JPH0255854B2 - - Google Patents

Info

Publication number
JPH0255854B2
JPH0255854B2 JP55025980A JP2598080A JPH0255854B2 JP H0255854 B2 JPH0255854 B2 JP H0255854B2 JP 55025980 A JP55025980 A JP 55025980A JP 2598080 A JP2598080 A JP 2598080A JP H0255854 B2 JPH0255854 B2 JP H0255854B2
Authority
JP
Japan
Prior art keywords
recording
information
reversible
temperature
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55025980A
Other languages
Japanese (ja)
Other versions
JPS56119991A (en
Inventor
Kenji Oota
Toshihisa Deguchi
Akira Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2598080A priority Critical patent/JPS56119991A/en
Priority to GB8105358A priority patent/GB2077065B/en
Priority to FR8103542A priority patent/FR2476892B1/en
Priority to DE19813106653 priority patent/DE3106653C2/en
Priority to US06/237,083 priority patent/US4467383A/en
Publication of JPS56119991A publication Critical patent/JPS56119991A/en
Priority to GB08401050A priority patent/GB2140635B/en
Priority to US06/585,179 priority patent/US4677601A/en
Publication of JPH0255854B2 publication Critical patent/JPH0255854B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/16Layers for recording by changing the magnetic properties, e.g. for Curie-point-writing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0938Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following servo format, e.g. guide tracks, pilot signals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/13Amorphous metallic alloys, e.g. glassy metals
    • H01F10/133Amorphous metallic alloys, e.g. glassy metals containing rare earth metals
    • H01F10/135Amorphous metallic alloys, e.g. glassy metals containing rare earth metals containing transition metals
    • H01F10/136Amorphous metallic alloys, e.g. glassy metals containing rare earth metals containing transition metals containing iron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)

Description

【発明の詳細な説明】 本発明はアモルフアス磁性材料を媒体として、
同一媒体内に可逆メモリと不可逆メモリを形成し
た光メモリ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses an amorphous magnetic material as a medium.
The present invention relates to an optical memory device in which a reversible memory and an irreversible memory are formed in the same medium.

近年高密度メモリ装置として光メモリ装置が注
目されているが、この種の装置は情報の保持特性
によつて大きくは次のような3つに分けられる。
In recent years, optical memory devices have attracted attention as high-density memory devices, and this type of devices can be roughly divided into the following three types depending on their information retention characteristics.

即ち、 再生のみのもの。 That is, For playback only.

追加記録が可能で、記録後すぐに再生できる
もの。
One that allows additional recording and can be played back immediately after recording.

記録再生のみならず消去が可能なもの。 Something that can be erased as well as recorded.

上記3種類の内、に属する代表的なものとし
て、アモルフアス磁性材料を媒体として行われる
光熱磁気記録方式がある。
Among the above three types, a typical one is a photothermal magnetic recording method using an amorphous magnetic material as a medium.

光熱磁気記録方式は、(a)記録する領域の温度を
キユリ点まで高め、この状態で磁化が消失するこ
とを利用するキユリ点記録方式、(b)補償点近傍に
おかれた媒体の記録領域の温度を上昇させること
により、保磁力が低下することを利用して記録す
る補償点記録方式、(c)温度上昇により保磁力が大
きく変化することを利用した保磁力記録方式等が
考えられている。このような光熱磁気記録方式は
いずれもレーザ光等の光を1μmφ程の記録領域に
絞り込み、光照射された部分の温度が上昇するこ
とによつて夫々の磁化状態が変化することによつ
て記録が行われるものである。また一旦記録され
た情報の消去は同じ方式を用いてエネルギーを与
えることにより磁化状態を元に戻させることがで
き、この種のアモルフアス磁性材料は可逆メモリ
の媒体として利用することができる。しかし反面
この種の媒体が有する可逆性は記録装置の誤操作
によつて情報が消失したり、周囲温度の上昇によ
り情報が不安定になつたりする欠点がある。
The photothermal magnetic recording method consists of (a) the Kiyuri point recording method, which uses the fact that the temperature of the recording area is raised to the Kiyuri point and magnetization disappears in this state, and (b) the recording area of the medium is placed near the compensation point. (c) A compensation point recording method that takes advantage of the fact that the coercive force decreases as the temperature rises, and (c) a coercive force recording method that takes advantage of the fact that the coercive force changes significantly as the temperature rises. There is. All of these photothermal magnetic recording methods focus light such as a laser beam onto a recording area of about 1 μmφ, and record by changing the magnetization state of each area as the temperature of the area irradiated with the light increases. is to be carried out. In addition, once recorded information can be erased, the magnetization state can be restored by applying energy using the same method, and this type of amorphous magnetic material can be used as a reversible memory medium. However, the reversibility of this type of media has the disadvantage that information may be lost due to incorrect operation of the recording device, or information may become unstable due to an increase in ambient temperature.

