape depending on the purpose, such as a shape or a tube, is produced.

次いで、上記酸化物超電導体の成形体を850℃〜98
0℃程度の温度で焼成し、焼結体を作製する。
Next, the molded body of the oxide superconductor was heated at 850°C to 98°C.
A sintered body is produced by firing at a temperature of about 0°C.

なお、この際には正方晶相の結晶構造をとる。In addition, in this case, a crystal structure of a tetragonal phase is taken.

この後、充分に酸素を供給しながら室温近傍まで徐冷し
たり、あるいは酸素の充分に供給可能な雰囲気中で30
0℃〜800℃程度の温度で数時間保持してアニーリン
グ処理を施し、結晶構造中に充分に酸素を供給してδの
値を減少させて斜方晶相に相転移させる。この正方晶相
から斜方晶相への相転移の際の内部ひずみの解放によっ
て双晶が導入される。そして、この双晶を結晶粒内に2
以上の[110F方位からおおよそ90°で交差するよ
うな形態で導入する。
After that, the temperature is slowly cooled to near room temperature while supplying sufficient oxygen, or for 30 minutes in an atmosphere where oxygen can be sufficiently supplied.
An annealing treatment is performed by holding at a temperature of about 0° C. to 800° C. for several hours, and oxygen is sufficiently supplied into the crystal structure to reduce the value of δ and cause a phase transition to an orthorhombic phase. Twins are introduced by the release of internal strain during this phase transition from the tetragonal phase to the orthorhombic phase. Then, this twin is placed within the crystal grain.
It is introduced in such a manner that it intersects at approximately 90° from the [110F direction.

この2万位からおおよそ90°で交差するように双晶を
導入するには、相転移時のひずみの解放と酸素の供給が
重要であり、たとえば焼結体の作製時に焼結体密度が理
論密度の80%〜93.5%程度の範囲となるように調
整したり、酸素の導入量を増大させるために酸素加圧下
でアニーリング処理を行うなどによって実現できる。
In order to introduce twin crystals that intersect at approximately 90 degrees from the 20,000-degree position, it is important to release strain during phase transition and supply oxygen. For example, when creating a sintered body, the density of the sintered body is This can be achieved by adjusting the density to be in the range of about 80% to 93.5%, or by performing an annealing treatment under pressurized oxygen to increase the amount of oxygen introduced.

(作 用) 斜方晶系酸化物超電導体の超電導特性は、双晶の入り方
によって一義的に決定される。すなわち、2以上の [
l101方位からおおよそ90°で交差するな形態で双
晶を導入することによって、はぼ全ての結晶粒に対して
双晶関係が成り立ち、全)1位に対して内部ひずみの解
放が成されたこととなる。そして、このようにすること
によって、たえず良好な超電導特性、たとえば臨界温度
や臨界電流が得られる。
(Function) The superconducting properties of an orthorhombic oxide superconductor are uniquely determined by the way the twins are inserted. That is, 2 or more [
By introducing twins in a form that does not intersect at approximately 90° from the l101 direction, a twin relationship is established for almost all grains, and internal strain is released for all (1) positions. That will happen. By doing so, good superconducting properties such as critical temperature and critical current can be obtained consistently.

(実施例) 次に、この発明の実施例について説明する。(Example) Next, embodiments of the invention will be described.

実施例 まず、それぞれ粒径l〜5μ■としたBaC03粉末2
mol   Y2 03粉末0.5a+ol 、 Cu
O粉末3molを十分混合して大気中900℃で48時
間焼成した後に粉砕して、平均粒径1.5μnのY−B
a−Cu−0系の酸化物超電導体粉末を得た。
Example First, BaC03 powder 2 with a particle size of 1 to 5μ■ was prepared.
mol Y2 03 powder 0.5a+ol, Cu
3 mol of O powder was thoroughly mixed, baked at 900°C in the air for 48 hours, and then pulverized to produce Y-B with an average particle size of 1.5 μn.
An a-Cu-0 based oxide superconductor powder was obtained.

次に、この酸化物超電導体粉末をプレス圧300kg/
−の条件によるプレス成形により外径25III+1×
内径10IIlffl×厚さ 8.5++a+のペレッ
ト状の成形体を作製した。
Next, this oxide superconductor powder was pressed at a pressure of 300 kg/
- Outer diameter 25III + 1× by press molding under the conditions of
A pellet-shaped molded body having an inner diameter of 10IIlffl and a thickness of 8.5++a+ was produced.

次いで、これら成形体を焼成炉内に設置して930℃ま
で昇温し、この温度で酸素ガスを供給しながら30時間
保持して焼結させた。この後、300℃まで酸素ガスを
供給しながら徐冷し、目的とする斜方晶系酸化物超電導
体を得た。また、この酸化物超電導体の相対密度は90
%であった。
Next, these molded bodies were placed in a firing furnace, the temperature was raised to 930°C, and the molded bodies were held at this temperature for 30 hours while supplying oxygen gas for sintering. Thereafter, the mixture was slowly cooled to 300° C. while supplying oxygen gas to obtain the desired orthorhombic oxide superconductor. Also, the relative density of this oxide superconductor is 90
%Met.

