JPH0255397B2 - - Google Patents

Info

Publication number
JPH0255397B2
JPH0255397B2 JP9645088A JP9645088A JPH0255397B2 JP H0255397 B2 JPH0255397 B2 JP H0255397B2 JP 9645088 A JP9645088 A JP 9645088A JP 9645088 A JP9645088 A JP 9645088A JP H0255397 B2 JPH0255397 B2 JP H0255397B2
Authority
JP
Japan
Prior art keywords
powder
less
fertilizer
fine powder
mineral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9645088A
Other languages
Japanese (ja)
Other versions
JPH01270583A (en
Inventor
Masuo Myayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IIDA KOGYOSHO KK
Original Assignee
IIDA KOGYOSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IIDA KOGYOSHO KK filed Critical IIDA KOGYOSHO KK
Priority to JP9645088A priority Critical patent/JPH01270583A/en
Publication of JPH01270583A publication Critical patent/JPH01270583A/en
Publication of JPH0255397B2 publication Critical patent/JPH0255397B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fertilizers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、畳表用い草、水稲等の成育に極めて
有用な粒状肥料並びにその製造法に関するもので
ある。更に詳しくは、珪酸マグネシウム系鉱物の
微粉末を粒状化した肥料並びにそれを製造する方
法である。 〔従来の技術〕 本来い草、水稲等の成育には土壌の水素イオン
濃度(以下PHと言う)は約6.0程度が好ましく、
また肥料成分としては苦土分及び珪酸分は必須要
素と言われている。一方、い草、水稲等の土壌の
PHを調査したところ3.0前後の所が多く、土壌の
PHを調整する必要がある。そこで、現在はPHを上
げるためと、苦土分の補充をするため苦土石灰、
粒状苦土石灰、鉱滓の粗粉を元肥として使用して
いる。 〔発明が解決しようとする課題〕 上述の如く、現在使用されている苦土石灰或い
は粒状苦土石灰は土壌中のPHを上げるためには有
効であつたが、酸化カルシウム分の含量が高いた
め、この苦土石灰を施肥した土壌のCaO/MgO
の当量比が8.0以上となり、い草、水稲の土壌と
して好適な2.0〜8.0の範囲を超えている。そのた
めCaO,MgO間に拮抗作用が働き、苦土分
(MgO)の吸収が妨げられる欠点がある。 更に、苦土石灰の有効態珪酸分は約4.0mg/
100g程度で含有量が少なく、い草、水稲等の土
壌に必要と言われている15〜20mg/100gに比べ
て著しく少なく、有効態珪酸分の補充には不適当
である。 また、鉱滓の粗粉は有効態珪酸分の含有量は多
いが苦土分が著しく少ないため、両者の間に拮抗
作用が働き、い草、水稲等への有効態珪酸分の吸
収が良くない欠点がある。 本発明は土壌のPHを上昇させ、しかもCaOと
MgOの当量比を下げ、い草、水稲等の生育を良
好にする肥料を提供することを目的とするもので
ある。 〔課題を解決するための手段〕 本発明者は苦土石灰、鉱滓粗粉等より更に有効
な素材を探究すべく鋭意研究の結果、珪酸マグネ
シウム系の鉱物粉がPHの上昇に有効であり、かつ
CaO/MgOの当量比を下げる効果が大であり、
これにより、い草、水稲等の苦土分吸収を増大す
ることを見出した。更に、上記鉱物粉をい草、水
稲等に散布し易い粒状剤にするための効率の良い
方法を見出し本発明を完成した。 本発明は、珪酸マグネシウム系鉱物の粒子径が
1.4〜0.6mmの範囲のもの2%以下、0.6mm未満〜
0.15mmの範囲のもの75%以下、0.15mm未満のもの
25%である微粉末を粘結剤により粒状化した肥
料、及び上記珪酸マグネシウム系鉱物の微粉末を
粘結剤の水溶液又は懸濁液に浸漬又は該液を噴霧
して充分に浸潤させた後、その外面に更に上記物
粉末を積層する粒状肥料の製造法である。 本発明に用いる珪酸マグネシウム系鉱物として
は、橄欖石、輝石等の変質鉱で、結晶構造上斜方
晶系、単斜晶系のクリソタイル、斜方晶系のリザ
