JPH0256017B2 - - Google Patents

Info

Publication number
JPH0256017B2
JPH0256017B2 JP57020140A JP2014082A JPH0256017B2 JP H0256017 B2 JPH0256017 B2 JP H0256017B2 JP 57020140 A JP57020140 A JP 57020140A JP 2014082 A JP2014082 A JP 2014082A JP H0256017 B2 JPH0256017 B2 JP H0256017B2
Authority
JP
Japan
Prior art keywords
braking resistor
power system
rotational speed
stability
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57020140A
Other languages
Japanese (ja)
Other versions
JPS58139647A (en
Inventor
Toshiichi Shimojo
Kaoru Koyanagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57020140A priority Critical patent/JPS58139647A/en
Publication of JPS58139647A publication Critical patent/JPS58139647A/en
Publication of JPH0256017B2 publication Critical patent/JPH0256017B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

【発明の詳細な説明】 発明の技術分野 本発明は制動抵抗器の投入・開放制御を繰り返
し行なつて、電力系統の安定度を向上させ得るよ
うにした制動抵抗器の制御方式に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a braking resistor control method that repeatedly controls closing and opening of a braking resistor to improve the stability of an electric power system.

発明の技術的背景 近年、電力系統の拡大、発電ユニツトの大容量
化と共に、電源立地点の入手難、送電ルートの確
保難等の技術的、社会的要因から大容量かつ長距
離送電が必要となり、これに伴なつて電力系統の
安定運用問題がクローズアツプされてきている。
そして、この電力系統の安定度向上対策として
種々のものが提案されているが、ここではその一
つとして制動抵抗の電力系統への導入による方式
について述べる。
Technical background of the invention In recent years, along with the expansion of electric power systems and the increase in the capacity of power generation units, large-capacity and long-distance power transmission has become necessary due to technical and social factors such as difficulty in obtaining power supply locations and difficulty in securing power transmission routes. Along with this, the issue of stable operation of power systems has become a focus of attention.
Various measures have been proposed to improve the stability of this power system, and here we will discuss one method that involves introducing a braking resistor into the power system.

一般に、電力系統に短絡・地絡等の系統故障が
発生すると、発電機出力は瞬間的に減少する。し
かし、電力系統内の発電機への機械的入力トルク
は故障発生直後は不変であり、しかも急速には制
御することができない。このため、発電機出力の
減少分が発電機回転子の機械的運動エネルギーと
して吸収され、そのまま放置すると脱調現象に至
ることもある。
Generally, when a system failure such as a short circuit or ground fault occurs in the power system, the generator output decreases instantaneously. However, the mechanical input torque to the generators in the power system remains unchanged immediately after a fault occurs and cannot be controlled rapidly. Therefore, the decrease in the generator output is absorbed as mechanical kinetic energy of the generator rotor, and if left as is, it may lead to a step-out phenomenon.

そこで、このような場合発電機端子或いはその
近辺に制動抵抗器を設置し、故障発生直後にこれ
を電力系統へ投入して発電機回転子への加速エネ
ルギーに相当する電力を吸収、消費させれば、発
電機は脱調に至らず電力系統の安定を確保するこ
とができる。
Therefore, in such cases, it is recommended to install a braking resistor at or near the generator terminal and input it to the power grid immediately after a failure occurs to absorb and consume power equivalent to the acceleration energy to the generator rotor. For example, the generator does not go out of step and the stability of the power system can be ensured.

一方、この場合従来の制御方式においては制動
抵抗器は故障発生直後に1回だけ投入され、相差
角揺動の第1波の過渡安定度に寄与するものであ
り、第1波の安定度が確保された後は電力系統に
内在する発電機のAVR等の種々の制動効果によ
つて系統動揺は次第に収束してゆく。
On the other hand, in this case, in the conventional control method, the braking resistor is turned on only once immediately after the occurrence of a failure, and contributes to the transient stability of the first wave of phase difference angle fluctuation; Once this is achieved, the system fluctuations will gradually subside due to various braking effects such as the AVR of the generators within the power system.

背景技術の問題点 然乍ら、当該系統が外部系統と比較的送電容量
の弱い連系線(長距離線、数少ない回線等)で連
系されているような場合には、系統動揺の長周期
成分が励起されかつその収束が遅くなるという傾
向がある。そのため、上述したような従来の制御
方式においては、系統故障発生による相差角動揺
の第1波の過渡安定度は確保されるものの、その
後長周期の系統動揺が長時間収束しないこととな
り、電力系統の安定運用上好ましくない。
Problems with the Background Art Naturally, if the system is connected to an external system through interconnection lines with relatively weak power transmission capacity (long-distance lines, few lines, etc.), long periods of system fluctuations may occur. There is a tendency for components to be excited and their convergence to be slow. Therefore, in the conventional control method as described above, although the transient stability of the first wave of phase difference angle oscillation due to the occurrence of a system failure is ensured, the long-period system oscillation does not converge for a long time after that, and the power system This is not desirable in terms of stable operation.