このようにして得た斜方晶系酸化物超電導体焼結体の1
0個の組織をそれぞれ顕微鏡により観察したところ、そ
れぞれ[110]方位の2方向からほぼ90°で交差す
るような形態で双晶が導入されていることを確認した。
1 of the orthorhombic oxide superconductor sintered body thus obtained
When each of the 0 structures was observed using a microscope, it was confirmed that twin crystals were introduced in such a manner that they intersected at approximately 90° from two directions in the [110] direction.

また、これら酸化物超電導体の臨界温度をそれぞれ測定
したところ、Tconの平均値が94K(最大95に1
最小93K)でTcofrの平均値が89K(最大91
K 、最小87K)であった。
In addition, when the critical temperatures of these oxide superconductors were measured, the average value of Tcon was 94K (maximum 95 to 1
The average value of Tcofr is 89K (maximum 91K).
K, minimum 87K).

また、この発明との比較のために、焼結体の密度を相対
密度で99%としたものについて、組織を顕微鏡により
観察したところ、[l101方位の 1方向からのみ双
晶か導入されていた。この酸化物超電導体焼結体につい
ても臨界温度を測定したところ、Tconかl14にで
Tcorrか79にであった。
In addition, for comparison with this invention, when the structure of a sintered body with a relative density of 99% was observed using a microscope, it was found that twins were introduced only from one direction, the [l101 direction]. . When the critical temperature of this oxide superconductor sintered body was also measured, it was found that Tcon was 114 and Tcorr was 79.

[発明の効果] 以上の実施例からも明らかなように、この発明の斜方晶
系酸化物超電導焼結体は、安定して良好な超電導特性が
iすられる。
[Effects of the Invention] As is clear from the above examples, the orthorhombic oxide superconducting sintered body of the present invention exhibits stable and good superconducting properties.

出願人      株式会社 東芝Applicant: Toshiba Corporation

Claims (1)

【特許請求の範囲】[Claims] (1)酸素欠陥型ペロブスカイト構造を有する斜方晶系
酸化物超電導体であって、結晶粒内に正方晶相から斜方
晶相への変態に伴う2以上の[110]方位からおおよ
そ90゜で交差するような形態で双晶が導入されている
ことを特徴とする斜方晶系酸化物超電導体。
(1) An orthorhombic oxide superconductor having an oxygen-deficient perovskite structure, in which there are two or more [110] orientations approximately 90° from the [110] orientation associated with the transformation from a tetragonal phase to an orthorhombic phase within the crystal grains. An orthorhombic oxide superconductor characterized in that twins are introduced in such a way that they intersect with each other.
JP63212051A 1988-08-26 1988-08-26 Rhombic oxide superconductor Pending JPH0264001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63212051A JPH0264001A (en) 1988-08-26 1988-08-26 Rhombic oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63212051A JPH0264001A (en) 1988-08-26 1988-08-26 Rhombic oxide superconductor

Publications (1)

Publication Number Publication Date
JPH0264001A true JPH0264001A (en) 1990-03-05

Family

ID=16616051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63212051A Pending JPH0264001A (en) 1988-08-26 1988-08-26 Rhombic oxide superconductor

Country Status (1)

Country Link
JP (1) JPH0264001A (en)

Similar Documents

Publication Publication Date Title
HUT52645A (en) Method for making super-conducting substance with critical temperature of 90 kelvin grades
JPH0264001A (en) Rhombic oxide superconductor
JP3034255B2 (en) Superconductor, superconductor wire, and method of manufacturing superconducting wire
JPS63285812A (en) Manufacture of oxide superconductive wire material
JP2597578B2 (en) Superconductor manufacturing method
JPH01160860A (en) Production of sintered material of oxide superconductor
JPS63270317A (en) Oxide superconductor
JP2597579B2 (en) Superconductor manufacturing method
JPS63279512A (en) Superconductor wire rod and its manufacture
JPH01157455A (en) Production of oxide superconducting sintered body
KR970001258B1 (en) Super conducting material
JPH0264057A (en) Oxide superconducting member
JPH04202046A (en) Production of superconducting ceramic sintered body
JP4153651B2 (en) Seed crystal of oxide superconducting material and manufacturing method of oxide superconducting material using the same
JPH01157453A (en) Production of oxide superconductor
JPS63279513A (en) Superconductor wire rod and its manufacture
JPH01164785A (en) Production of oxide superconductor
JPH01160858A (en) Sintered material of oxide superconductor
JPS63303851A (en) Sintered body of superconducting ceramic
JPH01126259A (en) Production of oxide superconductor
JPH01157451A (en) Production of oxide superconducting sintered body
JPH01203257A (en) Production of superconductor
JPS63279530A (en) Manufacture of superconductor molding
JPH035359A (en) Superconductive ceramic material, precursor composition of said material and manufacture
JPH01157452A (en) Fiber reinforced superconductor