JPH0257831B2 - - Google Patents

Info

Publication number
JPH0257831B2
JPH0257831B2 JP59188590A JP18859084A JPH0257831B2 JP H0257831 B2 JPH0257831 B2 JP H0257831B2 JP 59188590 A JP59188590 A JP 59188590A JP 18859084 A JP18859084 A JP 18859084A JP H0257831 B2 JPH0257831 B2 JP H0257831B2
Authority
JP
Japan
Prior art keywords
component
epoxy resin
equivalent
type
phenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59188590A
Other languages
Japanese (ja)
Other versions
JPS6166762A (en
Inventor
Katsuji Kitagawa
Akira Yasuda
Hideki Tajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Somar Corp
Original Assignee
Somar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Somar Corp filed Critical Somar Corp
Priority to JP59188590A priority Critical patent/JPS6166762A/en
Publication of JPS6166762A publication Critical patent/JPS6166762A/en
Publication of JPH0257831B2 publication Critical patent/JPH0257831B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(発明の属する技術分野) 本発明は、電気絶縁材料として優れた特性を有
する粉体塗料用エポキシ樹脂組成物に関する。 (従来技術とその問題点) 従来、エポキシ樹脂をフエノール樹脂で硬化さ
せた硬化物は、電気特性、機械特性、耐湿特性な
どに優れているので、信頼性の高い電気絶縁材料
として電気部品、電子部品などの封止や含浸に、
また積層板などの制造に広く用いられている。 しかし、このようなフエノール樹脂を硬化剤と
するエポキシ樹脂組成物は、これを電気絶縁用粉
体塗料として用いた場合下記の欠点を有し、この
欠点は各種の硬化促進剤を併用しても除去するこ
とが困難である。 速硬化させようとすると粉体塗装を高温で行
うことを余儀なくされるが、そうすると発泡を
生じてピンホールを増大させ電気特性が急激に
低下する。 発泡、ピンホールをより少なくしようとすれ
ば、主成分にするエポキシ樹脂と硬化剤にする
ノボラツク型フエノール樹脂の種類に限界があ
り、この場合脆さが大となり、機械的強度が急
激に低下する。 更に発泡、ピンホールをより少なくしようと
すれば、ステツプキユアーが必要になり、作業
工程も増加する。 低温領域での粉体塗装、加熱硬化では速硬化
にならない。 すなわち、最初の電気部品の粉体塗装によるる
絶縁方式では、速硬化が強く要求されており、合
せてポツトライフのよい粉体塗装が求められてい
るが、従来のフエノール樹脂硬化エポキシ樹脂組
成物を粉体塗料用として使用した場合、高温領域
で粉体を加熱硬化させようとすると、塗装−溶融
−硬化の過程で、発泡、ピンホールが大きく、十
分な特性を有する硬化塗膜を得ることが困難であ
つた。 発泡、ピンホールをより少なくするためには低
温領域で粉体塗料を加熱硬化させることになる
が、この場合速硬化にならないばかりか硬化不良
の原因になり、十分な硬化塗膜が得られない欠点
があつた。 (発明の目的) 本発明の目的は、このような従来の粉体塗料用
ノボラツク型フエノール樹脂硬化エポキシ樹脂組
成物の欠点を改良し、反応性とポツトライフ、電
気特性、耐熱性および機械的強度にもバランスが
とれ、更に高温領域で粉体塗装しても発泡、ピン
ホールのより少ない粉体塗装用エポキシ樹脂組成
物を提供することにある。 (発明の構成) 上記目的を達成すべく、本発明者等が鋭意研究
を重ねた結果、従来のものに較べ優れた粉体塗料
用エポキシ樹脂組成物を開発することに成功し
た。 すなわち、本発明は、下記成分(a)〜(e) (a) 分子内に少なくとも二つ以上のエポキシ基を
有するエポキシ樹脂 (b) ノボラツク型フエノール樹脂 (c) 分子内に少なくとも二つ以上のフエノール性
水酸基を有する多価フエノール化合物 (d) 硬化触媒 (e) 吸着剤 を必須成分とし、かつ、成分(a)1当量に対して成
分(b)+(c)を0.3〜5.0当量、そして成分(b)+(c)1当
量に対して成分(c)を0.1〜0.8当量配合することを
特徴とする粉体塗料用エポキシ樹脂組成物であ
る。 本発明によれば、エポキシ樹脂とノボラツク型
フエノール樹脂と硬化触媒の系に特定の多価フエ
ノール化合物を併用することによつて反応性とポ
ツトライフ、電気特性、耐熱性および機械的強度
ともバランスがとれ、更に吸着剤を配合すること
によつて高温領域で粉体塗装しても発泡、ピンホ
ールがより少ない粉体塗料用エポキシ樹脂組成物
が提供される。 本発明において使用される成分(a)のエポキシ樹
脂は分子内に少なくとも二つ以上のエポキシ基を
有するものであつて、どのようなタイプのエポキ
シ樹脂でも使用可能であり、エポキシ当量160〜
2000のものがよい。 これらのエポキシ樹脂を具体的に例示すると、
ビスフエノールA型、ビスフエノールS型、ビス
フエノールF型、フエノールノボラツク型、クレ
ゾールノボラツク型エポキシ樹脂、グリシジルエ
ーテル型エポキシ樹脂、グリシジルエステル型エ
ポキシ樹脂、グリシジルアミン型エポキシ樹脂、
脂環式エポキシ樹脂、線状脂肪族エポキシ樹脂、
複素環型エポキシ樹脂、ハロゲン化特に臭素化エ
ポキシ樹脂等があげられ、これらから成る群より
選ばれる1種もしくは2種以上のものが用いられ
る。 好ましくは粉体塗料における接着性、耐熱性、
機械的強度のバランスの点からノボラツク型エポ
キシ樹脂とグリシジルエーテル型エポキシ樹脂と
を用いるのがよい。とりわけ、エポキシ当量が
160〜280を有するフエノールノボラツク型、クレ
ゾールノボラツク型エポキシ樹脂とエポキシ当量
が400〜2000を有するグリシジルエーテル型エポ
キシ樹脂を併用するのが最も好ましい。 かかる成分(a)エポキシ樹脂の配合量は、成分(b)
ノボラツク型フエノール樹脂および/または成分
(c)多価フエノール化合物の1種もしくは2種以上
の混合系での合計量の水酸基当量と、成分(a)エポ
キシ樹脂の1種もしくは2種以上の混合系での合
計量のエポキシ当量によつて決定される。成分(a)
1当量に対して成分(b)+(c)を0.3〜5.0当量、すな
わち水酸基当量/エポキシ当量=0.3〜5.0、とり
わけ、0.9〜3.0の範囲で配合させる。 配合量の比が0.3未満では粉体塗料としてのフ
エノール樹脂の効果は得られず、速硬化性とポツ
トライフの安定性とのバランスが得られ難い。配
合量の比が5.0超では硬化物が脆く、十分な特性
を有する硬化塗膜が得られず耐薬品性、耐溶剤性
も悪い。 本発明において使用される成分(b)はノボラツク
型フエノール樹脂であつて、好ましくは分子内に
少なくとも二つ以上のフエノール性水酸基を有す
るノボラツク型フエノール樹脂である。かかるも
のとしては、1価フエノールとホルムアルデヒド
とから得られるノボラツク型フエノール樹脂、も
しくは同多価フエノールとホルムアルデヒドとか
ら得られるノボラツク型フエノール樹脂、または
同アルキル基、アリール基で置換された1価フエ
ノール、多価フエノール、ビス型多価フエノール
とホルムアルデヒドとから得られるノボラツク型
フエノール樹脂であり、これらは軟化点70〜150
℃、水酸基当量100〜150(重合度n=2〜13)を
有するものである。 具体的に例示すると、フエノールとホルムアル
デヒドとから得られるノボラツク型フエノール樹
脂、クレゾールとホルムアルデヒドとから得られ
るノボラツク型クレゾール樹脂、ノボラツク型ビ
スフエノールA樹脂、ノボラツク型tert−ブチル
フエノール樹脂、ノボラツク型ノニルフエノール
樹脂およびノボラツク型レゾルシノール樹脂があ
げられる。これらを1種もしくは2種以上の混合
系で使用することができる。なかでも、フエノル
とホルムアルデヒドとから得られるノボラツク型
フエノール樹脂、ノボラツク型ビスフエノールA
樹脂およびノボラツク型tert−ブチルフエノール
樹脂が最も好ましい。 本発明において使用される成分(c)は、分子内に
少なくとも二つ以上のフエノール性水酸基を有す
る多価フエノール化合物である。このものは室温
で固体である。具体的に例示すると、カテコー
ル、レゾルシノール、ハイドロキノンなどの2価
フエノール化合物、フロログルシノールで代表さ
れる3価フエノール化合物、tert−ブチルハイド
ロキノン、2.5−ジ−tert−ブチルハイドロキノ
ン、メチルハイドロキノン、メチルレゾルシノー
ル、4.6−ジ−tert−ブチルレゾルシノールなどの
置換多価フエノール化合物、2.2′−メチレン−ビ
ス(4−メチル−6−tert−ブチルフエノール、
ビスフエノールA、ビスフエノールs、3.3′−ジ
−メチルビスフエノールA,ビスフエノールF、
1,1′−ビス(4−ヒドロキシフエニル)−4−
メチルシクロヘキサンなどのビス型多価フエノー
ル化合物、フロログルシノールで代表される3価
フエノール化合物、テトラブロムビスフエノール
Aで代表される臭素化多価フエノール化合物であ
る。 本発明においては、軟化点が70〜100℃の範囲
にあるものが望ましい。これらの中でも、レゾル
シノール、ビスフエノールA、テトラブロムビス
フエノールAが最も好ましい。これらの多価フエ
ノール化合物は1種もしくは2種以上の混合系で
使用することができる。 ノボラツク型フエノール樹脂のみでエポキシ樹
脂を熱硬化させる場合、耐熱性と機械的強度(耐
衝撃強度)のバランスをとることが困難である
が、この多価フエノール化合物を併用することに
よつて、耐熱性を低下させずに機械的強度を向上
させることができ、しかもエポキシ樹脂との反応
を均一に進めることもでき、均質構造の熱硬化物
を得ることができる。 かかる成分(c)多価フエノール化合物の配合量は
使用されるエポキシ樹脂のエポキシ当量と硬化剤
としてのノボラツク型フエノール樹脂の水酸基当
量とこの多価フエノール化合物がもつ水酸基当量
との比によつて決定される。成分(b)ノボラツク型
フエノール樹脂と成分(c)多価フエノール化合物の
合計量のフエノール性水酸基1当量に対して成分
(c)多価フエノール化合物のフエノール性水酸基当
量が0.1〜0.8になる配合にする。とりわけ多価フ
エノール化合物の水酸基当量が0.3〜0.6になるよ
うに配合するのが最も好ましい。 多価フエノール化合物の水酸基当量が0.1未満
では粉体塗料としてノボラツク型フエノール樹脂
硬化系における硬化塗膜の機械的強度向上の効果
は十分に得られず、水酸基当量が0.8超では機械