発明の目的 本発明は上記のような事情に鑑みて成されたも
ので、その目的は電力系統の重大故障に対する相
差角動揺の第1波の過渡安定度の向上と共に第2
波以降の系統の周波数動揺を早期に収束させるこ
とができる制動抵抗器の制御方式を提供すること
にある。
Purpose of the Invention The present invention has been made in view of the above-mentioned circumstances, and its purpose is to improve the transient stability of the first wave of phase difference angle fluctuation in response to a major failure in the power system, as well as to improve the transient stability of the second wave.
An object of the present invention is to provide a control method for a braking resistor that can quickly converge frequency fluctuations in a system after a wave.

発明の概要 上記目的を達成するために本発明では、電力系
統にその安定度を脅かす重大故障が発生した場
合、制動抵抗器を系統へ投入して電力系統の安定
を確保するようなものにおいて、上記重大故障が
発生した際に、上記電力系統内で運転される回転
機の回転数の変動に応じて、上記制動抵抗器の投
入・開放の制御を繰り返し行なうようにしたこと
を特徴とする。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a device that secures the stability of the power system by inserting a braking resistor into the power system when a serious failure that threatens the stability of the power system occurs. The present invention is characterized in that when the serious failure occurs, the braking resistor is repeatedly controlled to close and open in response to fluctuations in the rotational speed of a rotating machine operated within the power system.

また、上記において特に第1波の過渡安定度確
保の際の制動抵抗器容量と、第2波以降の系統周
波数動揺抑制の際の制動抵抗器容量とを異ならせ
る、すなわち制動抵抗器容量を可変し得るように
したことを特徴とする。
In addition, in the above, the braking resistor capacity when securing transient stability of the first wave is different from the braking resistor capacity when suppressing system frequency fluctuations from the second wave onwards, that is, the braking resistor capacity is variable. It is characterized by being made possible.

発明の実施例 以下、本発明を図面に示す一実施例について説
明する。第1図は、本発明による制動抵抗器の制
御方式の構成例を示すものである。図において1
は電力系統、2は制動抵抗器の設置される母線、
3はしや断器、4はしや断器3の投入、開放によ
つて母線2に対する接続、切離しが行なわれる制
動抵抗器である。また、5は母線2に接続される
線路の電流を検出する変流器、6は母線2の電圧
を検出する変圧器、7は変流器5、変圧器6によ
り検出した電流、電圧を入力とし、電力を合成し
てその電力に比例した電圧を出力とする電力変換
器である。
Embodiment of the Invention Hereinafter, an embodiment of the present invention shown in the drawings will be described. FIG. 1 shows an example of the configuration of a braking resistor control method according to the present invention. In the figure 1
is the power system, 2 is the bus bar where the braking resistor is installed,
3 is a braking resistor, and 4 is a braking resistor that is connected to and disconnected from the bus bar 2 by closing and opening the arm and breaker 3. In addition, 5 is a current transformer that detects the current of the line connected to the bus 2, 6 is a transformer that detects the voltage of the bus 2, and 7 is the input of the current and voltage detected by the current transformer 5 and transformer 6. This is a power converter that combines electric power and outputs a voltage proportional to the combined electric power.

一方、9は上記電力系統1に接続され運転され
る代表的な回転機であるタービン発電機、10は
タービン発電機9の回転軸に取付けられたターニ
ングギア等の歯車、11は歯車10の回転数を検
出する電磁ピツクアツプ、12は電磁ピツクアツ
プ11の出力信号11aを入力とし、2種の回転
数信号を出力する詳細を後述する計測装置、13
は計測装置12からの出力信号を送信する送信
器、14は送信器13からの送信信号を受信する
受信器、16は上記電力変換器7の出力圧7aお
よび受信器14からの回転数信号14aを入力信
号とし、これを基にしや断器3の投入・開放指令
16aを出力する詳細を後述する制動抵抗器の制
御装置である。
On the other hand, 9 is a turbine generator which is a typical rotating machine connected to and operated by the power system 1, 10 is a gear such as a turning gear attached to the rotating shaft of the turbine generator 9, and 11 is the rotation of the gear 10. 12 is an electromagnetic pickup for detecting the number of revolutions; 12 is a measuring device that receives the output signal 11a of the electromagnetic pickup 11 and outputs two types of rotational speed signals; the details will be described later; 13
14 is a transmitter that transmits the output signal from the measuring device 12; 14 is a receiver that receives the transmission signal from the transmitter 13; 16 is the output pressure 7a of the power converter 7 and the rotation speed signal 14a from the receiver 14; This is a braking resistor control device which takes as an input signal and outputs a closing/opening command 16a for the disconnector 3 based on this, the details of which will be described later.

