JPH026235B2 - - Google Patents

Info

Publication number
JPH026235B2
JPH026235B2 JP55179029A JP17902980A JPH026235B2 JP H026235 B2 JPH026235 B2 JP H026235B2 JP 55179029 A JP55179029 A JP 55179029A JP 17902980 A JP17902980 A JP 17902980A JP H026235 B2 JPH026235 B2 JP H026235B2
Authority
JP
Japan
Prior art keywords
substrate
metal
solar cell
layer
amorphous silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55179029A
Other languages
Japanese (ja)
Other versions
JPS57103370A (en
Inventor
Mitsuaki Yano
Wataru Yamamoto
Kenji Nakatani
Mitsuo Asano
Hiroshi Okaniwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP55179029A priority Critical patent/JPS57103370A/en
Publication of JPS57103370A publication Critical patent/JPS57103370A/en
Publication of JPH026235B2 publication Critical patent/JPH026235B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電気絶縁性基板上に光起電力要素とし
てシリコンを主成分とする非晶質半導体薄膜を設
けた太陽電池に関する。更に詳しくは電気絶縁性
基板を導電化するために、該基板上に電気伝導率
の高い金属からなる低抵抗の第1の金属層と、そ
の上に積層した非晶質シリコン薄膜と電気的及び
機械的接合の良好な第2の金属層の少なくとも2
層からなる導電層を被着せしめて構成した太陽電
池に関する。 非晶質シリコン薄膜を絶縁性基板上に設けた太
陽電池は、特開昭52−16990号(特公昭53−37718
号),特開昭54−149489号,特開昭55−4994号、
さらに特開昭55−29154号各公報に記載されてい
るごとく公知である。さらに非晶質シリコン太陽
電池を製造するに際して可撓性を有する有機高分
子基板を用いる特徴としては、特開昭55−4994号
および特開昭55−29154号公報で開示されている
ごとく、支持基板上に必要な層を連続法で設けた
非晶質シリコン太陽電池の製造を可能ならしめる
こと、また、特開昭54−149489号公報に開示され
ているごとく、可撓性基板上に形成された非晶質
シリコン太陽電池は、従来の太陽電池に比較して
フイルム状であるので、任意に曲げることが可能
であり、その応用が広がることがあげられてい
る。 しかるに、本発明者らは上記特許公報記載の方
法で非晶質シリコン太陽電池を作製した場合、有
機高分子基板上の金属導電層に重大な欠陥が存在
することを見い出した。すなわち、電極として充
分な導電性を得るために該導電層に電気伝導率の
高い金属であるAg,Au,Cu,Al等を使用する
と非晶質シリコン膜と密着性が悪くて非晶質シリ
コン膜の剥離を生じたり、非晶質シリコンと導電
層金属の合金化または原子の相互拡散を生じて、
光電変換効率の良い太陽電池が得られない。 また、該導電層にステンレス合金やニクロム合
金を用いて充分に抵抗の低い導電層を形成する場
合は、有機高分子基板の可撓性が損われる程度
の、もしくは有機高分子基板と該金属層の膨脹率
差に起因するひずみ応力により該金属層に割れや
剥離が生じる程度の厚さに迄金属を堆積する必要
があり、有機高分子基板の特長を生かした実用的
な使用に耐える太陽電池を作ることができない。 かかる事実は、実用的な使用に耐える非晶質シ
リコン太陽電池を有機高分子基板等の電気絶縁性
基板上に作製するには、有機高分子基板等の電気
絶縁性基板と機械的な接合が良好で、電気抵抗が
小さく、かつ非晶質シリコンと電気的及び機械的
な接合が良好(以後、非晶質シリコンと整合性が
良好という)な導電層の開発が不可欠であること
を示している。ここで、電気的接合が良好とは、
太陽電池構成上の必要に応じて非晶質シリコン膜
と低抵抗の非整流性接触や好適な接触電位差と整
流性接触とを与えることを意味する。機械的接触
が良好であるとは非晶質シリコンとの密着性が良
好なことを意味する。上記二概念とも太陽電池製
造時及び使用時における温度,湿度,経時変化及
び曲げに関する安定性を含んでいる。 本発明者らは、かかる要求特性を具備した電気
絶縁性基板の導電化法を鋭意研究した結果本発明
に到達した。すなわち本発明は、電気絶縁性の基
板,当該基板上に設けられた金属層及び当該金属
上にシリコンを主成分とした非晶質半導体薄膜か
らなる光起電力要素とからなる太陽電池であつ
て、当該金属層が、基板に接するところのAg,
Au,Pt,Cu,Al及びNiからなる群から選ばれ
た単一金属あるいは合金の層である電気伝導率の
良好な第1の金属層と光起電力要素に接するとこ
ろのMo,Cr,W,Fe,Ti及びTaからなる群か
ら選ばれた単一金属あるいはその合金,ステンレ
ス合金又はケイ素鋼合金の層である半導体薄膜と
電気的及び機械的接合の良好な第2の金属層との
少なくとも2層からなることを特徴とする太陽電
池である。 本発明において電気絶縁性基板とは、後述の通
り、電気絶縁性の基板であれば特に限定されない
が、中でも表面抵抗が1000MΩ/□以上の有機高
分子シート,可撓性を有する有機高分子フイル
ム,有機高分子成型品,金属表面を有機高分子材
料で被覆した複合材料等の有機高分子化合物基板
に効果的である。更に詳しくは、これら有機高分
子材料としては、ポリエチレンテレフタレート樹
脂,ポリエチレンナフタレート樹脂,芳香族ポリ
エステル樹脂,芳香族ポリアミド樹脂,ポリアリ
レート樹脂,ポリスルホン樹脂,ポリイミド樹脂
が太陽電池製造工程上要求される150℃以上の耐
熱性を備えるので好適である。 上記有機高分子材料を太陽電池の基板として使
用する場合、少なくとも表面抵抗が100Ω/□以
下、好ましくは10Ω/□以下の導電層を積層する
ことが必要である。本発明においては、この導電
層を下記の電気伝導率の高い第1の金属層と後述
の非晶質半導体層と電気的及び機械的接合の良好
な第2の金属層との複層構成とする。第1の金属
層には電極材料として公知の電気伝導率の高い金
属であるAg,Au,Pt,Cu,Al,Niの中より選
んだ単一金属、および/またはその合金を使用す
る。上記金属は有機高分子材料と機械的接合が良
いことはもちろん、熱伝導率が高いので太陽電池
動作時に高い放熱性が得られる。また、上記金属
層は延展性に富むので有機高分子基板材料と非晶
質シリコン半導体膜の熱膨脹率差や吸湿膨脹差に
より生じる応力を緩和して光起電力部の劣化を防
止する。かかる金属層を有機高分子基板等の電気
絶縁性基板上に0.005μm〜20μm、さらに好まし
くは0.01μm〜5μmの厚さに蒸着法やスパツタ法
のような物理的手法やメツキ法のような化学的手
法により堆積したもの、さらには前記金属フイル
ムをラミネートしたものが該導電層として好適で
ある。なかでも前記物理的手法で堆積したものが
好適である。該金属層の厚さが0.005μm以下では
導電性が不充分であり、20μmを越えると基板を
曲げた場合に金属層が割れたり、基板の可撓性が
損われて好ましくない。該金属層の厚さが0.01μ
m〜5μmの範囲では充分な導電性と可撓性が得
られる。 しかしながら、従来公知のかかる良導電性の金
属を積層した第1の金属層のみの導電性基板は非
晶質シリコン膜との整合性が充分でなく、非晶質
シリコン膜の剥離,非晶質シリコン膜と導電層金
属の望ましくない合金化や原子の相互拡散、およ
び/または非晶質シリコン膜と不必要な電流整流
性接触を形成する。この難点は前記第1の金属層
上に非晶質シリコン膜と整合性の良い下記の第2
の金属層をさらに積層することにより解決され
る。本発明者らの研究の結果、第2の金属層を構
成する非晶質シリコン膜と整合性の良い金属とし
ては、Mo,Cr,W,Fe,Ti,Taの中より選ん
だ単一金属および/またはその合金や、ステンレ
ス合金,ケイ素鋼合金が使用できることが判明し
た。第2の金属層は電極として必要な導電性を主
目的とした第1の金属層と非晶質シリコン膜が接
する部分がない連続膜であることが必要であり、
その厚さは0.01μm〜2.0μm、さらに好ましくは
0.02μm〜1μmの範囲が好適である。層の厚さが
0.01μm以下では連続膜の形成が困難であるか、
または第1の金属層の金属原子の拡散によるしみ
出しを生じ、2.0μmを越えると第2の金属層自体
の割れや基板からの剥離を生じる。第2の金属層
の厚さが0.01μm〜1μmの範囲では充分な可撓性
と非晶質シリコン膜との整合性を得ることができ
る。 従来公知の単層の導電層を用いる方法に従え
ば、前記第2の金属層の非晶質シリコン膜と良好
な整合性が得られる金属を該導電層に使用する
と、割れや剥離の制約から導電層の抵抗が高くな
り、この抵抗が光起電力部で発生される電流の直
列抵抗となつて光・電力変換効率を低下させ、該
導電層に前記第1の金属層の電気伝導率の高い金
属を使用すると非晶質シリコン膜との整合性が悪
くなつてしまう。いずれにしても前述の特許公報
等に開示されている方法では実用的な太陽電池、
殊に大面積,高出力電流の太陽電池の実現に困難
がある。しかし、前述の少なくとも二層の第1,
第2の金属層を有機高分子基板上に積層した面上
に、光起電力要素として非晶質シリコンや非晶質
シリコンカーバイド合金,非晶質シリコンゲルマ
ニウムのようなシリコンを主成分とする非晶質半
導体薄膜を堆積する本発明によれば、大面積,高
出力電流の太陽電池を製作することができる。一
例として光起電力要素に非晶質シリコン薄膜を用
いる場合について述べる。基板上に非晶質シリコ
ン薄膜を堆積するにはグロー放電法,スパタリン
グ法,イオンプレーテイング法等公知の方法を用
いる。例えば、グロー放電法の場合、10〜
0.1Torrに維持された真空槽内で該基板を100℃
〜400℃に加熱した基板ホルダーに密着させる。
この基板ホルダーを一方の電極とし、それと対向
する電極との間に、13.56MHzの高周波電力を供
給する。真空槽内にはシラン(SiH4),ジボラン
(B2H6),ホスフイン(PH3)ガスを導入してグ