ダイト、単斜晶系のアンテイゴライト等からなつ
ている。 本発明の珪酸マグネシウム系鉱物微粉の粒径
は、1.4〜0.6mmの範囲のもの2%以下、0.6mm未満
〜0.15mmの範囲のもの75%以下、0.15mm未満のも
の25%以上であり、好ましくは1.4〜0.6mmの範囲
のもの約1〜2%、0.6mm未満〜0.15mmの範囲の
もの約20〜25%、0.15mm未満のもの40〜80%であ
る。 以上の粒度分布にすることにより、粘稠の成形
並びに圃場の施肥に極めて良好である。 本発明に用いる粘結剤は上記珪酸マグネシウム
系鉱物微粉を粒状に成形する目的で用いるもので
ある。従つて、粘結性のあるものであれば何でも
用いられる。しかし、粒状化を工業的に行うため
には、水溶性又は水懸濁性の多糖類、例えば廃糖
密からアルコールを製造する際に生じる残液(以
下糖密と言う)、亜硫酸パルプ廃液の蒸煮工程で
得られるリグニン等、合成樹脂例えばポリビニル
アルコール等が使用できる。 本発明の粒状肥料を製造するには、上記珪酸マ
グネシウム系鉱物微粉に粘結剤を用い通常の造粒
法によつて製造することができる。例えば、転動
機を用いる方法、前押出型造粒機によりノズルか
ら押し出し一定の粒子に切断する方法、パグフイ
ーダーを通してローラー加圧デイスクダイに導き
ノズルより加圧圧縮して押し出し一定の粒子に成
形する方法等である。 この方法中、転動機を用いる方法が工業的大量
生産に好適に用いられる。しかし、この方法を用
いる場合は、上記珪酸マグネシウム系鉱物微粉に
粘結剤の水溶液または懸濁液を噴霧等の適宜の手
段により充分に湿潤させ約2mm前後の粒子の核を
形成した後、この表面に上記珪酸マグネシウム系
鉱物微粉を積層、粒状化し雰囲気温度約80℃位で
15分位乾燥して製品とする。この方法を採用する
と一層効率良く本発明の粒状肥料を製造すること
ができる。 このようにして得られた本発明の粒状肥料は粒
径約3〜8mm前後のものが好適に使用できる。 次に本発明の実施例並びに効果について詳細に
述べる。 〔実施例〕 例 1 輝石変質鉱の粒径が1.4〜0.6mmのもの1.5%、
0.6mm未満〜0.15mmのもの25%、0.15mm未満以下の
ものが73.5%からなる輝石変質鉱微粉を転動機に
連続的に供給しながら、これに糖密の水溶液(固
形分20.5%)を噴霧して粒状化し、粒径約2.0mm
前後の粒子の核を形成した。そしてこの核に輝石
変質鉱微粉を追加積層した後、この粒状物を雰囲
気温度80℃で15分間ドライヤ−乾燥し、8.0mm及
び2.83mmのスクリーンで篩い分けを行つた。以上
の結果、8.0〜2.8mmの粒径の粒剤が約75%の収率
で得られた。 なお、篩い分けの際の規格外品は回収し再粉砕
した後、再度粒状化工程に導き製品とした。 例 2 輝石変質鉱の粒子径が1.4mm〜0.6mmのもの1.5
%、0.6mm未満〜0.15mmのもの25%0.15mm未満以下
のものが75.3%からなる輝石変質鉱微粉を粘結剤
としてポリビニルアルコール(分子量5000)の10
%水溶液を用い例1と同様の方法で粒径8.0mm〜
2.85mmの粒剤が約70%の収率で得られた。 例 3 例1と同じ粒度組成を有する輝石変質鉱微粉に
固形分20%の糖密を同鉱物微粉に対し10%加え、
不二パウダル(株)製の前押出型造粒機を用いて直径
4.0のノズルから押出した後、約5mmに切断した
後、雰囲気温度80℃で15分間ドライヤーで乾燥し
製品とした。 例 4 例1と同じ粒度組成を有する輝石変質鉱を不二
パウダル(株)製デイスクペレツターのパグフイーダ
ーに加え、加液部より固形分25%のリグニン水溶
液を同鉱物微粉に対し約8%近くになるように噴
霧し湿潤状態にしてローラー加圧デイスクダイに
導き加圧圧縮して直径4.0mmのノズルから押し出
した後、約15分間乾燥し製品とした。 試験例 (1) 本発明の肥料の成分と従来のマグネシウム肥
料のPH並びに成分の対比試験 a) 供試試料 本発明の輝石変質鉱を微粉砕した粉体 ドロマイト原鉱を微粉砕した粉体(苦土
石灰) 鉱滓を微粉砕した粉体 b) 試験方法 各供試試料のPH、酸化カルシウム(CaO)、
可溶性苦土(MgO)の含有量、有効態珪酸
分(SiO2)を測定した。測定法は下記によ
る。 PHの測定 試料10gに水50mlを加え5分間充分に撹
拌した後、ホリバPHメーターF−8型((株)
堀場製作所製)を用いて測定した。 原鉱微粉末のCaO,MgOの分析 試料をJIS R9011石灰の化学分析法に準
じて分析した。 土壌のCaO,MgO、有効態珪酸分の分
析は、SPAD SEP−2スペクトロメータ
ー、土壌作物体総合分析装置、富士平工業
(株)製による。 (a) CaO:土壌1.0gにN−酢酸アンモニウ
ム20c.c.を加え30分間振盪抽出し、濾過後
OCPC法で発色させ比色する。 (b) MgO:CaOと同様抽出後、キシリジ
ブル法で発色させ比色する。 (c) 有効態珪酸分(SiO2) 原鉱粉又は土壌3.0をgをPH4.0のN−
酢酸ナトリウム溶液(40℃)で5時間抽
出し、この0.5mlに水8mlを添加した後、