第2図は、上記計測装置12の構成例をブロツ
ク的に示したものである。図において、102は
第1図の受信器14の出力信号14aつまり電磁
ピツクアツプ11の出力信号11aをパルス信号
に変換するパルス発信器、103はパルス発信器
102の出力信号からリツプルを除去してタービ
ン発電機9の回転数ωを得るリツプル除去回路、
104はリツプル除去回路103の出力を近似微
分して回転数変化分Δωを検出する不完全微分回
路、105および107は夫々比較器である。こ
こで、比較器105,107は上記回転数変化分
Δωを設定値Kω1,Kω2と夫々比較し、それが設
定値Kω1,Kω2以上、以下である時のみ出力信号
105a,107aを夫々発生するものである。
すなわち、本計測装置12はタービン発電機9の
回転数変化分Δωを検出する装置と、その変化分
Δωを2つの設定値Kω1,Kω2と比較する比較器
より構成する。
FIG. 2 shows a block diagram of an example of the configuration of the measuring device 12. As shown in FIG. In the figure, 102 is a pulse transmitter that converts the output signal 14a of the receiver 14 shown in FIG. a ripple removal circuit for obtaining the rotation speed ω of the generator 9;
Reference numeral 104 indicates an incomplete differentiation circuit for approximately differentiating the output of the ripple removal circuit 103 to detect a change in rotational speed Δω, and reference numerals 105 and 107 indicate comparators, respectively. Here, the comparators 105 and 107 compare the rotational speed change Δω with the set values Kω 1 and Kω 2 , respectively, and output the output signals 105a and 107a only when they are greater than or equal to the set values Kω 1 and Kω 2 . Each occurs separately.
That is, the measuring device 12 includes a device that detects the rotational speed change Δω of the turbine generator 9 and a comparator that compares the change Δω with two set values Kω 1 and Kω 2 .

第3図a,bは、第1図における制御装帯16
の構成例をブロツク的に示したものである。図に
おいて、201は制動抵抗器4の投入・開放の一
連の制御を起動する起動回路である。この起動回
路201中、202は電力変換器7の出力電圧7
aを入力とし電力変化分(−ΔP)を検出する不
完全微分回路、203は不完全微分回路202の
出力信号の大きさを設定値Kpと比較し、それが
設定値Kp以上である時のみ出力信号を発生する
比較器、204は比較器203の出力信号を予め
定められた一定時間ホールドするホールド回路で
ある。また、206は起動回路201の出力つま
りホールド回路204の出力信号と、上記受信器
14を介して受信された信号105aとを入力と
するアンド回路で、そのアンド出力206aが制
動抵抗器4の投入指令であり、本制御装置16の
出力信号16aとして送出ししや断器3を投入す
る。さらに、209は投入指令である上記アンド
出力206aを一定時間ホールドするホールド回
路、210はこのホールド回路209の出力信号
と、上記受信器14を介して受信された信号10
7aとを入力とするアンド回路で、そのアンド出
力210aが制動抵抗器4の開放指令であり、本
制御装置16の出力信号16aとして送出ししや
断器3を開放する。
Figures 3a and 3b show the control equipment 16 in Figure 1.
This is a block diagram showing an example of the configuration. In the figure, 201 is a starting circuit that starts a series of controls for closing and opening the braking resistor 4. In this startup circuit 201, 202 is the output voltage 7 of the power converter 7.
An incomplete differentiator circuit 203 receives a as an input and detects the power change amount (-ΔP), and 203 compares the magnitude of the output signal of the incomplete differentiator circuit 202 with a set value Kp , and when it is greater than or equal to the set value Kp. A comparator 204 that only generates an output signal is a hold circuit that holds the output signal of the comparator 203 for a predetermined period of time. Further, 206 is an AND circuit which inputs the output of the starting circuit 201, that is, the output signal of the hold circuit 204, and the signal 105a received via the receiver 14, and the AND output 206a is the output signal of the braking resistor 4. This is a command, and the output signal 16a of the control device 16 turns on the sender and disconnector 3. Further, 209 is a hold circuit that holds the AND output 206a, which is the input command, for a certain period of time, and 210 is the output signal of this hold circuit 209 and the signal 10 received via the receiver 14.
7a as an input, and its AND output 210a is a command to open the braking resistor 4, and the output signal 16a of the control device 16 is used to open the sender and disconnector 3.

なお、上記で設定値Kpは系統の重大故障の判
定基準となるものである。また、代表的タービン
発電機とは系統全体の周波数動揺を最もよく近似
する回転数動揺を呈するタービン発電機の意味で
あり、これは安定度解析を実施することによつて
容易に選定し得る。
Note that the set value K p mentioned above serves as a criterion for determining a serious failure in the system. Further, a typical turbine generator means a turbine generator that exhibits a rotational speed fluctuation that most closely approximates the frequency fluctuation of the entire system, and this can be easily selected by performing stability analysis.

次に、上記構成に基づく本発明の制動抵抗器の
制御方式の作用について説明する。
Next, the operation of the braking resistor control system of the present invention based on the above configuration will be explained.