ロー放電を起し、所定の構造に前記ガスの分解生
成物を堆積せしめ、光起電力要素である非晶質シ
リコン薄膜を設ける。この上に、例えばシヨツト
キー接合セルの場合シヨツトキー障壁金属として
白金,金,パラジウム等をスパツタ法や真空蒸着
法で100Å前後の膜厚で堆積する。またヘテロ
(フエイス)接合セルの場合は、酸化インジウム,
酸化錫,錫酸カドミウム薄膜を200〜3000Å前後
の膜厚なるようにスパツタ法や真空蒸着法で堆積
し、表面電極を形成する。 次に、収集電極をシヨツトキー障壁金属,ヘテ
ロ(フエイス)電極表面上に設けて非晶質シリコ
ン太陽電池デバイスとする。 本発明になる非晶質シリコン太陽電池の代表例
としては、基板としての有機高分子シートあるい
は可撓性を有する有機高分子フイルム;その上に
設けられた導電層としての電気導電率の高い第1
の金属層,及び非晶質シリコン膜と整合性の良い
第2の金属層との複層金属層;及びその上に設け
られた非晶質シリコン膜,シヨツトキー障壁金属
またはヘテロ(フエイス)電極,及び電流収集電
極とからなる光起電力要素とからなる基本構造を
もつている。 本発明の非晶質シリコン太陽電池の好ましい例
においては絶縁性有機高分子材料基板上に電気抵
抗が低く、かつ、基板と非晶質シリコン薄膜の間
に生じるひずみ応力を緩和する効果をもつた第1
の金属層と非晶質シリコンと整合性の良い第2の
金属層との少なくとも二層以上の金属層を積層し
た複層板を光起電力要素の支持板として使用する
ことに大きな特徴をもつている。かかる構成の導
電化支持板はその導電層が非晶質シリコンとの整
合性が良く、かつその膜厚が薄くて内部応力が小
さくクラツク等の発生がないので有機高分子基板
等の可撓性,軽量性という利点を損うことなしに
光・電力変換効率が高く、耐久性に富み、曲げに
耐える画期的な太陽電池の実現を可能にするもの
である。もちろん上記の絶縁性材料の導電化法は
有機高分子材料以外の絶縁性材料であるガラス
板,セラミツク板,可撓性を有するセラミツクス
シートを太陽電池用基板として用いる場合にも適
用できる。 なお、以上の本発明の太陽電池を実用に供する
時は公知のように通常過酷な使用環境条件に耐え
る太陽電池表面保護層を設けて使用される。該表
面保護層は可撓性太陽電池の場合その可撓性を損
わない様に、ふつ素樹脂フイルムのごとき可撓性
を有し、且つ耐候性に優れた有機樹脂フイルムが
通常使用される。 以下、実施例をあげて本発明を説明する。 実施例 1 電気絶縁性の可撓性を有する基板として有機高
分子フイルム具体的には厚さ125μmのポリイミ
ド樹脂フイルムを用いた。この基板上に導電層と
してRFスパツタ法でステンレス合金(SUS304)
をターゲツトとして種々の厚さに該合金を堆積さ
せ室温における表面抵抗を測定した。スパツタリ
ングはAr圧力0.5ミリメートル(mTorr)雰囲気
中でRF電力500Wを投入して実施した。かかる導
電化有機高分子フイルムの表面抵抗と導電層の厚
さの関係を第1図に曲線1として示した。また同
様な有機高分子フイルム上に前記と同様な手法
で、導電層としてAl,ステンレス合金の各ター
ゲツトを用いて第1の金属層として種々の厚さの
Al膜を堆積させその上に第2の金属層として厚
さ0.05μmのステンレス合金膜を積層した導電化
フイルムを作製し、室温の表面抵抗と導電層全体
の厚さの関係を測定して第1図に曲線2として示
す結果を得た。第1図の曲線1と2から明らかな
ようにAlを第1の金属層として複層した導電層
はステンレス合金のみの導電層に比較してはるか
に高い導電率が得られる。例えば1Ω/□程度の
表面抵抗を実現しようとする場合、Alを第1の
金属層とし、その上に第2の金属層としてステン
レス合金を積層した複層導電層では金属層の厚さ
が0.1μmもあれば良く、基板の可撓性を損うこと
はなかつた。一方、ステンレス合金のみの導電層
では1μmを越える厚さが必要となる。このよう
な厚い導電層を被着した基板ではしばしば該導電
層に割れや剥離部が生じた。更に詳しくは10×10
cm2の前記有機高分子フイルム上にステンレス合金
層のみの導電層を被着させた場合、層の厚さ2μ
mでは約40%の確率で層の厚さ3μmでは90%以
上の確率で導電層表面の一部または全面に割れや
剥離部を生じた。 実施例 2 電気絶縁性の可撓性を有する基板として実施例
1と同様に厚さ125μmのポリイミド樹脂フイル
ムを用い、該フイルム上の導電層として、厚さ
0.4μmのステンレス合金単独を被着させた基板,
基板厚さ0.05μmのAlの第1の金属層の上に厚
さ0.1μmのステンレス合金の第2の金属層を積層
させた基板,厚さ0.05μmのNiの第1の金属層
の上に厚さ0.1μmのステンレス合金の第2の金属
層を積層させた基板をスパッタ法で作製した。ス
パツタリングはAr圧力0.5ミリメートル
(mTorr)雰囲気中でRF電力500Wを投入し、タ
ーゲツトにAl,ステンレス合金(SUS304),Ni
を使用して実施した。かかる導電化フイルム基板
上にシラン,ジボラン,フオスフインのガスを用
いてRFグロー放電法により同一条件で非晶質シ
リコン薄膜を堆積させ、その上にInとSnの酸化
物の透明電極とPdの櫛型収集電極を蒸着して基
板/n―i―p(非晶質シリコン)/透明電極構
成の太陽電池を作製し、電池の耐湿性を調べた。 耐湿性の試験は、太陽電池を相対湿度80%の雰
囲気中に24時間放置した後相対湿度30%の雰囲気
中に移管し、48時間後に再び相対湿度80%の雰囲
気に露呈した場合の光・電力変換効率の劣化を測
定して行つた。結果を第2図に示す。第2図より
明らかなようにポリイミドフイルム上にステンレ
ス合金のみを積層した基板上の太陽電池は、Al
やNiの層の上にステンレス合金を積層した基板
上の太陽電池に比較して、光・電力変換効率の劣
化がはるかに急速であつた。かかる劣化は主とし
て有機高分子フイルムとステンレス合金や非晶質
シリコン薄膜の吸湿膨脹率差により生じるひずみ
応力に起因する金属層の微細なクラツクによるも
のと思われる。第1の金属層のAlやNiはこれら
の劣化要因を緩和する効果を有することがわか
る。 実施例 3 非晶質シリコン光起電力層と電気的接合のよい
第2の金属層の金属を選択するため、Au,Ag,
Cu,Mo,Cr,Ti,W,Fe,Ta,ステンレス合
金(SUS),ケイ素鋼の金属板をターゲツトして
スパツタリング法を用い、10-4TorrのAr雰囲気
中で厚さ125μmのポリイミド樹脂フイルム上に
約0.1μmの厚みに夫々の金属層を堆積した基板を
作成し、これら基板上に以下のようにして太陽電
池を形成し、その太陽電池特性に及ぼす影響を調
べた。 太陽電池は実施例2と同様にRFグロー放電法
により、n―i―p形非晶質シリコン膜を堆積し
た。さらに透明電極として酸化インジユーム電極
をEB蒸着法を用いて堆積した。そして、これら
金属層と非晶質シリコン層との接合の良否を示す
指標として、太陽電池特性の中でも電気的接合の
良,不良を示すと云われる曲線因子を測定し評価
した。その結果を表1に示した。
The present invention relates to a solar cell in which an amorphous semiconductor thin film mainly composed of silicon is provided as a photovoltaic element on an electrically insulating substrate. More specifically, in order to make an electrically insulating substrate conductive, a first metal layer of low resistance made of a metal with high electrical conductivity is formed on the substrate, an amorphous silicon thin film laminated thereon, and an electrically insulating substrate are formed. At least two of the second metal layers with good mechanical bonding
The present invention relates to a solar cell constructed by depositing a conductive layer consisting of layers. A solar cell in which an amorphous silicon thin film is provided on an insulating substrate is disclosed in Japanese Patent Application Laid-Open No. 52-16990 (Japanese Patent Publication No. 53-37718).
No.), JP-A-54-149489, JP-A-55-4994,
Furthermore, it is well known as described in Japanese Patent Application Laid-open No. 55-29154. Furthermore, as a feature of using a flexible organic polymer substrate when manufacturing an amorphous silicon solar cell, as disclosed in JP-A-55-4994 and JP-A-55-29154, To make it possible to manufacture an amorphous silicon solar cell in which necessary layers are provided on a substrate by a continuous method, and also to form on a flexible substrate as disclosed in Japanese Patent Application Laid-open No. 54-149489. Compared to conventional solar cells, the amorphous silicon solar cells developed are film-like, so they can be bent arbitrarily, and are said to have a wider range of applications. However, the present inventors discovered that when an amorphous silicon solar cell was manufactured by the method described in the above patent publication, a serious defect existed in the metal conductive layer on the organic polymer substrate. In other words, if metals with high electrical conductivity such as Ag, Au, Cu, Al, etc. are used in the conductive layer in order to obtain sufficient electrical conductivity as an electrode, the adhesion to the amorphous silicon film is poor and the amorphous silicon This may cause peeling of the film, alloying of the amorphous silicon and the conductive layer metal, or interdiffusion of atoms.