的強度の向上はあるものの耐熱性が低下し所期の
効果は得られない。 本発明において使用される成分(d)硬化触媒は、
成分(a)エポキシ樹脂のエポキシ基と、成分(b)ノボ
ラツク型フエノール樹脂および成分(c)多価フエノ
ール化合物の各フエノール性水酸基とが熱硬化反
応するに際し反応を促進する作用を有するもので
ある。 本発明において使用される成分(d)の硬化触媒
は、一般に用いられるイミダゾール、イミダゾリ
ン、ジシアンジアミドおよびこれらの変性物、な
らびに有機ホスフイン化合物、ヘキサメチレンテ
トラミン、ピペリジンなどである。 好ましくは、イミダゾール、イミダゾリンおよ
びこれらの変性物のいずれか1種とジシアンジア
ミドとの混合系である。かかる成分(d)硬化触媒の
配合量は、成分(a)エポキシ樹脂、成分(b)ノボラツ
ク型フエノール樹脂および成分(c)多価フエノール
化合物の総量に対し0.01〜10重量%の範囲がよ
い。その理由は、配合量が0.01重量%未満では硬
化反応の促進性が不十分で配合の効果が認められ
ず、10重量%を超えて配合すると硬化物の耐水
性、耐薬品性などの特性が低下し、粉体塗料とし
てのポツトライフも悪くなるためである。 本発明において使用される成分(e)の吸着剤は、
成分(e)エポキシ樹脂のエポキシ基と、成分(b)ノボ
ラツク型フエノール樹脂および成分(c)多価フエノ
ール化合物の各フエノール性水酸基とが熱硬化反
応する際に反応により発生する水分や低分子揮発
物および/または反応によらず熱のみによつて発
生する水分含有低分子揮発物を吸着する作用を有
するものである。 かかる吸着剤としては、天然、半合成または合
成のもので、乾燥または未乾燥のものが使用さ
れ、シリカゲル、活性アルミナおよびモレキユラ
ーシーブス(ゼオラムの一般商品名で知られて
いる結晶性ゼオライト系吸着剤)がすべて使用可
能である。かかる吸着剤のなかでも、とりわけ比
較的高温領域下にあつても吸着性能が大きく、一
度吸着した被吸着物質を放出する温度の高い結晶
性合成ゼオライト系の吸着剤が最も好ましい。具
体的に例示すると、結晶性合成ゼオライト系吸着
剤M2/nO・Al2o3・xSiO2・yH2oのうち、Mの
金属カチオンの種類によつて異なる結晶容積の有
効細孔径が3Å、10Å型のゼオラムA−3、モレ
キユラーシーブス3A、ゼオラム−9、モレキユ
ラーシーブス13Xなどがあげられる。 これらの群より選ばれる1種もしくは2種以上
のものを混合系で使用してもよい。かかる吸着剤
の配合量は1.0〜20重量%の範囲内であることが
好ましい。その理由は、1.0重量%未満では配合
の効果が認められず、20重量%以上配合すると、
粉体塗料化した粉体が高温多湿環境下におかれた
場合に吸湿性を帯びやすくなり、また粉体塗料中
に含まれている低分子揮発質が加熱硬化時の加熱
温度において十分発生せず不都合であるからであ
る。 本発明の粉体塗料用エポキシ樹脂組成物は、上
記した必須成分の他に更に、無機質充てん剤およ
び各種の添加物を含むものであつてもよい。無機
質充てん剤としては、石英ガラス粉末、けい酸カ
ルシウム粉末、炭酸カルシウム粉末、結晶性シリ
カ粉末、アルミナ粉末、硫酸バリウム粉末等があ
げられ、これらから成る群より選ばれる1種もし
くは2種以上のものが使用される。 かかる無機質充てん剤の配合量は、使用するエ
ポキシ樹脂、ノボラツク型フエノール樹脂、多価
フエノール化合物および無機質充てん剤の種類に
よつて選択する必要があるが、粉体塗料用に使用
する場合、全組成に対し、10〜60重量%程度が好
ましい。無機質充てん剤の粒径は適宜選択すれば
よい。 また、添加剤としては、アクリル酸オリゴマ
ー、シリコーン系・フツ素系オリゴマー、ブチラ
ール・セルローズポリマーなどのレベリング剤、
顔料などの着色剤等があげられ、これらを目的に
応じ適宜添加配合してもよい。 以上の組成から成る粉体塗料用エポキシ樹脂組
成物を調製するには、通常の方法を用いればよ
く、例えば所定の配合量の原料混合物をミキサー
等によつて混合した後、ニーダー等による混合処
理を施すか、エクストルーダ等による溶融混合処
理を施すことにより、容易にこの粉体塗料用エポ
キシ樹脂組成物を得ることができる。 (発明の効果) 本発明の粉体塗料用エポキシ樹脂組成物は電気
部品、電子部品の絶縁、被覆、封止などに適用し
た場合に優れた特性および信頼性を発揮すること
ができる。優れた特性のうち、第1に従来のノボ
ラツク型フエノール樹脂硬化エポキシ樹脂組成物
に較べ、本発明の組成物は、高温で粉体塗装−加
熱溶融−加熱硬化の過程において発泡、ピンホー
ルの発生が殆んどない。電気部品、電子部品に適
用した場合に従来のものに較べて短時間で硬化が
でき、しかも低温で硬化させても著しく特性が向
上し、信頼性が改善される。 第2に、本発明の組成物に用いられるエポキシ
樹脂は、硬化剤としてノボラツク型フエノール樹
脂と多価フエノール化合物の混合系を併用するこ
とで、従来のものに較べて広範囲にその種類を選
択することができ、耐熱性、機械的強度、接着性
などの諸特性のバランスをとることができる。一
般に、粉体塗料にあつては塗装時に加熱溶融され
る際に、水分、アンモニア、炭酸ガス、オレフイ
ン、アルコール、アミン、フエノールなどの低分
子ガスが発生し、これらの低分子ガスが発泡、ピ
ンホールの原因になるが、本発明の組成物では低
分子ガスを吸着剤に速やかに吸着させることによ
つて発泡、ピンホールをおさえることできるので
ある。 また、一般に発生する低分子ガスの種類と量
は、使用するエポキシ樹脂、ノボラツク型フエノ
ール樹脂の種類と配合量、更に硬化触媒、無機質
充てん剤などによつて異なり、エポキシ当量に対
してフエノール性水酸基当量の比が過剰になると
反応によつて発生する水分などは多くなるが、本
発明の組成物で水分などを吸着剤に吸着させるこ
とにより発泡、ピンホールをおさえることができ
る。 (発明の実施例) 本発明を実施例により更に具体的に説明すると
ともに比較例を示す。本発明は、その要旨をこえ
ない限り実施例により限定されるものではない。
例中%とあるのは重量%である。 実施例 1〜8 エポキシ当量650のビスフエノールA型エポキ
シ樹脂(エポキシ樹脂A)と水酸基当量105、フ
リーフエノール分0.05〜0.2%のノボラツク型フ
エノール樹脂(フエノール樹脂A)、水酸基当量
105、フリーフエノール分5.0%のノボラツク型フ
エノール樹脂(フエノール樹脂B)、水酸基当量
115、フリーフエノール分0.5%のアルキルフエノ
ールノボラツク樹脂(フエノール樹脂C)、吸着
剤として合成ゼオライト系吸着剤(吸着剤A、吸
着剤B)、活性アルミナ(吸着剤C)、硬化触媒と
してジシアンジアミド、2−メチルイミダゾー
ル、フエノールブロツクイミダゾール、無機質充
てん剤としてシリカ粉末、炭酸カルシウム粉末、
添加剤としてアクリル酸系オリゴマーを第1表に
示す組成ならびに割合(重量部)で予備混合して
エクストルーダによりエポキシ樹脂組成物を調製
した。 上記各組成物における水酸基/エポキシ基の当
量比、すなわちエポキシ樹脂のエポキシ当量に対
するノボラツク型フエノール樹脂と多価フエノー
ル化合物との水酸基当量の比、および硬化触媒、
吸着剤の配合比は第2表に示すとおりである。 上記各組成物を粉体塗装に適するように適当な
粒度分布になるように常法により粉砕し、粉体塗
料を調製した。各調製した粉体塗料について諸物
性を調べたところ第3表のとおりであつた。第3
表における物性の測定法と評価法は下記のとおり
である。 ゲル化時間は、硬化性に関する事項で、粉体塗
料を150℃の熱板上に塗布しゲル化に要する時間
(秒)をストツプウオツチで測定する。 耐溶剤性は、硬化性に関する事項で、粉体塗料
を60×60×3.2mmの鉄板に0.3〜0.4mm厚さに粉体塗
装し、170℃、10分間加熱硬化させ、硬化物をメ
チルエチルケトン(MEK)に10分間常温で浸漬
したのち軟化状態を針でひつかいて調べる。 ◎:全く無傷、〇:極く僅かに傷がつく、△:
少し傷がつく、×:傷がつく、 外観(目視)は、塗膜の発泡とピンホールに関
する事項で、粉体塗料を予め180〜190℃に加熱し
た20×20×150mmの軟鋼角材に粉体塗装し、塗膜
表面の発泡状態とピンホール状態を目視によつて
観察する。 ◎:発泡、ピンホールが全くない、〇:発泡、
ピンホールが極く僅かにある、△:発泡、ピンホ
ールが少しある、×:発泡、ピンホールがある。 硬化物比重は、170℃、10分間加熱硬化した塗
膜について測定する。硬化物比重の値が高いもの
ほど発泡、ピンホールは少ない。 耐電圧(KV/mm)は、粉体塗料を60×60×3.2
mmの鉄板に0.3〜0.4mm厚さに粉体塗装し、170℃、
10分間加熱硬化した塗膜について測定する。耐電
圧の値が高いものほど発泡、ピンホールは少な
い。 熱変形湿気(℃)は、12.7〜12.7×150mmの金
型を予め160〜170℃に加熱し、これに粉体塗料を
10〜15分間の経過中にふりかけ、成型後170℃、
20分間加熱硬化させ、得られた硬化物について測
定する。熱変形湿度の値が高いものほど発泡、ピ
ンホールは少ない。耐衝撃強度(cm)は、耐電圧
測定用のテストピースの作成条件と同様にして作
成したテストピースをデユポン式衝撃試験機によ
つて測定し、荷重500g、撃芯ヘツド1/8イン
チで割れの生じない高さ(cm)で表わす。
(Technical field to which the invention pertains) The present invention relates to an epoxy resin composition for powder coatings that has excellent properties as an electrically insulating material. (Prior art and its problems) Conventionally, cured products made by curing epoxy resin with phenolic resin have excellent electrical properties, mechanical properties, moisture resistance, etc., and are used as highly reliable electrical insulating materials for electrical parts and electronics. For sealing and impregnating parts, etc.
