JPH0257219A - Dough-making machine for baking-process - Google Patents

Dough-making machine for baking-process

Info

Publication number
JPH0257219A
JPH0257219A JP20913088A JP20913088A JPH0257219A JP H0257219 A JPH0257219 A JP H0257219A JP 20913088 A JP20913088 A JP 20913088A JP 20913088 A JP20913088 A JP 20913088A JP H0257219 A JPH0257219 A JP H0257219A
Authority
JP
Japan
Prior art keywords
dough
temperature
container
vessel
bread
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20913088A
Other languages
Japanese (ja)
Inventor
Genichiro Kono
源一郎 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba AVE Co Ltd
Original Assignee
Toshiba Corp
Toshiba Audio Video Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Audio Video Engineering Co Ltd filed Critical Toshiba Corp
Priority to JP20913088A priority Critical patent/JPH0257219A/en
Publication of JPH0257219A publication Critical patent/JPH0257219A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To effectively cool dough even when room temperature is high by providing a thermoelectric transducer electrified for cooling the dough when the dough temperature detected by a dough temperature-detecting device in a vessel reaches a temperature above a desired value. CONSTITUTION:After dough materials, such as flour, water, etc., are thrown into a vessel 5, when a starting switch 20 is turned on, a motor 3 is started since a relay-actuating circuit 25 is closed, and an agitating process, in which the dough material are agitated and mixed by an impeller 6, is started. When the dough temperature detected by a dough temperature-detecting device 8 reaches a temperature above 30 deg.C, since a relay-actuating circuit 27 is closed by a signal from a microcomputer 19 to electrify a first thermoelectric transducer 14, a flange part 11a of a heat transfer member 11 is cooled and then the dough in the vessel 5 is gradually cooled by the bottom part of the vessel 5 through the heat transfer member 11. As a result of this, the dough temperature starts to decrease, and the agitating process is operated while it is maintaining, for example, at a temperature below 32 deg.C, and then shifted to the next fermenting process.

Description

【発明の詳細な説明】 [発明の口内] (産業上の利用分野) 本発明は容器内に収容したパン生地原料の混練及び発酵
等の行程を順次行うようにしたパン生地製造機に関する
DETAILED DESCRIPTION OF THE INVENTION [Invention] (Industrial Application Field) The present invention relates to a bread dough making machine that sequentially performs steps such as kneading and fermentation of bread dough raw materials stored in a container.

(従来の技術) この種のパン生地製造機としては、例えば家庭用のパン
製造機がある。これは容器の内底部にインペラを設けて
モータで回転駆動できるようにすると共に、容器の外底
部に焼き上げ用のヒータを配置した構成で、その容器内
にパン生地原料を収容してこれをインペラにて混練し、
その後その容器内で混練後のパン生地を発酵させ、最後
にヒータにて容器内のパン生地を焼き上げるようになっ
ている。
(Prior Art) This type of bread dough making machine includes, for example, a home-use bread making machine. This has a configuration in which an impeller is installed at the inner bottom of the container so that it can be rotated by a motor, and a heater for baking is placed at the outer bottom of the container. Knead with
Thereafter, the kneaded bread dough is fermented in the container, and finally the bread dough in the container is baked using a heater.

ところで、パン生地の発酵状態はその温度により大きな
影響を受け、高くとも約35℃以下に抑えることがより
良い発酵状態を得る上で好ましいことが知られている。
By the way, the fermentation state of bread dough is greatly affected by its temperature, and it is known that it is preferable to keep the temperature below about 35°C at the most in order to obtain a better fermentation state.

このため、特に夏期におけるパン生地の温度の過剰な上
昇を防止すべく、パン生地原料の混練時にファンを運転
して容器内に風を送り込むことによりパン生地を冷却す
る構成が考えられている。
For this reason, in order to prevent the temperature of the bread dough from rising excessively, especially in the summer, a configuration has been considered in which a fan is operated to blow air into the container during kneading of the bread dough raw materials to cool the bread dough.