Solar cells with good photoelectric conversion efficiency cannot be obtained. In addition, when forming a conductive layer with sufficiently low resistance by using a stainless steel alloy or nichrome alloy for the conductive layer, it is necessary to use a conductive layer that has a sufficiently low resistance, or the flexibility of the organic polymer substrate is impaired, or the organic polymer substrate and the metal layer are It is necessary to deposit metal to such a thickness that the metal layer cracks or peels off due to the strain stress caused by the difference in the expansion rate of the organic polymer substrate. can't make it. This fact indicates that in order to fabricate an amorphous silicon solar cell that can withstand practical use on an electrically insulating substrate such as an organic polymer substrate, mechanical bonding with the electrically insulating substrate such as an organic polymer substrate is required. This shows that it is essential to develop a conductive layer that has good electrical resistance, low electrical resistance, and good electrical and mechanical bonding with amorphous silicon (hereinafter referred to as having good compatibility with amorphous silicon). There is. Here, good electrical connection means
This means providing a low-resistance non-rectifying contact with the amorphous silicon film or a suitable contact potential difference and rectifying contact with the amorphous silicon film as required for the solar cell configuration. Good mechanical contact means good adhesion to amorphous silicon. Both of the above concepts include stability with respect to temperature, humidity, changes over time, and bending during solar cell manufacturing and use. The present inventors have arrived at the present invention as a result of intensive research into a method for making an electrically insulating substrate conductive that has such required characteristics. That is, the present invention provides a solar cell comprising an electrically insulating substrate, a metal layer provided on the substrate, and a photovoltaic element formed of an amorphous semiconductor thin film containing silicon as a main component on the metal. , Ag where the metal layer is in contact with the substrate,
A first metal layer with good electrical conductivity, which is a layer of a single metal or an alloy selected from the group consisting of Au, Pt, Cu, Al and Ni, and Mo, Cr, W in contact with the photovoltaic element. , Fe, Ti, and Ta or an alloy thereof, a stainless steel alloy, or a silicon steel alloy, and a second metal layer having good electrical and mechanical bonding. This solar cell is characterized by being composed of two layers. In the present invention, the electrically insulating substrate is not particularly limited as long as it is an electrically insulating substrate, as described below, but includes an organic polymer sheet with a surface resistance of 1000 MΩ/□ or more, and a flexible organic polymer film. It is effective for organic polymer compound substrates such as , organic polymer molded products, and composite materials where the metal surface is coated with an organic polymer material. More specifically, these organic polymer materials include polyethylene terephthalate resin, polyethylene naphthalate resin, aromatic polyester resin, aromatic polyamide resin, polyarylate resin, polysulfone resin, and polyimide resin, which are required in the solar cell manufacturing process. It is suitable because it has heat resistance of ℃ or higher. When the organic polymer material described above is used as a substrate for a solar cell, it is necessary to laminate a conductive layer with a surface resistance of at least 100 Ω/□ or less, preferably 10 Ω/□ or less. In the present invention, this conductive layer has a multilayer structure including a first metal layer with high electrical conductivity, an amorphous semiconductor layer described below, and a second metal layer with good electrical and mechanical bonding. do. For the first metal layer, a single metal selected from