モリブデン酸アンモニウムの塩酸酸性溶
液(110g/)1.0ml、酒石酸(400g/
)1.0ml、アスコルピン酸粉末少量を
加え、硅モリブデン酸青を発色、測定し
た。 c) 試験結果 下記表1の通りであつた。
[Industrial Application Field] The present invention relates to a granular fertilizer extremely useful for growing tatami mat grass, paddy rice, etc., and a method for producing the same. More specifically, the present invention relates to a fertilizer prepared by granulating fine powder of a magnesium silicate mineral, and a method for producing the same. [Conventional technology] The hydrogen ion concentration (hereinafter referred to as PH) of soil is preferably about 6.0 for the growth of rushes, paddy rice, etc.
Furthermore, as fertilizer components, magnesia and silicic acid are said to be essential elements. On the other hand, the soil of rush, paddy rice, etc.
When we investigated the pH, we found that there were many places around 3.0, indicating that the soil
Need to adjust PH. Therefore, we are currently using magnesium lime to raise the pH and replenish the mineral content.
Granular magnesia and coarse powder of mine slag are used as fertilizer. [Problem to be solved by the invention] As mentioned above, currently used magnesia lime or granular magnesia lime is effective for increasing the pH in soil, but because of its high calcium oxide content. , CaO/MgO of soil fertilized with this magnesia
The equivalent ratio is 8.0 or more, which exceeds the range of 2.0 to 8.0, which is suitable as soil for rush and paddy rice. Therefore, there is an antagonistic effect between CaO and MgO, which has the disadvantage of hindering the absorption of magnesium minerals (MgO). Furthermore, the effective silicic acid content of magnesia lime is approximately 4.0mg/
The content is low at around 100g, which is significantly lower than the 15-20mg/100g that is said to be necessary for soils such as rush and paddy rice, making it unsuitable for replenishing active silicic acid. In addition, the coarse powder of mine slag has a high content of active silicic acid but extremely low mineral content, so there is an antagonistic effect between the two, resulting in poor absorption of active silicic acid into rushes, paddy rice, etc. There is. The present invention increases soil PH and also reduces CaO.