今、電力系統1に地絡、短絡等の系統故障が発
生した場合、変流器5、変圧器6により電流、電
圧を検出し、これらを入力とする電力変換器7の
出力電圧7aが急激する。すると、この電力変化
分(−ΔP)が制御装置16内の起動回路201
の不完全微分回路202により検出される。そし
て、もしこの電力変化分(−ΔD)が比較器20
3の設定値Kp以上であれば、電力系統の安定度
を脅かす重大故障の発生と判定し、比較器203
の出力によりホールド回路204を作動させて、
制動抵抗器4の投入・開放制御の起動条件を成立
させる。
Now, if a system failure such as a ground fault or short circuit occurs in the power system 1, the current and voltage are detected by the current transformer 5 and the transformer 6, and the output voltage 7a of the power converter 7 that uses these as inputs suddenly increases. do. Then, this power change amount (-ΔP) is applied to the starting circuit 201 in the control device 16.
is detected by the incomplete differentiation circuit 202. If this power change (-ΔD) is the comparator 20
3 , it is determined that a serious failure that threatens the stability of the power system has occurred, and the comparator 203
Activate the hold circuit 204 by the output of
The starting conditions for closing/opening control of the braking resistor 4 are established.

一方、かかる重大故障の発生に伴なつてタービ
ン発電機9の回転数が上昇する。この場合、この
回転数に比例する電磁ピツクアツプ11の出力1
1aはパルス発信器102、リツプル除去回路1
03を介して、不完全微分回路104によつてそ
の変化分Δωを検出し、これが各比較器105,
107に加えられる。そして、もしこの変化分
Δωが比較器105の設定値Kω1以上に達すると
比較器105の出力が発せられ、これが送信器1
3によつて送信され受信器14にて受信されて制
御装置16内に入力される。これにより、起動回
路201の出力と共にアンド回路206を作動さ
せ、制御装置16は投入指令206aによりしや
断器3を投入して制動抵抗器4を系統へ編入す
る。そして、この制動抵抗器4の系統への編入に
より、電力系統1内の発電機は電気的出力が増加
して減速される。すると、これにより一度上昇し
たタービン発電機9の回転数が低下してくる。そ
の後、この回転数変化分Δωが比較器107の設
定値Kω2以下に達すると比較器107の出力信号
が発せられ、これが送信器13によつて送信され
受信器14にて受信されて制御装置16に入力さ
れる。これにより、ホールド回路209によりホ
ールツされた投入指令信号206aと共にアンド
回路210を作動させ、制御装置16は開放指令
210aによりしや断器3を開放して制動抵抗器
4を系統から開放する。以上の作用により、電力
系統1の故障発生に伴なう相差角動揺の第1波の
過渡安定度が確保される。
On the other hand, the rotational speed of the turbine generator 9 increases with the occurrence of such a serious failure. In this case, the output 1 of the electromagnetic pickup 11 is proportional to this rotational speed.
1a is a pulse oscillator 102 and a ripple removal circuit 1
03, the incomplete differentiation circuit 104 detects the change Δω, which is detected by each comparator 105,
Added to 107. If this amount of change Δω reaches the set value Kω 1 or more of the comparator 105, the output of the comparator 105 is generated, and this is transmitted to the transmitter 1.
3 and received by the receiver 14 and input into the control device 16. As a result, the AND circuit 206 is operated together with the output of the starting circuit 201, and the control device 16 closes the breaker 3 by the closing command 206a and incorporates the braking resistor 4 into the system. By incorporating this braking resistor 4 into the system, the electrical output of the generator in the power system 1 increases and the speed is reduced. As a result, the rotational speed of the turbine generator 9, which had once increased, decreases. Thereafter, when this rotational speed change Δω reaches the set value Kω 2 of the comparator 107 or less, an output signal of the comparator 107 is generated, which is transmitted by the transmitter 13 and received by the receiver 14, and is sent to the control device. 16. As a result, the AND circuit 210 is operated together with the closing command signal 206a held by the hold circuit 209, and the control device 16 opens the shield breaker 3 with the opening command 210a, thereby disconnecting the braking resistor 4 from the system. Through the above-described actions, the transient stability of the first wave of phase difference angle fluctuations caused by the occurrence of a failure in the power system 1 is ensured.