It is also widely used in the production of laminates, etc. However, such epoxy resin compositions using phenolic resin as a curing agent have the following drawbacks when used as powder coatings for electrical insulation, and these drawbacks cannot be overcome even when used in combination with various curing accelerators. Difficult to remove. In order to achieve rapid curing, powder coating must be performed at high temperatures, but this causes foaming, increases pinholes, and sharply deteriorates electrical properties. In order to minimize foaming and pinholes, there are limits to the types of epoxy resin used as the main component and the novolak type phenolic resin used as the hardening agent, and in this case, brittleness increases and mechanical strength rapidly decreases. . Furthermore, if we try to further reduce foaming and pinholes, a step cure will be required and the number of work steps will increase. Powder coating and heat curing at low temperatures do not cure quickly. In other words, with the first insulation method using powder coating for electrical parts, there was a strong demand for fast curing and a powder coating with a good pot life. When used as a powder coating, if you try to heat and cure the powder in a high temperature range, there will be large foaming and pinholes during the coating-melting-curing process, making it difficult to obtain a cured coating film with sufficient properties. It was difficult. In order to minimize foaming and pinholes, powder coatings must be heated and cured at low temperatures, but this not only does not cure quickly but also causes poor curing, making it impossible to obtain a sufficiently cured coating. There were flaws. (Object of the Invention) The object of the present invention is to improve the drawbacks of the conventional novolak type phenolic resin-cured epoxy resin compositions for powder coatings, and to improve reactivity, pot life, electrical properties, heat resistance, and mechanical strength. It is an object of the present invention to provide an epoxy resin composition for powder coating, which has a well-balanced property and also has less foaming and pinholes even when powder coating is performed in a high temperature range. (Structure of the Invention) In order to achieve the above object, the present inventors have conducted extensive research and have succeeded in developing an epoxy resin composition for powder coatings that is superior to conventional ones. That is, the present invention provides the following components (a) to (e) (a) an epoxy resin having at least two or more epoxy groups in the molecule, (b) a novolak type phenol resin, and (c) a novolak type phenolic resin having at least two or more epoxy groups in the molecule. A polyhydric phenol compound having a phenolic hydroxyl group (d) A curing catalyst (e) An adsorbent is an essential component, and 0.3 to 5.0 equivalents of components (b) + (c) are used per equivalent of component (a), and This is an epoxy resin composition for powder coating, characterized in that 0.1 to 0.8 equivalents of component (c) are blended per 1 equivalent of components (b)+(c). According to the present invention, reactivity, pot life, electrical properties, heat resistance, and mechanical strength can be balanced by using a specific polyhydric phenol compound in the system of epoxy resin, novolak type phenolic resin, and curing catalyst. By further incorporating an adsorbent, an epoxy resin composition for powder coating with less foaming and pinholes even when powder coated in a high temperature range is provided. The epoxy resin used as component (a) in the present invention has at least two or more epoxy groups in the molecule, and any type of epoxy resin can be used, and the epoxy resin has an epoxy equivalent of 160 to 160.
2000 is good. Specific examples of these epoxy resins include:
Bisphenol A type, bisphenol S type, bisphenol F type, phenol novolak type, cresol novolak type epoxy resin, glycidyl ether type epoxy resin, glycidyl ester type epoxy resin, glycidylamine type epoxy resin,
Cycloaliphatic epoxy resin, linear aliphatic epoxy resin,
Examples include heterocyclic epoxy resins, halogenated, especially brominated epoxy resins, and one or more selected from the group consisting of these resins are used. Preferably adhesion and heat resistance in powder coatings,
From the viewpoint of mechanical strength balance, it is preferable to use a novolak type epoxy resin and a glycidyl ether type epoxy resin. In particular, if the epoxy equivalent is
It is most preferable to use a phenol novolac type or cresol novolac type epoxy resin having an epoxy equivalent of 160 to 280 in combination with a glycidyl ether type epoxy resin having an epoxy equivalent of 400 to 2,000. The blending amount of component (a) epoxy resin is the same as component (b)
Novolac type phenolic resin and/or ingredients
(c) The hydroxyl equivalent of the total amount in a mixed system of one or more types of polyhydric phenol compounds and the epoxy equivalent of the total amount of component (a) in the mixed system of one or more types of epoxy resin. It is determined accordingly. Ingredient (a)