Ag, Au, Pt, Cu, Al, and Ni, which are known metals with high electrical conductivity, and/or an alloy thereof is used as an electrode material. The above metals not only have good mechanical bonding with organic polymer materials, but also have high thermal conductivity, so high heat dissipation can be obtained during solar cell operation. In addition, since the metal layer is highly extensible, it alleviates the stress caused by the difference in coefficient of thermal expansion and difference in hygroscopic expansion between the organic polymer substrate material and the amorphous silicon semiconductor film, thereby preventing deterioration of the photovoltaic portion. Such a metal layer is deposited on an electrically insulating substrate such as an organic polymer substrate to a thickness of 0.005 μm to 20 μm, more preferably 0.01 μm to 5 μm, by physical methods such as vapor deposition or sputtering, or chemical methods such as plating method. The conductive layer is preferably deposited by a conventional method or laminated with the metal film described above. Among these, those deposited by the above-mentioned physical methods are preferred. If the thickness of the metal layer is less than 0.005 μm, the conductivity is insufficient, and if it exceeds 20 μm, the metal layer may crack when the substrate is bent, and the flexibility of the substrate may be impaired, which is not preferable. The thickness of the metal layer is 0.01μ
Sufficient conductivity and flexibility can be obtained in the range of m to 5 μm. However, conventionally known conductive substrates with only the first metal layer laminated with highly conductive metals do not have sufficient compatibility with the amorphous silicon film, causing peeling of the amorphous silicon film and amorphous formation. Undesirable alloying and interdiffusion of atoms between the silicon film and the conductive layer metal and/or formation of unwanted current rectifying contacts with the amorphous silicon film. This difficulty is due to the following second metal layer that has good consistency with the amorphous silicon film on the first metal layer.
This can be solved by laminating more metal layers. As a result of the research conducted by the present inventors, a single metal selected from among Mo, Cr, W, Fe, Ti, and Ta is selected as a metal that has good compatibility with the amorphous silicon film that constitutes the second metal layer. It has been found that and/or alloys thereof, stainless steel alloys, and silicon steel alloys can be used. The second metal layer is required to be a continuous film with no contact portion between the first metal layer and the amorphous silicon film, whose main purpose is to provide conductivity necessary as an electrode.
Its thickness is 0.01 μm to 2.0 μm, more preferably
A range of 0.02 μm to 1 μm is suitable. layer thickness
If it is less than 0.01 μm, it is difficult to form a continuous film, or
Alternatively, seepage may occur due to diffusion of metal atoms in the first metal layer, and if the thickness exceeds 2.0 μm, the second metal layer itself may crack or peel off from the substrate. When the thickness of the second metal layer is in the range of 0.01 μm to 1 μm, sufficient flexibility and consistency with the amorphous silicon film can be obtained. According to the conventionally known method of using a single conductive layer, if a metal that provides good compatibility with the amorphous silicon film of the second metal layer is used for the conductive layer, there will be no restrictions on cracking or peeling. The resistance of the conductive layer increases, and this resistance becomes a series resistance of the current generated in the photovoltaic part, reducing the light/power conversion efficiency. If a high-quality metal is used, the compatibility with the amorphous silicon film will deteriorate. In any case, the method disclosed in the above-mentioned patent publications, etc., can produce a practical solar cell.
In particular, it is difficult to realize solar cells with a large area and high output current. However, the first of the at least two layers,
On the surface where the second metal layer is laminated on the organic polymer substrate, a non-silicon based material such as amorphous silicon, amorphous silicon carbide alloy, or amorphous silicon germanium is applied as a photovoltaic element. According to the present invention, which deposits a crystalline semiconductor thin film, a large area, high output current solar cell can be manufactured. As an example, a case will be described in which an amorphous silicon thin film is used as a photovoltaic element. Known methods such as glow discharge, sputtering, and ion plating are used to deposit the amorphous silicon thin film on the substrate. For example, in the case of glow discharge method, 10~