次に、相差角動揺の第1波の過渡安定度が確保
された後にも系統には周波数動揺が残るが、本構
成では系統内の代表的発電機9の回転数変化分
Δωを検出しているので、第2波目以降でも系統
周波数を略近似するこの回転数の上昇が設定値
1以上であれば、起動回路201の出力信号が
一定時間ホールドされているためアンド回路20
6が再び作動して制動抵抗器4が再び系統へ編入
される。その後、回転数が低下してその変化分
Δωが設定値Kω2以下となるとアンド回路210
が作動し、制動抵抗器4は再び系統から開放され
る。以後、タービン発電機9の回転数変化分Δω
が設定値Kω1以下となるまで、何回も同様に制動
抵抗器4の投入・開放制御が繰り返し行なわれ、
第2波以降の周波数動揺は強制的に収束されてゆ
く。なお、第4図に周波数動揺Δωと制動抵抗器
4の編入期間との関係を示す。
Next, even after the transient stability of the first wave of phase difference angle fluctuation is ensured, frequency fluctuation remains in the system, but in this configuration, the rotation speed change Δω of the representative generator 9 in the system is detected. Therefore, even after the second wave, this increase in rotation speed that approximately approximates the grid frequency is the set value.
If Kω is greater than 1 , the output signal of the starting circuit 201 is held for a certain period of time, so the AND circuit 20
6 is activated again and the braking resistor 4 is reincorporated into the system. After that, when the rotation speed decreases and the change Δω becomes less than the set value Kω 2 , the AND circuit 210
is activated, and the braking resistor 4 is disconnected from the system again. Thereafter, the rotational speed change Δω of the turbine generator 9
The closing/opening control of the braking resistor 4 is repeated many times in the same way until the value Kω1 becomes less than the set value Kω1 .
The frequency fluctuations after the second wave are forcibly converged. Incidentally, FIG. 4 shows the relationship between the frequency fluctuation Δω and the period during which the braking resistor 4 is incorporated.

上述したように、起動回路201は系統内の代
表的発電機9の回転数変化Δωの検出に基づく、
制動抵抗器4の一連の投入・開放制御開始の必要
条件を与えるものである。すなわち、起動回路2
01からの出力がない限り、母線2電圧の周波数
がどのように変動しようとも、制動抵抗器4の投
入・開放制御は行なわれない。
As mentioned above, the starting circuit 201 is based on the detection of the rotational speed change Δω of the representative generator 9 in the system.
This provides the necessary conditions for starting a series of closing and opening controls for the braking resistor 4. That is, starting circuit 2
As long as there is no output from 01, the closing/opening control of the braking resistor 4 will not be performed, no matter how the frequency of the bus 2 voltage changes.

このように、電力系統1にその安定度を脅かす
重大故障が発生した場合、系統内の代表的発電機
9の回転数変動Δωに応じて制動抵抗器4の系統
への投入・開放制御を繰り返し行なうようにした
ものである。
In this way, when a serious failure that threatens the stability of the power system 1 occurs, the braking resistor 4 is repeatedly connected to and released from the system in accordance with the rotational speed fluctuation Δω of the representative generator 9 in the system. This is what I decided to do.

従つて、次のような効果が得られる。 Therefore, the following effects can be obtained.

(a) 電力系統1内で発生した重大故障を検出して
制動抵抗器4を系統へ投入するようにしている
ので、発電機の加速脱調を防止して、相差角動
揺の第1波の過渡安定度を向上させることがで
きる。
(a) The braking resistor 4 is applied to the power system upon detection of a serious failure occurring in the power system 1, which prevents the generator from accelerating out of synch and suppresses the first wave of phase difference angle oscillation. Transient stability can be improved.

(b) 系統の周波数の変化を近似する代表的発電機
9の回転数変化Δωに応じて制動抵抗器4の系
統への投入・開放制御を繰り返して行なうよう
にしているので、相差角動揺の第1波の過渡安
定度を確保した後の、第2波以降の系統周波数
動揺を強制的に早期に収束させることができ
る。
(b) Since the braking resistor 4 is repeatedly controlled to be connected to and released from the system in accordance with the rotational speed change Δω of the representative generator 9, which approximates the change in the frequency of the system, the phase difference angle fluctuation is reduced. After securing the transient stability of the first wave, it is possible to forcibly converge the system frequency fluctuations from the second wave onwards at an early stage.

(c) 代表的発電機9の回転数変化Δωを検出して
設定値との比較を行ないその結果(2値信号)
のみを制御装置16へ送信するようにしている
ので、回転数変化の連続信号をそのまま送信す
るような場合のような大量の情報の送受信、ノ
イズの混入による信頼性の低下等の問題がな
く、極めて信頼性の高いものである。
(c) Detect the rotational speed change Δω of a typical generator 9 and compare it with the set value, and the result (binary signal)
Since only the rotation speed is transmitted to the control device 16, there are no problems such as transmission and reception of a large amount of information or a decrease in reliability due to noise contamination, which is the case when continuous signals of rotational speed changes are transmitted as they are. It is extremely reliable.

次に、本発明の他の実施例について第5図およ
び第6図を参照して説明する。なお、第1図およ
び第3図と同一部分には同一符号を付してその説
明を省略する。
Next, another embodiment of the present invention will be described with reference to FIGS. 5 and 6. Note that the same parts as in FIGS. 1 and 3 are given the same reference numerals, and their explanations will be omitted.