Components (b) + (c) are blended in an amount of 0.3 to 5.0 equivalents per equivalent, that is, hydroxyl equivalent/epoxy equivalent = 0.3 to 5.0, especially 0.9 to 3.0. If the blending ratio is less than 0.3, the effect of the phenolic resin as a powder coating cannot be obtained, and it is difficult to achieve a balance between fast curing properties and pot life stability. If the blending ratio exceeds 5.0, the cured product will be brittle, a cured coating film with sufficient properties will not be obtained, and the chemical resistance and solvent resistance will also be poor. Component (b) used in the present invention is a novolak type phenolic resin, preferably a novolak type phenolic resin having at least two or more phenolic hydroxyl groups in the molecule. Examples of such resins include novolac type phenolic resin obtained from monovalent phenol and formaldehyde, or novolac type phenolic resin obtained from polyvalent phenol and formaldehyde, or monovalent phenol substituted with the same alkyl group or aryl group. Polyhydric phenol is a novolak type phenolic resin obtained from bis-type polyhydric phenol and formaldehyde, and these have a softening point of 70 to 150.
℃, and a hydroxyl equivalent of 100 to 150 (degree of polymerization n=2 to 13). Specific examples include novolak type phenolic resin obtained from phenol and formaldehyde, novolak type cresol resin obtained from cresol and formaldehyde, novolak type bisphenol A resin, novolak type tert-butylphenol resin, and novolak type nonylphenol resin. and novolak type resorcinol resins. These can be used alone or in a mixed system of two or more. Among them, novolak type phenolic resin obtained from phenol and formaldehyde, novolak type bisphenol A
Most preferred are resins and novolac type tert-butylphenol resins. Component (c) used in the present invention is a polyhydric phenol compound having at least two or more phenolic hydroxyl groups in the molecule. This material is solid at room temperature. Specific examples include divalent phenol compounds such as catechol, resorcinol, and hydroquinone, trivalent phenol compounds represented by phloroglucinol, tert-butylhydroquinone, 2.5-di-tert-butylhydroquinone, methylhydroquinone, methylresorcinol, Substituted polyphenol compounds such as 4.6-di-tert-butylresorcinol, 2.2′-methylene-bis(4-methyl-6-tert-butylphenol,
Bisphenol A, bisphenol s, 3.3'-di-methylbisphenol A, bisphenol F,
1,1'-bis(4-hydroxyphenyl)-4-
These include bis-type polyhydric phenol compounds such as methylcyclohexane, trivalent phenol compounds typified by phloroglucinol, and brominated polyhydric phenol compounds typified by tetrabromobisphenol A. In the present invention, it is desirable that the softening point is in the range of 70 to 100°C. Among these, resorcinol, bisphenol A, and tetrabromobisphenol A are most preferred. These polyhydric phenol compounds can be used alone or in a mixed system of two or more. When thermosetting epoxy resins using only novolak type phenolic resins, it is difficult to maintain a balance between heat resistance and mechanical strength (impact resistance strength). It is possible to improve the mechanical strength without reducing properties, and furthermore, the reaction with the epoxy resin can proceed uniformly, and a thermoset product with a homogeneous structure can be obtained. The blending amount of the component (c) polyphenol compound is determined by the ratio of the epoxy equivalent of the epoxy resin used, the hydroxyl equivalent of the novolak type phenolic resin as a curing agent, and the hydroxyl equivalent of this polyphenol compound. be done. Components per equivalent of phenolic hydroxyl group in the total amount of component (b) novolac type phenolic resin and component (c) polyhydric phenol compound.
(c) The polyhydric phenol compound is blended so that the phenolic hydroxyl equivalent is 0.1 to 0.8. In particular, it is most preferable to blend the polyhydric phenol compound so that the hydroxyl equivalent is 0.3 to 0.6. If the hydroxyl equivalent of the polyhydric phenol compound is less than 0.1, the effect of improving the mechanical strength of the cured coating film in a novolac type phenolic resin curing system as a powder coating will not be sufficiently obtained, and if the hydroxyl equivalent is more than 0.8, the mechanical strength will not be improved. However, the heat resistance decreases and the desired effect cannot be obtained. Component (d) curing catalyst used in the present invention is:
It has the effect of promoting the reaction when the epoxy group of component (a) epoxy resin and each phenolic hydroxyl group of component (b) novolak type phenolic resin and component (c) polyhydric phenol compound undergo a thermosetting reaction. . The curing catalyst used as component (d) in the present invention includes commonly used imidazole, imidazoline, dicyandiamide and modified products thereof, as well as organic phosphine compounds, hexamethylenetetramine, piperidine and the like. Preferably, it is a mixed system of imidazole, imidazoline, or any one of modified products thereof and dicyandiamide. The blending amount of component (d) curing catalyst is preferably in the range of 0.01 to 10% by weight based on the total amount of component (a) epoxy resin, component (b) novolak type phenol resin, and component (c) polyhydric phenol compound. The reason for this is that if the blending amount is less than 0.01% by weight, the curing reaction will not be sufficiently accelerated and the effect of the blending will not be recognized.If the blending amount exceeds 10% by weight, the properties such as water resistance and chemical resistance of the cured product will deteriorate. This is because the pot life as a powder coating will be poor. The component (e) adsorbent used in the present invention is:
When the epoxy group of component (e) epoxy resin undergoes a thermosetting reaction with each phenolic hydroxyl group of component (b) novolak type phenolic resin and component (c) polyhydric phenol compound, moisture and low molecular volatilization generated by the reaction occur. It has the effect of adsorbing water-containing low-molecular volatile substances generated only by heat, not by chemical substances and/or reactions. Such adsorbents may be natural, semi-synthetic or synthetic, dried or undried, and may include silica gel, activated alumina and molecular sieves (crystalline zeolite-based, known by the general trade name Zeolum). Adsorbents) can be used. Among such adsorbents, the most preferred is a crystalline synthetic zeolite adsorbent, which has a high adsorption performance even in a relatively high temperature range and has a high temperature that releases the adsorbed substance once adsorbed. To give a specific example, in the crystalline synthetic zeolite adsorbent M2/nO・Al 2 o 3・xSiO 2・yH 2 o, the effective pore diameter of the crystal volume is 3 Å, which varies depending on the type of metal cation of M. Examples include 10 Å type Zeolum A-3, Molecular Sieves 3A, Zeolum-9, Molecular Sieves 13X, and the like. One type or two or more types selected from these groups may be used in a mixed system. The blending amount of such adsorbent is preferably within the range of 1.0 to 20% by weight. The reason is that the effect of the combination is not recognized when it is less than 1.0% by weight, and when it is added more than 20% by weight,
When the powder that has been made into a powder coating is placed in a hot and humid environment, it tends to become hygroscopic, and the low-molecular volatiles contained in the powder coating may not be sufficiently generated at the heating temperature during heat curing. This is because it is inconvenient. The epoxy resin composition for powder coatings of the present invention may further contain an inorganic filler and various additives in addition to the above-mentioned essential components. Examples of the inorganic filler include quartz glass powder, calcium silicate powder, calcium carbonate powder, crystalline silica powder, alumina powder, barium sulfate powder, etc., and one or more types selected from the group consisting of these. is used. The blending amount of such an inorganic filler must be selected depending on the type of epoxy resin, novolak type phenolic resin, polyhydric phenol compound, and inorganic filler used, but when used for powder coatings, the total composition The amount is preferably about 10 to 60% by weight. The particle size of the inorganic filler may be selected as appropriate. In addition, as additives, leveling agents such as acrylic acid oligomers, silicone-based/fluorine-based oligomers, butyral/cellulose polymers,
Coloring agents such as pigments are included, and these may be added and blended as appropriate depending on the purpose. To prepare the epoxy resin composition for powder coatings having the above composition, a conventional method may be used. For example, after mixing a raw material mixture of a predetermined amount using a mixer, etc., mixing treatment using a kneader, etc. This epoxy resin composition for powder coating can be easily obtained by performing a melt mixing treatment using an extruder or the like. (Effects of the Invention) The epoxy resin composition for powder coatings of the present invention can exhibit excellent properties and reliability when applied to insulation, coating, sealing, etc. of electrical parts and electronic parts. Among its excellent properties, firstly, compared to conventional novolac-type phenolic resin-cured epoxy resin compositions, the composition of the present invention does not cause foaming or pinhole formation during the process of powder coating, heat melting, and heat curing at high temperatures. There are almost no When applied to electrical and electronic parts, it can be cured in a shorter time than conventional products, and even when cured at low temperatures, the properties are significantly improved and reliability is improved. Second, the epoxy resin used in the composition of the present invention uses a mixed system of a novolac type phenol