(発明が解決しようとする課題) しかしながら、上記構成では風による冷却にのみ依存し
ているから、十分な冷却性を得ることができず、特に夏
期等の高室温時には発酵に適する温度を越えて温度上昇
を来たすことがあるという欠点があった。
(Problem to be solved by the invention) However, since the above configuration relies only on cooling by wind, sufficient cooling performance cannot be obtained, and the temperature exceeds the temperature suitable for fermentation, especially at high room temperatures such as in summer. It has the disadvantage that it may cause a rise in temperature.

[発明のf+s’を成] (課題を解決するための手段) 本発明のパン生地製造機は、容器内のパン生地温度を検
出するための生地温検出素子と、この生地温検出素子に
より検出されたパン生地温度が所定値以上となったこと
を条件にパン生地を冷却すべく通電される熱雷変換素子
とを設けたところに特徴を有するものである。
[Comprising f+s' of the invention] (Means for solving the problem) The bread dough making machine of the present invention includes a dough temperature detection element for detecting the dough temperature in the container, and a dough temperature detection element for detecting the dough temperature in the container. The device is characterized in that it is equipped with a thermal lightning conversion element that is energized to cool the bread dough when the dough temperature reaches a predetermined value or higher.

(作用) 例えばパン生地原料の混練中にパン生地温度が上昇して
生地温検出素子により検出される温度か所定値以上にな
ると、これを条件に熱電変換素、子に通電されてパン生
地が発酵に適した温度に維持される。
(Function) For example, when the temperature of the dough rises during kneading of bread dough raw materials and exceeds the temperature detected by the dough temperature detection element or a predetermined value, under this condition, the thermoelectric conversion element is energized and the dough is suitable for fermentation. temperature is maintained.

(実施例) 以下本発明の一実施例につき図面を参照して説明する。(Example) An embodiment of the present invention will be described below with reference to the drawings.

まず全体的構成は第1図に示す通りで、外枠1は上面を
開放せる角筒状をなすと共にその内部に内枠2及びモー
タ3が固定され、開放上面は蓋4により開閉可能にされ
ている。内枠2内にはやはり上面を開放した角筒状をな
す容器5が出し入れ可能に収容され、これはその外底部
に設けた取付脚部5aを介するバヨネット方式にて内枠
2の内底部に芒脱可能である。この容器5の底部にはイ
ンペラ6が台脱可能に設けられ、容器5の装置q状態で
モータ3の回転軸3aに連結される。
First, the overall configuration is as shown in FIG. 1. An outer frame 1 has a rectangular tube shape with an open top surface, and an inner frame 2 and a motor 3 are fixed inside the outer frame 1. The open top surface can be opened and closed by a lid 4. ing. Inside the inner frame 2, a rectangular cylindrical container 5 with an open top surface is accommodated so that it can be taken in and out, and is attached to the inner bottom of the inner frame 2 by a bayonet method via a mounting leg 5a provided at the outer bottom. It is possible to remove the awn. An impeller 6 is removably provided at the bottom of the container 5, and is connected to the rotating shaft 3a of the motor 3 when the container 5 is in the device q state.

一方、内枠2の内部下方にはヒータ7が設けられると共
に、内枠2の側壁部にはサーミスタにより構成した生地
温検出索子8が設けられている。
On the other hand, a heater 7 is provided inside and below the inner frame 2, and a fabric temperature detection cord 8 constituted by a thermistor is provided on the side wall of the inner frame 2.

この生地温検出素子8は保護キャップ8a内に収容され
てばね9により容器5の側壁に常時接触するように構成
され、容器5の側壁を介して間接的に検出されたパン生
地の温度情報が制御回路10に与えられる。
This dough temperature detection element 8 is housed in a protective cap 8a and is configured to be in constant contact with the side wall of the container 5 by a spring 9, and temperature information of the dough indirectly detected through the side wall of the container 5 is controlled. applied to circuit 10.

さて、上記した内枠2の底部中央には円形穴2aが形成
され、これを貫通して伝熱部材11が設けられている。
Now, a circular hole 2a is formed in the center of the bottom of the inner frame 2 described above, and the heat transfer member 11 is provided passing through this.