The substrate was heated to 100℃ in a vacuum chamber maintained at 0.1Torr.
Place it in close contact with a substrate holder heated to ~400℃.
This substrate holder is used as one electrode, and 13.56 MHz high-frequency power is supplied between it and the opposing electrode. Silane (SiH 4 ), diborane (B 2 H 6 ), and phosphine (PH 3 ) gases are introduced into the vacuum chamber to cause a glow discharge, and the decomposition products of the gases are deposited in a predetermined structure, which is then exposed to light. An amorphous silicon thin film is provided as an electromotive force element. For example, in the case of a Schottky junction cell, platinum, gold, palladium, or the like is deposited as a Schottky barrier metal to a thickness of about 100 Å by sputtering or vacuum evaporation. In addition, in the case of a hetero (face) junction cell, indium oxide,
A thin film of tin oxide or cadmium stannate is deposited to a thickness of approximately 200 to 3000 Å by sputtering or vacuum evaporation to form a surface electrode. A collection electrode is then provided on the Schottky barrier metal, hetero (face) electrode surface to form an amorphous silicon solar cell device. Typical examples of the amorphous silicon solar cell of the present invention include an organic polymer sheet or flexible organic polymer film as a substrate; 1
and a second metal layer having good matching with the amorphous silicon film; and an amorphous silicon film provided thereon, a Schottky barrier metal or a hetero (face) electrode, and a photovoltaic element consisting of a current collecting electrode. In a preferred example of the amorphous silicon solar cell of the present invention, an insulating organic polymer material substrate is formed, which has low electrical resistance and has the effect of relieving the strain stress generated between the substrate and the amorphous silicon thin film. 1st
A major feature is that a multilayer plate made of at least two metal layers laminated with a metal layer and a second metal layer that has good consistency with amorphous silicon is used as a support plate for a photovoltaic element. ing. The conductive support plate with this structure has a conductive layer that has good compatibility with amorphous silicon, and is thin and has low internal stress and does not cause cracks, making it suitable for flexible organic polymer substrates. This makes it possible to create a revolutionary solar cell that has high light/power conversion efficiency, is highly durable, and can withstand bending without sacrificing the advantage of being lightweight. Of course, the above-mentioned method for making an insulating material conductive can also be applied to the case where an insulating material other than an organic polymer material such as a glass plate, a ceramic plate, or a flexible ceramic sheet is used as a substrate for a solar cell. When the solar cell of the present invention is put to practical use, it is usually provided with a solar cell surface protective layer that can withstand harsh environmental conditions, as is well known. In the case of a flexible solar cell, the surface protective layer is usually an organic resin film that is flexible and has excellent weather resistance, such as a fluororesin film, so as not to impair its flexibility. . The present invention will be explained below with reference to Examples. Example 1 An organic polymer film, specifically a polyimide resin film with a thickness of 125 μm, was used as an electrically insulating and flexible substrate. Stainless steel alloy (SUS304) is coated on this substrate by RF sputtering method as a conductive layer.
The alloys were deposited to various thicknesses using as a target, and the surface resistance at room temperature was measured. Sputtering was performed in an atmosphere of Ar pressure of 0.5 millimeters (mTorr) with RF power of 500 W applied. The relationship between the surface resistance of such a conductive organic polymer film and the thickness of the conductive layer is shown as curve 1 in FIG. In addition, using the same method as above, aluminum and stainless steel alloy targets were used as the conductive layer on the same organic polymer film, and various thicknesses were formed as the first metal layer.