resin and a polyhydric phenol compound as a curing agent, so that a wider range of types can be selected compared to conventional ones. It is possible to balance various properties such as heat resistance, mechanical strength, and adhesiveness. Generally, when powder coatings are heated and melted during painting, low-molecular gases such as moisture, ammonia, carbon dioxide, olefins, alcohol, amines, and phenols are generated, and these low-molecular gases cause foaming and pin formation. However, with the composition of the present invention, foaming and pinholes can be suppressed by rapidly adsorbing the low molecular gas onto the adsorbent. In addition, the type and amount of low-molecular gas generated generally varies depending on the type and amount of the epoxy resin and novolac type phenolic resin used, as well as the curing catalyst, inorganic filler, etc. If the equivalent ratio becomes excessive, the amount of moisture generated by the reaction increases, but by adsorbing moisture to the adsorbent using the composition of the present invention, foaming and pinholes can be suppressed. (Examples of the Invention) The present invention will be explained in more detail by Examples, and comparative examples will also be shown. The present invention is not limited to the examples unless the gist thereof is exceeded.
In the examples, % means weight %. Examples 1 to 8 Bisphenol A type epoxy resin (epoxy resin A) with epoxy equivalent of 650, hydroxyl equivalent of 105, novolak type phenol resin (phenol resin A) with free phenol content of 0.05 to 0.2%, hydroxyl equivalent
105, novolac type phenolic resin with free phenol content of 5.0% (phenolic resin B), hydroxyl group equivalent
115, alkylphenol novolac resin with free phenol content of 0.5% (phenol resin C), synthetic zeolite adsorbent as adsorbent (adsorbent A, adsorbent B), activated alumina (adsorbent C), dicyandiamide as curing catalyst, 2-methylimidazole, phenolblock imidazole, silica powder, calcium carbonate powder as an inorganic filler,
An acrylic acid oligomer as an additive was premixed in the composition and proportions (parts by weight) shown in Table 1 to prepare an epoxy resin composition using an extruder. The equivalent ratio of hydroxyl groups/epoxy groups in each of the above compositions, that is, the ratio of the hydroxyl equivalents of the novolac type phenolic resin and the polyhydric phenol compound to the epoxy equivalents of the epoxy resin, and the curing catalyst,
The blending ratio of the adsorbent is shown in Table 2. Each of the above compositions was pulverized by a conventional method to obtain a particle size distribution suitable for powder coating to prepare a powder coating. The various physical properties of each of the prepared powder coatings were investigated and were as shown in Table 3. Third
The measurement and evaluation methods of physical properties in the table are as follows. Gel time is a matter related to curing properties, and the powder coating is applied on a hot plate at 150°C and the time (seconds) required for gelation is measured using a stopwatch. Solvent resistance is a matter related to curability. Powder coating is powder coated to a thickness of 0.3 to 0.4 mm on a 60 x 60 x 3.2 mm iron plate, heated and cured at 170°C for 10 minutes, and the cured product is coated with methyl ethyl ketone ( After soaking in MEK for 10 minutes at room temperature, check the softening state by pinching it with a needle. ◎: No damage at all, ○: Very slight damage, △:
Slight scratches, ×: Scratches. The appearance (visual) is related to foaming and pinholes in the paint film. The body is painted, and the state of foaming and pinholes on the surface of the paint film are visually observed. ◎: Foaming, no pinholes, ○: Foaming,
There are very few pinholes, △: Foaming, there are a few pinholes, ×: Foaming, there are pinholes. The specific gravity of the cured product is measured on a coating film cured by heating at 170°C for 10 minutes. The higher the specific gravity of the cured product, the less foaming and pinholes there will be. The withstand voltage (KV/mm) is 60 x 60 x 3.2 for powder coating.
Powder coated to a thickness of 0.3 to 0.4 mm on a steel plate of 170℃,
Measurement is performed on a coating film cured by heating for 10 minutes. The higher the withstand voltage value, the less foaming and pinholes there will be. Heat deformation humidity (°C) is determined by heating a 12.7 to 12.7 x 150 mm mold to 160 to 170 °C in advance and applying powder coating to it.
Sprinkle with water for 10 to 15 minutes, and heat to 170℃ after molding.
Heat and cure for 20 minutes, and measure the resulting cured product. The higher the heat deformation humidity value, the less foaming and pinholes. The impact resistance strength (cm) was measured using a Dupont impact tester using a test piece prepared under the same conditions as the test piece for measuring withstand voltage. Expressed in height (cm) at which no