The purpose is to provide a fertilizer that lowers the MgO equivalent ratio and improves the growth of rush, paddy rice, etc. [Means for Solving the Problems] As a result of intensive research to find a more effective material than magnesium lime, slag coarse powder, etc., the present inventor found that magnesium silicate mineral powder is effective in increasing the pH. and
It has a great effect of lowering the CaO/MgO equivalence ratio,
It has been found that this increases the absorption of magnesium from rushes, paddy rice, etc. Furthermore, the present invention was completed by discovering an efficient method for making the mineral powder into a granular agent that can be easily spread on rushes, paddy rice, etc. In the present invention, the particle size of the magnesium silicate mineral is
2% or less in the range of 1.4 to 0.6 mm, less than 0.6 mm
75% or less in the 0.15mm range, less than 0.15mm
Fertilizer made by granulating 25% fine powder with a binder, and the fine powder of the above magnesium silicate mineral is immersed in an aqueous solution or suspension of the binder or sprayed with the liquid to sufficiently infiltrate it. This is a method for producing granular fertilizer, in which the above powder is further layered on the outer surface of the granular fertilizer. The magnesium silicate minerals used in the present invention include altered ores such as olivine and pyroxene, and their crystal structures are orthorhombic, monoclinic chrysotile, orthorhombic lizardite, and monoclinic anteigo. It consists of lights etc. The particle size of the magnesium silicate mineral fine powder of the present invention is 2% or less in the range of 1.4 to 0.6 mm, 75% or less in the range of less than 0.6 mm to 0.15 mm, and 25% or more in the range of less than 0.15 mm. Preferably, about 1 to 2% is in the range of 1.4 to 0.6 mm, about 20 to 25% is in the range of less than 0.6 mm to 0.15 mm, and 40 to 80% is less than 0.15 mm. By having the above particle size distribution, it is extremely suitable for viscous molding and field fertilization. The binder used in the present invention is used for the purpose of forming the above-mentioned magnesium silicate mineral fine powder into granules. Therefore, anything that has caking properties can be used. However, in order to carry out granulation industrially, it is necessary to use water-soluble or water-suspended polysaccharides, such as the residual liquid produced when producing alcohol from waste molasses (hereinafter referred to as molasses), and the waste liquid from sulfite pulp. Lignin obtained in the steaming process and synthetic resins such as polyvinyl alcohol can be used. The granular fertilizer of the present invention can be produced by a conventional granulation method using the above-mentioned magnesium silicate mineral fine powder and a binder. For example, a method using a rolling machine, a method in which the particles are extruded through a nozzle using a pre-extrusion type granulator and cut into uniform particles, and a method in which the particles are passed through a pug feeder to a roller pressure disk die, compressed under pressure through a nozzle, and extruded to form uniform particles. etc. Among these methods, a method using a rolling machine is preferably used for industrial mass production. However, when using this method, the above-mentioned magnesium silicate-based mineral fine powder is sufficiently moistened with an aqueous solution or suspension of the binder by an appropriate means such as spraying to form particle nuclei of approximately 2 mm in size, and then the The above magnesium silicate mineral fine powder is layered on the surface and granulated at an ambient temperature of about 80℃.
Dry for about 15 minutes and use as a product. By employing this method, the granular fertilizer of the present invention can be produced more efficiently. The granular fertilizer of the present invention thus obtained can preferably have a particle size of about 3 to 8 mm. Next, embodiments and effects of the present invention will be described in detail. [Example] Example 1 1.5% of pyroxene altered ore with a grain size of 1.4 to 0.6 mm;
While continuously feeding pyroxene altered ore fine powder consisting of 25% of particles less than 0.6 mm to 0.15 mm and 73.5% of particles less than 0.15 mm to the rolling machine, a molasses aqueous solution (solid content 20.5%) was added to it. Spray and granulate, particle size approximately 2.0mm
It formed the nucleus of the front and rear particles. After additionally layering pyroxene altered ore fine powder on this core, the granules were dried in a dryer at an ambient temperature of 80° C. for 15 minutes, and sieved through 8.0 mm and 2.83 mm screens. As a result, granules having a particle size of 8.0 to 2.8 mm were obtained with a yield of about 75%. In addition, non-standard products during sieving were collected, re-pulverized, and then passed through the granulation process again to produce products. Example 2 Pyroxene altered ore with a particle size of 1.4 mm to 0.6 mm 1.5
%, 25% less than 0.6 mm to 0.15 mm, 75.3% less than 0.15 mm 10% of polyvinyl alcohol (molecular weight 5000) using pyroxene altered ore fine powder as a binder.