A conductive film was prepared by depositing an Al film and laminating a stainless steel alloy film with a thickness of 0.05 μm on top of it as a second metal layer.The relationship between the surface resistance at room temperature and the thickness of the entire conductive layer was measured. The results shown as curve 2 in Figure 1 were obtained. As is clear from curves 1 and 2 in FIG. 1, a multilayer conductive layer made of Al as the first metal layer has much higher conductivity than a conductive layer made only of stainless steel alloy. For example, when trying to achieve a surface resistance of about 1Ω/□, in a multilayer conductive layer in which Al is used as the first metal layer and a stainless steel alloy is laminated on top of it as the second metal layer, the thickness of the metal layer is 0.1 μm was sufficient, and the flexibility of the substrate was not impaired. On the other hand, a conductive layer made only of stainless steel requires a thickness exceeding 1 μm. Substrates coated with such thick conductive layers often suffer from cracks or delaminations in the conductive layer. For more details 10×10
When a conductive layer consisting only of a stainless steel alloy layer is deposited on the organic polymer film of cm2 , the layer thickness is 2μ.
When the thickness of the conductive layer was 3 μm, there was a probability of about 40%, and when the thickness of the layer was 3 μm, there was a probability of more than 90% that cracks or peeling occurred on part or the entire surface of the conductive layer. Example 2 As in Example 1, a polyimide resin film with a thickness of 125 μm was used as an electrically insulating and flexible substrate, and a conductive layer on the film with a thickness of
Substrate coated with 0.4μm stainless steel alloy,
A substrate in which a second metal layer of stainless steel alloy with a thickness of 0.1 μm is laminated on a first metal layer of Al with a thickness of 0.05 μm, and a first metal layer of Ni with a thickness of 0.05 μm is laminated. A substrate on which a second metal layer of stainless steel alloy with a thickness of 0.1 μm was laminated was fabricated by sputtering. Sputtering is performed by applying RF power of 500 W in an Ar pressure of 0.5 mm (mTorr) to target Al, stainless steel alloy (SUS304), and Ni.
It was carried out using On this conductive film substrate, an amorphous silicon thin film was deposited under the same conditions by the RF glow discharge method using silane, diborane, and phosphine gases, and a transparent electrode of In and Sn oxides and a Pd comb were deposited on top of the amorphous silicon thin film. A solar cell having a substrate/nip (amorphous silicon)/transparent electrode configuration was fabricated by vapor-depositing a type collecting electrode, and the moisture resistance of the cell was examined. The humidity resistance test was conducted by leaving the solar cell in an atmosphere with a relative humidity of 80% for 24 hours, then transferring it to an atmosphere with a relative humidity of 30%, and then exposing it to an atmosphere with a relative humidity of 80% again after 48 hours. This was done by measuring the deterioration of power conversion efficiency. The results are shown in Figure 2. As is clear from Figure 2, a solar cell on a substrate made of only stainless steel layered on a polyimide film is
Compared to solar cells on substrates with a stainless steel alloy layered on top of a Ni layer or Ni layer, the light/power conversion efficiency deteriorated much more rapidly. Such deterioration is thought to be mainly due to minute cracks in the metal layer caused by strain stress caused by the difference in hygroscopic expansion coefficient between the organic polymer film and the stainless steel alloy or amorphous silicon thin film. It can be seen that Al and Ni in the first metal layer have the effect of alleviating these deterioration factors. Example 3 In order to select a metal for the second metal layer that has good electrical contact with the amorphous silicon photovoltaic layer, Au, Ag,
A polyimide resin film with a thickness of 125 μm was created using sputtering method targeting Cu, Mo, Cr, Ti, W, Fe, Ta, stainless steel alloy (SUS), and silicon steel metal plates in an Ar atmosphere of 10 -4 Torr. Substrates were prepared on which each metal layer was deposited to a thickness of about 0.1 μm, and solar cells were formed on these substrates in the following manner, and the effects on the solar cell characteristics were investigated. For the solar cell, an nip type amorphous silicon film was deposited by the RF glow discharge method as in Example 2. Furthermore, an indium oxide electrode was deposited as a transparent electrode using the EB evaporation method. As an indicator of the quality of the bond between these metal layers and the amorphous silicon layer, the fill factor, which is said to indicate the quality of electrical bond among solar cell characteristics, was measured and evaluated. The results are shown in Table 1.