この伝熱部材11は下部に鍔部】1aをHする二重筒状
をなすと共に、上端部に容器5の外底面に接触する平坦
面部11bを有する形態で、内枠2の底部に下向きに突
設されたガイドビン12に鍔部11aが上下動可能に取
付けられている。また、このガイドピン12にはコイル
ばね13か設けられ、これにより伝熱部材11を平坦面
部11bが容器5の外底面に圧接するように上方に付勢
している。そして、この伝熱部材11の鍔部11aの下
面には、第1及び第2の熱電変換素子14.15が取り
付けられ、一方は冷却用として、他方は加熱用として機
能するようにされている。尚、この熱雷変換素子14.
15は第2図に示すように、N型半導体16とP型半導
体17とを電気伝導体18を介して交互に直列接続した
周知の構成で、熱交換用のフィン14a、15aを備え
ると共に、所定方向に電流を流すことにより例えば図中
上側で発熱が下側で吸熱が生じ、その逆方向に電流を流
すことにより逆に下側で発熱が上側で吸熱が生ずるよう
になっている。
This heat transfer member 11 has a double cylindrical shape with a flange 1a at the lower part and a flat surface part 11b at the upper end that contacts the outer bottom surface of the container 5, and has a flat surface part 11b that contacts the outer bottom surface of the container 5. A collar portion 11a is attached to a protruding guide bin 12 so as to be movable up and down. The guide pin 12 is also provided with a coil spring 13, which urges the heat transfer member 11 upward so that the flat surface portion 11b comes into pressure contact with the outer bottom surface of the container 5. First and second thermoelectric conversion elements 14.15 are attached to the lower surface of the flange 11a of the heat transfer member 11, one of which functions for cooling and the other for heating. . Incidentally, this thermal lightning conversion element 14.
As shown in FIG. 2, 15 has a well-known configuration in which an N-type semiconductor 16 and a P-type semiconductor 17 are alternately connected in series via an electric conductor 18, and is equipped with fins 14a and 15a for heat exchange. By passing a current in a predetermined direction, for example, heat is generated at the upper side of the figure and heat is absorbed at the lower side, and by passing a current in the opposite direction, heat is generated at the lower side and endotherm is absorbed at the upper side.

また、制御回路10を詳細に示すと第3図の通りで、基
本的にはマイクロコンピュータ−19を中心としてモー
タ3、ヒータ7、第1及び第2の熱電変換素子14.1
5が通断電制御される構成で、マイクロコンピュータ−
19にはスタートスイッチ20、ストップスイッチ21
及び生地温検出素子8からの信号が与えられる。同図中
、22は制御回路用の電源トランス、23はブリッジ整
流回路、24は定電圧回路、25〜28はリレー駆動回
路である。
The control circuit 10 is shown in detail in FIG. 3, and basically consists of a microcomputer 19, a motor 3, a heater 7, and first and second thermoelectric conversion elements 14.1.
5 is controlled to be energized and disconnected, and the microcomputer
19 has a start switch 20 and a stop switch 21
and a signal from the fabric temperature detection element 8. In the figure, 22 is a power transformer for the control circuit, 23 is a bridge rectifier circuit, 24 is a constant voltage circuit, and 25 to 28 are relay drive circuits.