つまり、まず第5図はしや断器を3−1,3−
2、制動抵抗器を4−1,4−2の夫々2つに分
割して母線2に設置し、制御装置16の出力信号
16a−1,16a−2により、分割された制動
抵抗器3−1,3−2の投入・開放制御を独立し
て実施し得るように構成する。
In other words, first connect the edges and disconnectors in Figure 5 to 3-1, 3-
2. The braking resistor is divided into two parts 4-1 and 4-2 and installed on the bus bar 2, and the divided braking resistor 3- 1 and 3-2 are constructed so that closing/opening control can be performed independently.

また、第6図は第5図における制御装置16の
構成例を示すものであり、点線で囲んだ部分Bが
第3図と相違する点である。また、点線で囲んだ
部分Aの中の206a−1と210a−1は、第
3図の206aと210aに夫々対応するもので
ある。すなわち、第3図で示した制御装置16の
機能に加えて、別の投入指令206a−2と開放
指令210a−2とを発生させる機能を構成す
る。これは、比較器203の出力があることを条
件に投入指令206a−2を発し、同時にオンデ
イレイタイマー回路211を起動させて投入時点
からオンデイレイタイマー回路211の設定時間
経過した後に開放指令210a−2を発生するも
のである。またこの場合、点線部Aの投入・開放
指令206a−1,210a−1は第3図の制御
装置16の出力信号16a−1としてしや断器3
−1の投入・開放を点線部Bの投入・開放指令2
06a−2,210a−2は同じく出力信号16
a−2としてしや断器3−2の投入・開放を行な
うようにする。
Further, FIG. 6 shows an example of the configuration of the control device 16 in FIG. 5, and a portion B surrounded by a dotted line is different from that in FIG. 3. Further, 206a-1 and 210a-1 in the portion A surrounded by the dotted line correspond to 206a and 210a in FIG. 3, respectively. That is, in addition to the functions of the control device 16 shown in FIG. 3, it constitutes a function of generating another closing command 206a-2 and opening command 210a-2. This is done by issuing the closing command 206a-2 on condition that there is an output from the comparator 203, and at the same time starting the on-delay timer circuit 211, and after the set time of the on-delay timer circuit 211 has elapsed from the closing point, the opening command 210a-2 is issued. 2. Further, in this case, the closing/opening commands 206a-1, 210a-1 indicated by the dotted line A are output to the output signal 16a-1 of the control device 16 in FIG.
-1 to close/release the dotted line part B to close/release command 2
06a-2 and 210a-2 are the same output signal 16
As a-2, the shingle breaker 3-2 is turned on and off.

すなわち、本実施例では系統故障発生時の制動
抵抗の適用に際し、制動抵抗器を4−1,4−2
の2つに分割して設けておき、一方は起動条件成
立(つまり比較器203の出力有り)と共に投入
して一定時間後に開放するスケジユール制御を行
ない、他方については前述した実施例同様に、代
表的発電機9の回転数の変化Δωに応じて投入・
開放の繰り返し制御を行なうようにすることが特
徴である。
That is, in this embodiment, when applying the braking resistor when a system failure occurs, the braking resistor is set to 4-1, 4-2.
The schedule control is such that one side is turned on when the start condition is satisfied (that is, there is an output from the comparator 203) and opened after a certain period of time, and the other side is set as a representative In response to the change Δω in the rotational speed of the target generator 9,
The feature is that the opening is repeatedly controlled.

従つて、本実施例によれば相差角動揺の第1波
の過渡安定度確保に際しては全容量の制動抵抗器
4−1,4−2を適用するが、その後の第2波以
降の系統周波数動揺を収束させるに際しては、一
部の容量の制動抵抗器4−1を適用することが可
能となる。すなわち、本方式は系統周波数動揺の
収束には必ずしも制動抵抗器の全容量が必要では
ない場合に極めて好都合である。
Therefore, according to this embodiment, full capacity braking resistors 4-1 and 4-2 are applied to ensure the transient stability of the first wave of phase difference angle fluctuation, but the system frequency of the subsequent second wave is When converging the oscillation, it becomes possible to apply the braking resistor 4-1 with a certain capacity. In other words, this method is extremely convenient when the full capacity of the braking resistor is not necessarily required for convergence of system frequency fluctuations.

尚、本発明は上述した各実施例に限定されるも
のではない。
Note that the present invention is not limited to the above-described embodiments.

(1) 系統故障の大きさを判定する物理量として、
線路の有効電力変化ΔPに代えて母線2の電圧
降下量ΔVを導入するようにしてもよい。つま
り、この場合には第1図または第5図において
変流器5、電力変換器7を削除すると共に変圧
器6の出力を出力電圧7aと置換え、その他の
構成については上記実施例と同様にすればよ
い。
(1) As a physical quantity to determine the magnitude of a system failure,
The voltage drop amount ΔV of the bus 2 may be introduced instead of the line active power change ΔP. In other words, in this case, the current transformer 5 and power converter 7 in FIG. 1 or FIG. do it.