【表】【table】

【表】 比較例のAu,Ag,Cuを除いた本発明の第2の
金属層の金属は曲線因子が50%以上であり、太陽
電池として実用に供し得る良好な接合が得られて
おり、本発明の効果は明らかである。
[Table] The metals of the second metal layer of the present invention excluding Au, Ag, and Cu of the comparative example have a fill factor of 50% or more, and a good bond that can be used practically as a solar cell is obtained. The effects of the present invention are obvious.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1のSUS導電層とAl/SUS導
電層の層厚と表面抵抗の関係を示すものであり、
第2図は実施例2のSUS導電層,Al/SUS導電
層及びNi/SUS導電層を用いた太陽電池の耐久
性を示すものである。
Figure 1 shows the relationship between the layer thickness and surface resistance of the SUS conductive layer and Al/SUS conductive layer of Example 1,
FIG. 2 shows the durability of the solar cell using the SUS conductive layer, Al/SUS conductive layer, and Ni/SUS conductive layer of Example 2.

Claims (1)

【特許請求の範囲】 1 電気絶縁性の基板,当該基板上に設けられた
金属層及び当該金属上にシリコンを主成分とした
非晶質半導体薄膜からなる光起電力要素とからな
る太陽電池であつて、当該金属層が、基板に接す
るところのAg,Au,Pt,Cu,Al及びNiからな
る群から選ばれた単一金属あるいは合金の層であ
る電気伝導率の良好な第1の金属層と光起電力要
素に接するところのMo,Cr,W,Fe,Ti及び
Taからなる群から選ばれた単一金属あるいはそ
の合金,ステンレス合金又はケイ素鋼合金の層で
ある半導体薄膜と電気的及び機械的接合の良好な
第2の金属層との少なくとも2層からなることを
特徴とする太陽電池。 2 当該基板が、有機高分子化合物である特許請
求の範囲第1項記載の太陽電池。 3 当該基板が可撓性を有する特許請求の範囲第
2項記載の太陽電池。
[Scope of Claims] 1. A solar cell consisting of an electrically insulating substrate, a metal layer provided on the substrate, and a photovoltaic element made of an amorphous semiconductor thin film mainly composed of silicon on the metal. The metal layer is a first metal with good electrical conductivity, which is a layer of a single metal or an alloy selected from the group consisting of Ag, Au, Pt, Cu, Al, and Ni, in contact with the substrate. Mo, Cr, W, Fe, Ti and in contact with the layer and the photovoltaic element.
Consisting of at least two layers: a semiconductor thin film, which is a layer of a single metal selected from the group consisting of Ta or its alloy, stainless steel alloy, or silicon steel alloy, and a second metal layer with good electrical and mechanical bonding. A solar cell featuring: 2. The solar cell according to claim 1, wherein the substrate is an organic polymer compound. 3. The solar cell according to claim 2, wherein the substrate has flexibility.
JP55179029A 1980-12-19 1980-12-19 Amorphous semiconductor solar cell Granted JPS57103370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55179029A JPS57103370A (en) 1980-12-19 1980-12-19 Amorphous semiconductor solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55179029A JPS57103370A (en) 1980-12-19 1980-12-19 Amorphous semiconductor solar cell