次に、本実施例の作用について述べる。容器5内に小麦
粉、水、その他のパン生地原料を投入し、スタートスイ
ッチ20をオン操作するとリレー駆動回路25の作動に
よりモータ3が運転され、インペラ6にてパン生地原料
を攪拌・混練する「混線行程」が開始される。ここで、
今、室温が30℃以上にもなるような夏期であったとす
ると、「混線行程」の開始当初から、パン生地温度が発
酵適温の上限に近い30℃程度になってしまうことがあ
る。このような事態は、汲み置き水を使用する等、容器
5内に投入される水の温度が室温に近くなっている場合
に生じ易い。しかも、「混線行程」が実行されると、パ
ン生地は摩擦熱により温度上昇傾向を来たす。すると、
本実施例では生地温検出素子8により検出される生地温
度が30℃以上になったところでマイクロコンピュータ
−19からの信号に基づきリレー駆動回路27が作動し
、第1の熱雷変換素子14に通電される。これにより第
1の熱雷変換索子14によって伝熱部材11の鍔部11
aが冷却され、ひいては伝熱部材11を介して容器5底
部、更には容器5内の、(ン生地が次第に冷却されるよ
うになる。この結果、第5図に示すようにパン生地の温
度は低下し始め、それが例えば32℃以下に維持されな
がら「混練行程」が実行され、その後「発酵行程」に移
行する。同図には、仮に第1の熱電変換素子14に通電
しなかった場合に描くであろう温度上昇曲線が一点鎖線
で記入しである。これでは、「混線行程」の摩擦熱によ
る温度上昇によって、)くン生地温度が発酵適温を越え
てしまうことが示されている。
Next, the operation of this embodiment will be described. When flour, water, and other bread dough raw materials are put into the container 5 and the start switch 20 is turned on, the motor 3 is operated by the relay drive circuit 25, and the impeller 6 stirs and kneads the bread dough raw materials. ' is started. here,
If we are currently in summer when the room temperature is over 30 degrees Celsius, the dough temperature may drop to about 30 degrees Celsius, which is close to the upper limit of the suitable temperature for fermentation, from the beginning of the "cross-tracking process." Such a situation is likely to occur when the temperature of the water introduced into the container 5 is close to room temperature, such as when pumped water is used. Moreover, when the "mixing process" is performed, the temperature of the dough tends to rise due to frictional heat. Then,
In this embodiment, when the dough temperature detected by the dough temperature detection element 8 reaches 30°C or more, the relay drive circuit 27 is activated based on a signal from the microcomputer 19, and the first thermal lightning conversion element 14 is energized. be done. As a result, the first thermal lightning conversion cord 14 causes the flange 11 of the heat transfer member 11 to
a is cooled, and as a result, the bottom of the container 5 and further the dough inside the container 5 are gradually cooled via the heat transfer member 11.As a result, the temperature of the dough decreases as shown in FIG. The "kneading process" is carried out while maintaining the temperature below, for example, 32°C, and then the "fermentation process" begins.The figure shows a case where the first thermoelectric conversion element 14 is not energized. The temperature rise curve that would be drawn in is shown as a dot-dash line.This shows that the temperature of the dough exceeds the suitable temperature for fermentation due to the temperature rise due to the frictional heat of the "cross-tracking process". .

次の「発酵行程」では、生地温検出素子8により検出さ
れるパン生地の温度が発酵適温となるようにヒータ7を
間欠通電する等によって温度調節がされ、その後、モー
タ3に通電してインペラ6を回転させる「ガス抜き行程
」か実行され、「発酵行程」が再度繰り返されて「焼き
行程」に移る。
In the next "fermentation process," the temperature of the dough detected by the dough temperature detection element 8 is adjusted by intermittently energizing the heater 7 so that it reaches the appropriate temperature for fermentation.Then, the motor 3 is energized and the impeller 6 The ``gas degassing process'' is performed by rotating the , the ``fermentation process'' is repeated again, and the process moves on to the ``baking process.''

この「焼き行程」では、ヒータ7が連続的に通電され、
200℃前後の温度で発酵後のパン生地が焼き上げられ
る。そして、「焼き行程」が終了して「保温行程」に移
行した後、第1の熱雷変換素子14が再度通電されて焼
き上がったパンが冷却され、その取り出しが容易にされ
る。
In this "baking process", the heater 7 is continuously energized,
The fermented dough is baked at a temperature of around 200°C. After the "baking process" is completed and the transition to the "warming process" begins, the first thermal lightning conversion element 14 is energized again to cool the baked bread and facilitate its removal.

一方、室温が低い冬期には、第5図に示すように「混練
行程」当初のパン生地温度は0℃に近くなっていること
がある。この場合には、「混練行程」で発生する摩擦熱
のみではパン生地の温度か発酵適温にまで上昇しない。
On the other hand, in winter when the room temperature is low, the dough temperature at the beginning of the "kneading process" may be close to 0°C, as shown in FIG. In this case, the temperature of the bread dough does not rise to the appropriate temperature for fermentation due to the frictional heat generated in the "kneading process" alone.