【表】【table】

【表】【table】

【表】【table】

【表】 比較例 1〜7 上記実施例1〜8と同様に、第4表に示す組成
と第5表に示す当量比等を有するエポキシ樹脂組
成物を調製した。この各組成物から同様にして粉
体塗料を調製し、このものについて同様に諸物性
を調べたところ第6表のとおりであつた。物性の
測定法と評価法は前述したものと同様である。 比較例1〜3では、ノボラツク型フエノール樹
脂の種類と配合量を変え、また比較例4〜7では
ノボラツク型フエノール樹脂の種類と配合量、吸
着剤の種類と配合量を変えた。
[Table] Comparative Examples 1 to 7 Epoxy resin compositions having the compositions shown in Table 4 and the equivalent ratios shown in Table 5 were prepared in the same manner as in Examples 1 to 8 above. Powder coatings were prepared from each of these compositions in the same manner, and the physical properties of the coatings were examined in the same manner as shown in Table 6. The methods for measuring and evaluating physical properties are the same as those described above. In Comparative Examples 1 to 3, the type and amount of the novolak type phenolic resin were changed, and in Comparative Examples 4 to 7, the type and amount of the novolak type phenolic resin and the type and amount of the adsorbent were changed.

【表】【table】

【表】【table】

【表】【table】

【表】 上記実施例および比較例で使用した各成分の詳
細は下記の第7表に示すとおりである。
[Table] Details of each component used in the above Examples and Comparative Examples are shown in Table 7 below.

【表】【table】

Claims (1)

【特許請求の範囲】 1 下記成分(a)〜(e) (a) 分子内に少なくとも二つ以上のエポキシ基を
有するエポキシ樹脂 (b) ノボラツク型フエノール樹脂 (c) 分子内に少なくとも二つ以上のフエノール性
水酸基を有する多価フエノール化合物 (d) 硬化触媒 (e) 吸着剤 を必須成分とし、かつ、成分(a)1当量に対して成
分(b)+(c)を0.3〜5.0当量、そして成分(b)+(c)1当
量に対して成分(c)を0.1〜0.8当量配合することを
特徴とする粉体塗料用エポキシ樹脂組成物。 2 成分(a)が、エポキシ当量160〜2000を有する
ところの、エーテル型、エステル型、脂環式エポ
キシ樹脂、もしくは同ノボラツク型エポキシ樹
脂、または同これらのハロゲン化エポキシ樹脂で
ある特許請求の範囲第1項記載の粉体塗料用エポ
キシ樹脂組成物。 3 成分(b)が、軟化点70〜150℃、水酸基当量100
〜150(重合度n=2〜13)を有するところの、1
価フエノールとホルムアルデヒドとから得られる
ノボラツク型フエノール樹脂もしくは同多価フエ
ノールとホルムアルデヒドとから得られるノボラ
ツク型フエノール樹脂、または同アルキル基、ア
リール基で置換された1価フエノール、多価フエ
ノール、ビス型多価フエノールとホルムアルデヒ
ドとから得られるノボラツク型フエノール樹脂で
ある特許請求の範囲第1項記載の粉体塗料用エポ
キシ樹脂組成物。 4 成分(c)が、室温で固体であるところのアルキ
ル基、アリール基で置換され得る多価フエノール
化合物、ビス型多価フエノール化合物またはこれ
らの臭素化多価フエノール化合物である特許請求
の範囲第1項記載の粉体塗料用エポキシ樹脂組成
物。 5 成分(a)エポキシ樹脂のエポキシ基1当量に対
して、成分(b)ノボラツク型フエノール樹脂と成分
(c)多価フエノール化合物の合計量のフエノール性
水酸基当量が0.3〜5.0当量であり、そして成分(b)
ノボラツク型フエノール樹脂と成分(c)多価フエノ
ール化合物の合計量のフエノール性水酸基当量1
当量に対し成分(c)多価フエノール化合物のフエノ
ール性水酸基当量が0.1〜0.8である特許請求の範
囲第1項記載の粉体塗料用エポキシ樹脂組成物。 6 成分(d)硬化触媒の配合量が、成分(a)エポキシ
樹脂、成分(b)ノボラツク型フエノール樹脂及び成
分(c)多価フエノール化合物の総量に対して0.01〜
10重量%の範囲内にある特許請求の範囲第1項記
載の粉体塗料用エポキシ樹脂組成物。 7 成分(e)吸着剤の配合量が、成分(a)エポキシ樹
脂、成分(b)ノボラツク型フエノール樹脂、成分(c)
多価フエノール化合物及び必要ならば配合する無
機質充てん剤の総量に対して、1.0〜20.0重量%
の範囲内にある特許請求の範囲第1項記載の粉体
塗料用エポキシ樹脂組成物。
[Scope of Claims] 1 The following components (a) to (e) (a) Epoxy resin having at least two or more epoxy groups in the molecule (b) Novolak type phenol resin (c) At least two or more in the molecule A polyhydric phenol compound having a phenolic hydroxyl group (d), a curing catalyst (e), and an adsorbent as essential components, and 0.3 to 5.0 equivalents of components (b) + (c) per equivalent of component (a), An epoxy resin composition for a powder coating, characterized in that 0.1 to 0.8 equivalents of component (c) are blended per 1 equivalent of components (b)+(c). 2. Claims in which component (a) is an ether type, ester type, alicyclic epoxy resin, or novolak type epoxy resin, or a halogenated epoxy resin thereof, having an epoxy equivalent of 160 to 2000. The epoxy resin composition for powder coatings according to item 1. 3 Component (b) has a softening point of 70 to 150°C and a hydroxyl equivalent of 100
~150 (degree of polymerization n = 2 to 13),
Novolak-type phenolic resin obtained from polyvalent phenol and formaldehyde, or novolak-type phenolic resin obtained from polyvalent phenol and formaldehyde, or monovalent phenol, polyvalent phenol, or bis-type polyphenol substituted with the same alkyl group or aryl group. The epoxy resin composition for powder coatings according to claim 1, which is a novolak type phenolic resin obtained from a functional phenol and formaldehyde. 4. Component (c) is a polyphenol compound that can be substituted with an alkyl group or an aryl group, a bis-type polyphenol compound, or a brominated polyphenol compound thereof, which is solid at room temperature. The epoxy resin composition for powder coating according to item 1. 5 For 1 equivalent of epoxy group of component (a) epoxy resin, component (b) novolak type phenolic resin and component
(c) the phenolic hydroxyl equivalent of the total amount of polyhydric phenol compounds is 0.3 to 5.0 equivalents, and component (b)
Phenolic hydroxyl group equivalent of total amount of novolac type phenolic resin and component (c) polyhydric phenol compound 1
The epoxy resin composition for powder coatings according to claim 1, wherein the phenolic hydroxyl equivalent of component (c) the polyhydric phenol compound is from 0.1 to 0.8 relative to the equivalent. 6 The blending amount of component (d) curing catalyst is 0.01 to 0.01 to the total amount of component (a) epoxy resin, component (b) novolac type phenol resin, and component (c) polyhydric phenol compound.
The epoxy resin composition for powder coating according to claim 1, wherein the content is within the range of 10% by weight. 7 The blending amount of component (e) adsorbent is component (a) epoxy resin, component (b) novolak type phenolic resin, component (c)
1.0 to 20.0% by weight based on the total amount of polyhydric phenol compound and inorganic filler to be added if necessary
An epoxy resin composition for powder coatings according to claim 1, which falls within the scope of claim 1.
JP59188590A 1984-09-08 1984-09-08 Epoxy resin composition for powder coating Granted JPS6166762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59188590A JPS6166762A (en) 1984-09-08 1984-09-08 Epoxy resin composition for powder coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59188590A JPS6166762A (en) 1984-09-08 1984-09-08 Epoxy resin composition for powder coating