% aqueous solution in the same manner as in Example 1 to obtain particles with a particle size of 8.0 mm or more.
Granules of 2.85 mm were obtained with a yield of about 70%. Example 3 Add 10% molasses with a solid content of 20% to the fine powder of pyroxene altered mineral having the same particle size composition as Example 1,
diameter using a pre-extrusion type granulator manufactured by Fuji Paudal Co., Ltd.
After extruding it through a 4.0 nozzle, it was cut into approximately 5 mm pieces and dried in a dryer at an ambient temperature of 80°C for 15 minutes to obtain a product. Example 4 Pyroxene altered ore having the same particle size composition as in Example 1 was added to the pug feeder of a disk pelletizer manufactured by Fuji Paudal Co., Ltd., and a lignin aqueous solution with a solid content of 25% was added from the liquid adding section to approximately 8% of the mineral fine powder. The mixture was sprayed to a wet state, introduced into a roller pressure disc die, compressed under pressure, extruded through a nozzle with a diameter of 4.0 mm, and dried for about 15 minutes to form a product. Test Example (1) Comparison test of PH and components of fertilizer of the present invention and conventional magnesium fertilizer a) Test sample Powder obtained by pulverizing pyroxene altered ore of the present invention Powder obtained by pulverizing dolomite raw ore ( Magnesium lime) Powder obtained by pulverizing slag b) Test method PH of each test sample, calcium oxide (CaO),
The content of soluble magnesia (MgO) and effective silicic acid content (SiO 2 ) were measured. The measurement method is as follows. Measurement of PH Add 50 ml of water to 10 g of sample, stir thoroughly for 5 minutes, and then use Horiba PH meter F-8 model (Co., Ltd.).
(manufactured by Horiba, Ltd.). Analysis of CaO and MgO in raw ore fine powder The sample was analyzed according to JIS R9011 chemical analysis method for lime. Analysis of soil CaO, MgO, and active silicic acid content is carried out using SPAD SEP-2 spectrometer, soil crop comprehensive analyzer, and Fujihira Kogyo.
Manufactured by Co., Ltd. (a) CaO: Add 20 c.c. of N-ammonium acetate to 1.0 g of soil, shake and extract for 30 minutes, and after filtration
Develop and compare colors using the OCPC method. (b) MgO: After extraction in the same way as CaO, color is developed using the xyridible method and compared. (c) Effective silicic acid content (SiO 2 ) 3.0 g of raw ore powder or soil is mixed with N− of PH 4.0.
After extracting with sodium acetate solution (40℃) for 5 hours and adding 8 ml of water to this 0.5 ml,
Ammonium molybdate acidic solution of hydrochloric acid (110g/) 1.0ml, tartaric acid (400g/
), and a small amount of ascorbic acid powder was added, and silicomolybdate blue was colored and measured. c) Test results The results were as shown in Table 1 below.