そこで、「混練行程」において生地温検出素子8により
検出される温度が例えば10℃以下の場合には、ヒータ
7及び第2の熱電変換素子15が通電され、パン生地か
加熱されて例えば27℃以上に維持される。また「保温
行程」では、第20熱電変換素子15に通電して焼き上
がったパンが冷たくなってしまうことかないようにして
いる。その池の各行程は、上記した夏期におけるものと
同様である。
Therefore, when the temperature detected by the dough temperature detection element 8 in the "kneading process" is, for example, 10°C or lower, the heater 7 and the second thermoelectric conversion element 15 are energized, and the dough is heated to, for example, 27°C or higher. will be maintained. Furthermore, in the "warming process", electricity is supplied to the 20th thermoelectric conversion element 15 to prevent the baked bread from becoming cold. Each trip through the pond is similar to that described above during the summer season.

このように本実施例によれば、気温の如何にかかわらず
パン生地の温度を適切に維持することができる。しかも
、熱電変換素子14.15により温度調節を行うもので
あるから、応答性に優れ、発酵に最適な温度条件を得る
ことが可能になる。
As described above, according to this embodiment, the temperature of the bread dough can be maintained appropriately regardless of the temperature. Moreover, since the temperature is controlled by the thermoelectric conversion elements 14 and 15, the responsiveness is excellent and it is possible to obtain the optimum temperature conditions for fermentation.

これにて、パン生地を良好に発酵させることができ、美
味しいパンを製造することができるものである。
With this, bread dough can be fermented well and delicious bread can be produced.

尚、上記実施例では第1及び第2の熱電変換素子14.
15を設けて、冷却及び加熱を個別の素子で行イ)せる
ようにしたが、本発明はこれに限らず、1この熱電変換
素子をその通電方向を切り替えることにより冷却用及び
加熱用に使い分けるようにしても良い。また、加熱は焼
き上げ用のヒータ7を利用することとし、冷却のみのた
めに熱電変換素子を設けることとしてもよい。その他、
本発明は上記し且つ図面に示す実施例に限定されるもの
ではなく、「混練行程jから「焼き行程」までを一連に
実行するタイプのパン製造機に限らず、例えば「混線行
程」と「発酵行程」のみを行うタイプのパン製造機に適
用しても良い等、要旨を逸脱しない範囲内で種々変形し
て実施することができる。
Note that in the above embodiment, the first and second thermoelectric conversion elements 14.
15 is provided so that cooling and heating can be performed by separate elements (a), but the present invention is not limited to this. 1 This thermoelectric conversion element can be used for cooling and heating by switching the current direction. You can do it like this. Further, heating may be performed by using a baking heater 7, and a thermoelectric conversion element may be provided only for cooling. others,
The present invention is not limited to the embodiments described above and shown in the drawings, and is not limited to the type of bread making machine that executes a series of processes from the kneading process j to the baking process. Various modifications can be made without departing from the spirit of the invention, such as applying it to a type of bread making machine that only performs a fermentation process.

[発明の効果コ 本発明は以上述べたように、高室温時でも熱雷変換素子
に通電することによりパン生地を効果的に冷却すること
ができるから、それを適温に維持することができるとい
う優れた効果を奏するものである。
[Effects of the Invention] As described above, the present invention has the advantage of being able to effectively cool bread dough by energizing the thermal lightning conversion element even at high room temperatures, thereby maintaining it at an appropriate temperature. It has the following effects.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示し、第1図は全体の縦断面
図、第2図は熱電変換素子の概略的拡大゛断面図、第3
図は全体の電気回路図、第4図は高室温時におけるパン
生”地の温度変化を示す工程図、第5図は低室温時にお
けるパン生地の温度変化を示す工程図である。 図面中、5は容器、6はインペラ、7はヒータ、8は生
地’IAK出素子、11は伝熱部材、14は第1の熱電
変換素子、 5は第2の熱電変換素子で ある。
The drawings show one embodiment of the present invention, in which FIG. 1 is a longitudinal cross-sectional view of the whole, FIG. 2 is a schematic enlarged cross-sectional view of a thermoelectric conversion element, and FIG.
The figure is an overall electrical circuit diagram, Figure 4 is a process diagram showing the temperature change of the bread dough at a high room temperature, and Figure 5 is a process diagram showing the temperature change of the bread dough at a low room temperature. 5 is a container, 6 is an impeller, 7 is a heater, 8 is a dough'IAK element, 11 is a heat transfer member, 14 is a first thermoelectric conversion element, and 5 is a second thermoelectric conversion element.