Publications (2)

Publication Number Publication Date
JPS6166762A JPS6166762A (en) 1986-04-05
JPH0257831B2 true JPH0257831B2 (en) 1990-12-06

Family

ID=16226326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59188590A Granted JPS6166762A (en) 1984-09-08 1984-09-08 Epoxy resin composition for powder coating

Country Status (1)

Country Link
JP (1) JPS6166762A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2598427B1 (en) * 1986-05-09 1988-06-03 Holden Europ Sa COMPOSITION BASED ON A PHENOLIC RESIN AND AN EPOXY RESIN FOR COATINGS, PARTICULARLY METALLIZED
AU615744B2 (en) * 1988-05-12 1991-10-10 Minnesota Mining And Manufacturing Company Powdered epoxy resin compositions
JPH03122113A (en) * 1989-10-06 1991-05-24 Somar Corp Imidazole compound-containing curing agent composition, production thereof and thermosetting epoxy resin composition
AU3190895A (en) * 1995-08-04 1997-03-05 Asahi Denka Kogyo Kabushiki Kaisha Curable epoxy resin composition which gives flexible cured aticle
EP0870790A1 (en) * 1995-08-04 1998-10-14 Asahi Denka Kogyo Kabushiki Kaisha Curable epoxy resin composition
JP3611383B2 (en) * 1995-12-14 2005-01-19 住友ベークライト株式会社 Resin composition for sealing electronic parts
US6778053B1 (en) * 2000-04-19 2004-08-17 General Electric Company Powder coated generator field coils and related method
JP2002020683A (en) * 2000-07-05 2002-01-23 Sumitomo Bakelite Co Ltd Epoxy resin powder coating
JP6392952B1 (en) 2017-08-10 2018-09-19 日本ペイント・インダストリアルコ−ティングス株式会社 Powder coating composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54151928A (en) * 1978-05-22 1979-11-29 Shell Int Research Phenol compound*its preparation and use for epoxy resin setting agent
JPS5653130A (en) * 1979-07-20 1981-05-12 Ciba Geigy Ag Hardenable epoxy resin mixture
JPS5879011A (en) * 1981-10-19 1983-05-12 チバ−ガイギ−・アクチエンゲゼルシヤフト Precursory solid epoxyresin
JPS5920321A (en) * 1982-07-28 1984-02-02 Mitsubishi Petrochem Co Ltd Epoxy resin composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54151928A (en) * 1978-05-22 1979-11-29 Shell Int Research Phenol compound*its preparation and use for epoxy resin setting agent
JPS5653130A (en) * 1979-07-20 1981-05-12 Ciba Geigy Ag Hardenable epoxy resin mixture
JPS5879011A (en) * 1981-10-19 1983-05-12 チバ−ガイギ−・アクチエンゲゼルシヤフト Precursory solid epoxyresin
JPS5920321A (en) * 1982-07-28 1984-02-02 Mitsubishi Petrochem Co Ltd Epoxy resin composition

Also Published As

Publication number Publication date
JPS6166762A (en) 1986-04-05

Similar Documents

Publication Publication Date Title
JPH03244626A (en) Epoxy resin powder composition
JPH0710958B2 (en) Epoxy resin powder coating suitable for slot insulation
JPH0257831B2 (en)
US3948849A (en) Adhesive compositions
KR100444409B1 (en) Epoxy resin composition
JPS62288670A (en) Powder coating compound composition of epoxy resin type
JPS6088079A (en) Powdered epoxy resin paint composition
JPS60115622A (en) Epoxy resin composition
KR20110080418A (en) Resin composition for no-flow underfill, no-flow underfill fim using the same and manufacturing method thereof
RU2710557C1 (en) Thermosetting two-component epoxy resin
US3094498A (en) Resinous compositions
KR960015971B1 (en) Epoxy resin powder coating composition
JPH111604A (en) Thermosetting resin composition
JPH11158349A (en) Thermosetting resin composition and molded product using the same
JPH02117913A (en) Epoxy resin composition
JPS59164321A (en) Epoxy resin composition
JPH0223584B2 (en)
JPS6146020B2 (en)
JPH02206667A (en) Powdery coating composition for sealing electrical and electronic part
JPH03139509A (en) Powdery resin composition
JPS6135237B2 (en)
JPH0320350A (en) Epoxy resin composition
JPH01259075A (en) Epoxy resin-based powder composition
JP3173629B2 (en) Epoxy resin composition and cured product thereof
JPS63230780A (en) Powdered epoxy resin coating material suitable for slot insulation