本発明は、アモルフアス磁性材料の特性を利用
して、同一媒体に書込み及び消去が可能な可逆メ
モリと、一旦書込まれた情報の読出しを専用とす
る不可逆の永久メモリとを形成することができる
光メモリ装置に関するもので、次に実施例を挙げ
て詳細に説明する。
The present invention utilizes the properties of amorphous magnetic materials to form reversible memories that can be written and erased on the same medium, and irreversible permanent memories that are exclusively used for reading information once written. This invention relates to an optical memory device, and will be described in detail next with examples.

希土類と遷移金属よりなるアモルフアス磁性薄
膜は、第1図のGdDyFeに見られるように一般的
に結晶化によつて透過率が増し反射率が減じる。
図中、曲線A:アモルフアス状態、B:結晶状態
を示す。このことは記録ビツトの位置を結晶化さ
せてやれば読取り時には、光検出器に濃淡の信号
として入力されることになり、光熱磁気記録の再
生系(フアラデイ又はカー効果等による光の濃淡
を光検出器に導入するシステム)をそのまま利用
することができる。
In an amorphous magnetic thin film made of rare earth elements and transition metals, the transmittance generally increases and the reflectance decreases as a result of crystallization, as seen in GdDyFe in Figure 1.
In the figure, curve A indicates an amorphous state, and curve B indicates a crystalline state. This means that if the position of the recorded bit is crystallized, it will be input to the photodetector as a light and dark signal during reading, and the reproduction system of photothermal magnetic recording (the light density due to the Faraday or Kerr effect) will be input to the photodetector as a light and dark signal. system installed in the detector) can be used as is.

処で上記アモルフアス磁性材料GdDyFeのキユ
リ点は第2図に示すように約120℃であり、また
非晶質の状態から結晶状態に変化する温度は350
℃である。両者の温度間には充分に差があり、記
録用光源の出力を増減させることで、可逆メモリ
としてのキユリ点記録及び不可逆メモリとしての
結晶化記録が同一媒体に実行できる。
As shown in Figure 2, the Kuyuri point of the amorphous magnetic material GdDyFe is approximately 120°C, and the temperature at which it changes from an amorphous state to a crystalline state is 350°C.
It is ℃. There is a sufficient difference between the two temperatures, and by increasing or decreasing the output of the recording light source, it is possible to perform Kiri point recording as a reversible memory and crystallization recording as an irreversible memory on the same medium.

即ち、第3図に示す如く、ガラス若しくは透光
性の樹脂からなる基板1に、上記のようなキユリ
点による記録温度が結晶化温度より充分に低いア
モルフアスのGdDyFe薄膜2を被着し、表面を
SiO2等の保護膜3で被つてメモリ媒体が作成さ
れる。該メモリ媒体は円盤状に形成され、中心部
にモータ等の回転駆動系4が連結されて、所定の
速度で回転する。
That is, as shown in FIG. 3, an amorphous GdDyFe thin film 2 whose recording temperature at the Kyuri point as described above is sufficiently lower than the crystallization temperature is deposited on a substrate 1 made of glass or a transparent resin. of
A memory medium is produced by covering with a protective film 3 such as SiO 2 . The memory medium is formed into a disk shape, and a rotary drive system 4 such as a motor is connected to the center of the medium to rotate it at a predetermined speed.