Claims (1)

【特許請求の範囲】[Claims] 1、容器内に収容したパン生地原料の混練及び発酵等の
行程を順次行うようにしたものにおいて、容器内のパン
生地温度を検出するための生地温検出素子と、この生地
温検出素子により検出されたパン生地温度が所定値以上
となったことを条件に前記パン生地を冷却すべく通電さ
れる熱電変換素子とを設けたことを特徴とするパン生地
製造機。
1. In a device that sequentially performs processes such as kneading and fermentation of bread dough raw materials stored in a container, there is a dough temperature detection element for detecting the dough temperature in the container, and a temperature detected by this dough temperature detection element. A bread dough making machine comprising: a thermoelectric conversion element that is energized to cool the bread dough on condition that the temperature of the bread dough reaches a predetermined value or higher.
JP20913088A 1988-08-23 1988-08-23 Dough-making machine for baking-process Pending JPH0257219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20913088A JPH0257219A (en) 1988-08-23 1988-08-23 Dough-making machine for baking-process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20913088A JPH0257219A (en) 1988-08-23 1988-08-23 Dough-making machine for baking-process

Publications (1)

Publication Number Publication Date
JPH0257219A true JPH0257219A (en) 1990-02-27

Family

ID=16567782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20913088A Pending JPH0257219A (en) 1988-08-23 1988-08-23 Dough-making machine for baking-process

Country Status (1)

Country Link
JP (1) JPH0257219A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02119817A (en) * 1988-10-28 1990-05-07 Matsushita Electric Ind Co Ltd Automatic bread making machine
US5588353A (en) * 1995-07-18 1996-12-31 Appliance Development Corp. Automatic bread-making apparatus
CN105534341A (en) * 2016-02-05 2016-05-04 新麦机械(无锡)有限公司 Cake beating planetary stirrer with frequency converter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02119817A (en) * 1988-10-28 1990-05-07 Matsushita Electric Ind Co Ltd Automatic bread making machine
US5588353A (en) * 1995-07-18 1996-12-31 Appliance Development Corp. Automatic bread-making apparatus
CN105534341A (en) * 2016-02-05 2016-05-04 新麦机械(无锡)有限公司 Cake beating planetary stirrer with frequency converter

Similar Documents

Publication Publication Date Title
KR910002159B1 (en) Apparatus for baking
KR890003123B1 (en) Automatic bread baking machine
CN106343896A (en) High-efficiency and energy-saving baking pan
JP2000116526A (en) Automatic bread maker
JPH0257219A (en) Dough-making machine for baking-process
CN104602579A (en) Automatic bread making machine
KR900007852B1 (en) Dough kneader
JPH11113498A (en) Apparatus for producing ice cream
CN108514332B (en) Coffee processing method, control device and coffee machine
US2020946A (en) Refrigerating device
KR100585338B1 (en) Device for manufactyring and storing yogurt by using thermoelectric element
JPH054889U (en) Fermented milk preparation equipment
JPH0341618Y2 (en)
EP3782521B1 (en) Method and storage medium for drying food processor, and food processor
JPH0577404B2 (en)
JPS58158432A (en) Cooking utensil
CN214032516U (en) Production mango essence is enzymolysis reation kettle for flavouring agent
CN209437069U (en) A kind of infant's diatery supplement constant temperature agitating device
JPH0538689Y2 (en)
JPS63133934A (en) Bread making method
JPH0126966Y2 (en)
JPH0242156Y2 (en)
JPH0534613Y2 (en)
JPH02307413A (en) Kneading device
JPS583510Y2 (en) bread baking equipment