Publications (2)

Publication Number Publication Date
JPS57103370A JPS57103370A (en) 1982-06-26
JPH026235B2 true JPH026235B2 (en) 1990-02-08

Family

ID=16058859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55179029A Granted JPS57103370A (en) 1980-12-19 1980-12-19 Amorphous semiconductor solar cell

Country Status (1)

Country Link
JP (1) JPS57103370A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8373058B2 (en) 2005-03-30 2013-02-12 Tdk Corporation Solar cell and method of adjusting color of the same

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5898986A (en) * 1981-12-09 1983-06-13 Seiko Epson Corp Thin film solar battery
EP0103168A3 (en) * 1982-09-10 1986-07-02 Hitachi, Ltd. Amorphous silicon solar battery
JPS59108368A (en) * 1982-12-14 1984-06-22 Kanegafuchi Chem Ind Co Ltd Flexible thin film electromotive force device
JPS59195879A (en) * 1983-04-21 1984-11-07 Fuji Electric Co Ltd Amorphous silicon solar cell
JPS6015980A (en) * 1983-07-08 1985-01-26 Agency Of Ind Science & Technol Solar cell
JPS6126268A (en) * 1984-07-16 1986-02-05 Kanegafuchi Chem Ind Co Ltd Heat-resistant amorphous silicon solar cell and manufacture thereof
JPS613471A (en) * 1984-06-15 1986-01-09 Kanegafuchi Chem Ind Co Ltd Semiconductor device
JPS6191974A (en) * 1984-10-11 1986-05-10 Kanegafuchi Chem Ind Co Ltd Heat resisting multijunction type semiconductor element
JPS61174779A (en) * 1985-01-30 1986-08-06 Kanegafuchi Chem Ind Co Ltd Light converging type generator
JPS63503103A (en) * 1985-09-30 1988-11-10 鐘淵化学工業株式会社 Multi-junction semiconductor device
JPH0758809B2 (en) * 1985-12-06 1995-06-21 アンリツ株式会社 Ohmic joining device
DE3689843T2 (en) * 1986-03-06 1994-09-01 Toshiba Kawasaki Kk Control circuit of a liquid crystal display.
JPS63100858U (en) * 1986-12-19 1988-06-30
JPS63138843U (en) * 1987-03-04 1988-09-13
JPS63285972A (en) * 1987-05-19 1988-11-22 Fujitsu Ltd Bipolar transistor and manufacture thereof
JPH0462979A (en) * 1990-07-02 1992-02-27 Matsushita Electric Ind Co Ltd Electric element using hydrogenated amorphous silicon
JPH04355967A (en) * 1991-07-26 1992-12-09 Matsushita Electric Ind Co Ltd Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8373058B2 (en) 2005-03-30 2013-02-12 Tdk Corporation Solar cell and method of adjusting color of the same

Also Published As

Publication number Publication date
JPS57103370A (en) 1982-06-26

Similar Documents

Publication Publication Date Title
JPH026235B2 (en)
US4543441A (en) Solar battery using amorphous silicon
US7989077B2 (en) Metal strip product
TW304309B (en)
JPS5961077A (en) Amorphous silicon solar battery
WO2013023161A1 (en) Multilayer thin-film back contact system for flexible photovoltaic devices on polymer substrates
US9209322B2 (en) Multilayer thin-film back contact system for flexible photovoltaic devices on polymer substrates
JP2001513264A (en) Layer structure with weather and corrosion resistance
JP2001210845A (en) Method of manufacturing thin film photoelectric conversion device
CN111769165A (en) Electrode of flexible CIGS solar cell and manufacturing method
JPH0519990B2 (en)
JP3653379B2 (en) Photovoltaic element
WO2009142862A1 (en) Method of making contact to a solar cell employing a group ibiiiavia compound absorber layer
US9780242B2 (en) Multilayer thin-film back contact system for flexible photovoltaic devices on polymer substrates
JP2838141B2 (en) Solar cell
JPS6310590B2 (en)
JPS6010788A (en) Substrate for solar cell
FR2524717A1 (en) BATTERY OF AMORPHOUS SILICON PHOTOVOLTAIC BATTERIES
US8273597B2 (en) Process for making solar panel and the solar panel made thereof
JP2009194386A (en) Photovoltaic module and method for manufacturing the same
JPS5835989A (en) Amorphous photo-semiconductor device
JPH0682855B2 (en) Semiconductor device and manufacturing method thereof
JPS6015980A (en) Solar cell
CN114540767B (en) Preparation method of flexible aluminum electrode film
JP3455364B2 (en) Thin film solar cell and method of manufacturing the same