一方メモリ媒体に情報を記録し、更に記録され
た情報を読み出すために、キユリ点記録フアラデ
ー効果による再生を用いた光メモリ装置が設置さ
れる。図に於て5はHe−Neレーザで、放出され
たレーザ光は光変調器6及び偏光子7を介して光
路変更ミラー及び記録レンズ系8に入力され、対
向する媒体領域にレーザ光を照射し、レーザ光の
出力レベルによつて上述の可逆メモリ若しくは永
久メモリとなる情報を記録する。また上記メモリ
媒体から出力された読出し情報は光路変更ミラー
及び集光光学系9を介して検光子10に入力さ
れ、該検光子10から光検出器11に入力され
て、可逆メモリ領域及び永久メモリ領域からの読
出し情報となる。
On the other hand, in order to record information on a memory medium and further read out the recorded information, an optical memory device is installed that uses playback based on the Faraday effect of recording at the Kuyuri point. In the figure, 5 is a He-Ne laser, and the emitted laser light is input to the optical path changing mirror and recording lens system 8 via the optical modulator 6 and polarizer 7, and irradiates the opposing medium area with the laser light. Then, depending on the output level of the laser beam, information is recorded in the above-mentioned reversible memory or permanent memory. The read information outputted from the memory medium is inputted to the analyzer 10 via the optical path changing mirror and the condensing optical system 9, and from the analyzer 10 is inputted to the photodetector 11, where it is stored in a reversible memory area and a permanent memory. This is information read from the area.

上記実施例では、アモルフアス磁性材料として
GdDyFe薄膜を用いたが、記録温度が結晶化温度
よりも低く、かつ結晶化により光の透過率もしく
は反射率に差が生じる材料であれば利用すること
ができ、例えばGdTbFe,DyFe,TbFe等を媒体
とすることができる。また、光熱磁気記録再生方
式もキユリ点記録フアラデ効果再生に限らず、他
の光熱磁気記録方式磁気光学再生方式を用いても
実施することができる。
In the above example, the amorphous magnetic material is
Although a GdDyFe thin film was used, any material can be used as long as the recording temperature is lower than the crystallization temperature and the crystallization causes a difference in light transmittance or reflectance. For example, GdTbFe, DyFe, TbFe, etc. It can be a medium. Further, the photothermal magnetic recording and reproducing method is not limited to the Kyuri point recording Farade effect reproducing method, but can also be implemented using other photothermal magnetic recording and magneto-optic reproducing methods.

以上の本発明によれば同一媒体に消去できない
不可逆的記録部分と消去できる可逆的記録部分の
両方を設定でき、例えば永久に保存する情報は誤
まつて消去することの無いように不可逆的記録を
実行し、短期間だけ保存する情報は書き換えるこ
とによつてメモリの有効活用を行なううべく可逆
的記録を実行するといつた使い分けを同一媒体で
行なうことで機能の向上を計ることができる。
According to the present invention, both an irreversible recording part that cannot be erased and a reversible recording part that can be erased can be set on the same medium. For example, information to be stored forever can be recorded irreversibly to prevent it from being accidentally erased. Functionality can be improved by using the same medium for different uses, such as executing reversible recording to make effective use of memory by rewriting information that is executed and stored for a short period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はSiO2膜で保護されたGdDyFe膜の非晶
質及び結晶質状態での光透過率の波長特性図、第
2図はGdDyFeのキユリ点Tcを示す図、第3図
はフアラデイ効果再生による光メモリ装置のブロ
ツク図である。 1:ガラス基板、2:GdDyFe膜、5:He−
Neレーザ、11:光検出器。
Figure 1 is a wavelength characteristic diagram of light transmittance in amorphous and crystalline states of GdDyFe film protected by SiO 2 film, Figure 2 is a diagram showing the Kyuri point Tc of GdDyFe, and Figure 3 is the Faraday effect. 1 is a block diagram of an optical memory device using playback; FIG. 1: Glass substrate, 2: GdDyFe film, 5: He-
Ne laser, 11: photodetector.