(2) 上記起動回路の条件として上記構成に代え
て、主要幹線の事故検出リレーの出力を直線に
その条件として導入するように構成してもよ
い。
(2) Instead of the above configuration as the condition for the starting circuit, it may be configured such that the output of the accident detection relay on the main trunk line is directly introduced as the condition.

(3) 上記第2の実施例では、制動抵抗器を2つに
分割して設置し、一方は投入後一定時間で開放
し、他方は電力系統内で運転される回転機の回
転数の変動に応じて投入・開放制御を繰り返し
行なうことで、系統に編入する制動抵抗器の容
量を可変するようにしたが、これ以外に例えば
第1図のように制動抵抗器を設置し、且つ該抵
抗器からタツプを取出してその一部を短絡可能
に第2のしや断器を設け、各しや断器を第1
波、第2波以降への適用に対応させて制御する
ことにより、系統に編入する制動抵抗器の容量
を可変するようにしてもよい。
(3) In the second embodiment above, the braking resistor is installed in two parts, one of which is opened after a certain period of time after being turned on, and the other of which is used to change the rotation speed of the rotating machine operated within the power system. The capacity of the braking resistor incorporated into the system can be varied by repeatedly performing closing/opening control according to the situation. A second seam disconnector is installed so that a tap can be taken out from the container and a part of it can be shorted, and each seam disconnector is connected to the first.
The capacitance of the braking resistor incorporated into the system may be varied by controlling it in accordance with the application to the wave, second wave, and subsequent waves.

(4) 回転数を検出する発電機を複数とし、制御装
置16の入力である回転数信号14aについ
て、複数の発電機からの信号のアンド条件を導
入するようにすれば、単一発電機の回転数信号
のみに依存する時の制動抵抗の誤制御を防止す
ることができる。
(4) If there are a plurality of generators whose rotational speed is detected, and an AND condition of the signals from the plurality of generators is introduced for the rotational speed signal 14a, which is the input of the control device 16, it is possible to detect the rotational speed of a single generator. It is possible to prevent erroneous control of the braking resistance when relying only on the rotational speed signal.

発明の効果 以上説明したように本発明によれば、電力系統
の重大故障に対する相差角動揺の第1波の過渡安
定度の向上と共に第2波以降の系統の周波数動揺
を極めて早期に収束させることができる信頼の高
い制動抵抗器の制御方式が提供できる。
Effects of the Invention As explained above, according to the present invention, it is possible to improve the transient stability of the first wave of phase difference angle fluctuations in response to a serious power system failure, and to converge the frequency fluctuations of the power system from the second wave onward very quickly. A highly reliable braking resistor control method can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成図、第2
図は第1図における計測装置の構成を示すブロツ
ク図、第3図a,bは第1図における制御装置の
構成を示すブロツク図、第4図は本発明の作用を
説明するための図、第5図および第6図は本発明
の他の実施例を示す構成図である。 1……電力系統、2……母線、3,3−1,3
−2……しや断器、4,4−1,4−2……制動
抵抗器、5……変流器、6……変圧器、7……電
力変換器、9……タービン発電機、10……歯
車、11……電磁ピツクアツプ、12……計測装
置、13……送信器、14……受信器、16……
制御装置、102……パルス発信器、103……
リツプル除去回路、104,202……不完全微
分回路、105,107……比較器、204,2
09……ホールド回路、206,210……アン
ド回路、211……オンデイレイタイマー回路。
FIG. 1 is a configuration diagram showing one embodiment of the present invention, and FIG.
The figure is a block diagram showing the configuration of the measuring device in FIG. 1, FIGS. 3a and 3b are block diagrams showing the configuration of the control device in FIG. 1, and FIG. FIGS. 5 and 6 are configuration diagrams showing other embodiments of the present invention. 1... Power system, 2... Bus bar, 3, 3-1, 3
-2...Shield disconnector, 4, 4-1, 4-2...Braking resistor, 5...Current transformer, 6...Transformer, 7...Power converter, 9...Turbine generator , 10...Gear, 11...Electromagnetic pickup, 12...Measuring device, 13...Transmitter, 14...Receiver, 16...
Control device, 102...Pulse transmitter, 103...
Ripple removal circuit, 104, 202... Incomplete differentiation circuit, 105, 107... Comparator, 204, 2
09...Hold circuit, 206, 210...AND circuit, 211...On-delay timer circuit.