Claims (1)

【特許請求の範囲】 1 アモルフアス磁性材料からなり、加熱による
結晶化によつて光の透過率若しくは反射率の変化
が生じ、且つこの変化が生ずる温度より光熱磁気
記録温度が十分低い特性を有する磁性媒体と、 光出力レベルを増減させることで、前記磁性媒
体の記録ビツトの位置に対し結晶化による情報の
不可逆的記録と光熱磁気記録による情報の可逆的
記録とを選択的に実行するレーザ光源と、 前記磁性媒体から出力された読出し情報が入力
されて不可逆的記録情報及び可逆的記録情報を読
出す光検出器とを具備したことを特徴とする光メ
モリ装置。
[Scope of Claims] 1. A magnet made of an amorphous magnetic material, which causes a change in light transmittance or reflectance due to crystallization due to heating, and has a property that the photothermal magnetic recording temperature is sufficiently lower than the temperature at which this change occurs. a laser light source that selectively performs irreversible recording of information by crystallization and reversible recording of information by photothermal magnetic recording with respect to the recording bit position of the magnetic medium by increasing or decreasing the optical output level; An optical memory device comprising: a photodetector into which readout information output from the magnetic medium is input and reads out irreversible recorded information and reversible recorded information.
JP2598080A 1980-02-23 1980-02-27 Optical memory device Granted JPS56119991A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2598080A JPS56119991A (en) 1980-02-27 1980-02-27 Optical memory device
GB8105358A GB2077065B (en) 1980-02-23 1981-02-20 Magnetooptic memory medium
FR8103542A FR2476892B1 (en) 1980-02-23 1981-02-23 MAGNETO-OPTICAL STORAGE MEDIUM
DE19813106653 DE3106653C2 (en) 1980-02-23 1981-02-23 Magneto-optical storage medium
US06/237,083 US4467383A (en) 1980-02-23 1981-02-23 Magnetooptic memory medium
GB08401050A GB2140635B (en) 1980-02-23 1984-01-16 Magnetooptic memory medium
US06/585,179 US4677601A (en) 1980-02-23 1984-03-01 Method of forming permanent memory locations in a magnetooptic memory medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2598080A JPS56119991A (en) 1980-02-27 1980-02-27 Optical memory device

Publications (2)

Publication Number Publication Date
JPS56119991A JPS56119991A (en) 1981-09-19
JPH0255854B2 true JPH0255854B2 (en) 1990-11-28

Family

ID=12180864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2598080A Granted JPS56119991A (en) 1980-02-23 1980-02-27 Optical memory device

Country Status (1)

Country Link
JP (1) JPS56119991A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3284296B2 (en) * 1995-06-27 2002-05-20 富士通株式会社 Optical recording medium and recording / reproducing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5661031A (en) * 1979-10-22 1981-05-26 Kokusai Denshin Denwa Co Ltd <Kdd> Optical magnetic recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5661031A (en) * 1979-10-22 1981-05-26 Kokusai Denshin Denwa Co Ltd <Kdd> Optical magnetic recording medium

Also Published As

Publication number Publication date
JPS56119991A (en) 1981-09-19

Similar Documents

Publication Publication Date Title
JP3057516B2 (en) Method of reproducing signal from optical recording medium
US5707727A (en) Magneto-optical recording medium
US4677601A (en) Method of forming permanent memory locations in a magnetooptic memory medium
EP0128960B1 (en) Thermomagnetic optical recording/reproducing method
JP3057517B2 (en) Method of reproducing signal from optical recording medium
JP2959586B2 (en) Magneto-optical disk playback method
JP3057518B2 (en) Method of reproducing signal from optical recording medium
GB2077065A (en) Magnetooptic memory medium
JPH04176039A (en) Magneto-optical recording medium
JP2839498B2 (en) Optical disk media
JPH0255854B2 (en)
JPH0327979B2 (en)
JP2553100B2 (en) Information operation method of information recording medium
JPH0263261B2 (en)
JPH0231356A (en) Information recording and reproducing device
JP2803245B2 (en) Information recording and playback method
KR950001876B1 (en) Producing method for optical recording medium
JPH0520720A (en) Magneto-optical recording system
JP2809818B2 (en) recoding media
JPH02101675A (en) Optical information processor
JPS5925290B2 (en) magneto-optical recording device
JPH0527175B2 (en)
JP3359102B2 (en) Magneto-optical recording method
JP3108680B2 (en) Magneto-optical recording / reproducing apparatus and magneto-optical recording medium
JPH05334741A (en) Magneto-optical recording medium