Claims (1)

【特許請求の範囲】 1 電力系統にその安定度を脅かす重大故障が発
生したことを検出して、制動抵抗器を前記電力系
統へ投入して電力系統の安定を確保するものにお
いて、前記電力系統内で運転される回転機の回転
数を検出する手段と、この手段により検出された
回転数に基づいて設定値との比較を行なう手段
と、前記比較結果を2値情報として伝送する手段
と、前記電力系統に発生した重大故障を検出する
手段とを備え、前記回転機の回転数の変動に応じ
て前記制動抵抗器の投入・開放制御を行なうこと
を特徴とする制動抵抗器の制御方式。 2 電力系統にその安定度を脅かす重大故障が発
生した場合、制動抵抗器を前記電力系統へ投入し
て電力系統の安定を確保するようなものにおい
て、前記電力系統内で運転される回転機の回転数
を検出する手段と、この手段により検出された回
転数に基づいて設定値との比較を行なう手段と、
前記比較結果を2値情報として伝送する手段と、
前記電力系統に発生した重大故障を検出する手段
とを備え、前記回転機の回転数の変動に応じて前
記制動抵抗器の投入・開放制御を制動抵抗容量を
可変しつつ行なうことを特徴とする制動抵抗器の
制御方式。 3 制動抵抗器を2分割して設置しておき、その
一方は投入後一定時間経過した時点で開放するよ
う制御し、他方は電力系統の周波数の変動に応じ
て投入・開放制御するようにした特許請求の範囲
第2項記載の制動抵抗器の制御方式。
[Scope of Claims] 1. In an apparatus for detecting the occurrence of a serious failure that threatens the stability of an electric power system and injecting a braking resistor into the electric power system to ensure the stability of the electric power system, the power system means for detecting the rotational speed of a rotating machine operated within the rotating machine; means for comparing the rotational speed detected by the means with a set value; and means for transmitting the comparison result as binary information; A control method for a braking resistor, comprising means for detecting a serious failure occurring in the electric power system, and controlling closing and opening of the braking resistor in response to fluctuations in the rotational speed of the rotating machine. 2. When a major failure occurs in the power system that threatens its stability, a braking resistor is inserted into the power system to ensure the stability of the power system, and when a rotating machine operated in the power system is means for detecting the rotational speed; and means for comparing the rotational speed detected by the means with a set value;
means for transmitting the comparison result as binary information;
and means for detecting a serious failure that has occurred in the power system, and is characterized in that the braking resistor is controlled to close and open while varying the braking resistor capacity in accordance with fluctuations in the rotational speed of the rotating machine. Braking resistor control method. 3 The braking resistor was installed in two parts, one of which was controlled to open after a certain period of time had passed after closing, and the other to be controlled to close and open according to fluctuations in the frequency of the power system. A braking resistor control method according to claim 2.
JP57020140A 1982-02-10 1982-02-10 Control system for braking resistor Granted JPS58139647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57020140A JPS58139647A (en) 1982-02-10 1982-02-10 Control system for braking resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57020140A JPS58139647A (en) 1982-02-10 1982-02-10 Control system for braking resistor

Publications (2)

Publication Number Publication Date
JPS58139647A JPS58139647A (en) 1983-08-19
JPH0256017B2 true JPH0256017B2 (en) 1990-11-29

Family

ID=12018829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57020140A Granted JPS58139647A (en) 1982-02-10 1982-02-10 Control system for braking resistor

Country Status (1)

Country Link
JP (1) JPS58139647A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9342180B2 (en) 1998-01-26 2016-05-17 Apple Inc. Contact tracking and identification module for touch sensing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9342180B2 (en) 1998-01-26 2016-05-17 Apple Inc. Contact tracking and identification module for touch sensing

Also Published As

Publication number Publication date
JPS58139647A (en) 1983-08-19

Similar Documents

Publication Publication Date Title
CN102104256B (en) For operating the method and system of wind turbine
US8116914B2 (en) Wind turbine and operating method thereof
US8097971B2 (en) Wind turbine generator system
US7692325B2 (en) Wind power generation system
US6278262B1 (en) Auxiliary power unit system and method of operating an auxiliary power unit
US8736090B2 (en) Protection arrangement of an electric power system
US4942493A (en) Method and apparatus for detecting prime mover start malfunction
EP0422135A1 (en) No break power transfer control for a vscf power generating system
US4953052A (en) Pole slip protection circuit for paralleled generators
JPH0256017B2 (en)
US4071870A (en) Apparatus to generate minimally delayed instructions for turbine valves in the event of power system short circuits
JPH10313595A (en) Pumped storage power generation facility
WO2012159678A1 (en) Power system
JPH0256018B2 (en)
JP2746966B2 (en) Operation control device of variable speed pumped storage power generation system
JP3140512B2 (en) Variable speed generator motor system and method for detecting load shedding of variable speed generator motor
SU756589A1 (en) Device for automatic control of turbogeberator
JPH07106035B2 (en) Private generator system separation device
JPH08331763A (en) Independent operation detecting method for rotating-machine system distributed power source
JPS6158500A (en) Digital control system of generator
JPS605800A (en) Output power regulator of generator
JPH0550206B2 (en)
JPH0398499A (en) Speed detection method for water-wheel generator
JPH01234022A (en) Power-failure detecting apparatus
JPH05172034A (en) Governor control device