【表】 以上の結果より明らかな通り、本発明の有
効成分である輝石変質鉱微粉(試料1)は苦
土石灰(試料2)と対比した場合、CaO分が
少なく、い草、水稲に対するMgOの吸収に
相助作用がある。また有効態珪酸分も苦土石
灰の4.3mg/100gに対し、40.9mg/100gと約
10倍も高く有効態珪酸の土壌への補給量は高
い。 一方、鉱滓の微粉砕粉末(試料3)と対比
した場合、鉱滓微粉末はMgO分がかなり低
い。そのためMgO分と有効珪酸分の間に拮
抗作用が働き、い草、水稲に対する有効珪酸
分の吸収が阻害される。 このように、本発明の有効成分である珪酸
マグネシウム系鉱物の代表例である輝石変質
鉱微粉はい草、水稲等の肥料として極めて適
している。 (2) い草の圃場における生育試験 a) 供試試料 実施例1で得られた本発明の肥料 実施例2で得られた本発明の肥料 実施例4で得られた本発明の肥料 苦土石灰微粉を用いて実施例1と同様に
製造した肥料(対照) 鉱滓微粉を用いて実施例1と同様に製造
した肥料(対照) b) 試験法法 供試試料を試験い草圃場に200Kg/10aの
割合で散布し、い草の平均茎長、先枯れ部の
長さ、有効茎数(茎が約5.0cm程度に伸びた
発芽茎数約30本の生育後の有効茎数)をそれ
ぞれ測定した。 なお、各試料のPH、CaO,MgO並びに有
効態珪酸を試験例1と同様の方法で測定し
た。 c) 試験結果 下記表2の通りである。
[Table] As is clear from the above results, the pyroxene altered ore fine powder (sample 1), which is the active ingredient of the present invention, has a lower CaO content when compared with magnesia lime (sample 2), and has a lower MgO content for rush and paddy rice. It has a synergistic effect on absorption. In addition, the effective silicic acid content is approximately 40.9mg/100g, compared to 4.3mg/100g of magnesia lime.
The amount of effective silicic acid supplied to the soil is 10 times higher. On the other hand, when compared with the finely ground slag powder (sample 3), the MgO content of the slag fine powder is considerably lower. Therefore, an antagonistic effect acts between the MgO content and the effective silicic acid content, and the absorption of the effective silicic acid content into rush and paddy rice is inhibited. As described above, the fine powder of pyroxene alteration mineral, which is a typical example of the magnesium silicate mineral that is the active ingredient of the present invention, is extremely suitable as a fertilizer for rushes, paddy rice, etc. (2) Growth test of rush in field a) Test sample Fertilizer of the present invention obtained in Example 1 Fertilizer of the present invention obtained in Example 2 Fertilizer of the present invention obtained in Example 4 Magnesium lime Fertilizer manufactured in the same manner as in Example 1 using fine powder (control) Fertilizer manufactured in the same manner as in Example 1 using fine slag powder (control) b) Test method Test sample was placed in a test rush field at 200 kg/10 a. The average stem length, the length of the tip of the withered part, and the effective number of stems (the effective number of stems after 30 germinated stems with stems that have grown to about 5.0 cm) were measured. Note that the PH, CaO, MgO, and active silicic acid of each sample were measured in the same manner as in Test Example 1. c) Test results are shown in Table 2 below.

〔発明の効果〕〔Effect of the invention〕

本発明は土壌中のPHを上昇させ、CaOとMgO
の当量比を下げ、植物特にい草、水稲の生育を良
好にする肥料並びに同肥料を効率的に生産する方
法を提供する極めて優れた発明である。
The present invention increases the PH in soil and increases CaO and MgO
This is an extremely excellent invention that provides a fertilizer that lowers the equivalent ratio of fertilized rice and improves the growth of plants, especially rush and rice, as well as a method for efficiently producing the fertilizer.

Claims (1)

【特許請求の範囲】 1 珪酸マグネシウム系鉱物の粒径が1.4mm〜0.6
mmの範囲のもの2%以下、0.6mm未満〜0.15mmの
範囲のもの75%以下、0.15mm未満のもの25%以上
である微粉末を粘結剤により粒状化したことを特
徴とする粒状肥料。 2 請求項第1項記載の珪酸マグネシウム系鉱物
の微粉末を粒状化するに当たり、当該鉱物粉末を
粘結剤の水溶液又は懸濁液によつて充分に湿潤さ
せた後、その外面に当該鉱物粉末を積層すること
を特徴とする粒状肥料の製造法。
[Claims] 1. The particle size of the magnesium silicate mineral is 1.4 mm to 0.6 mm.
A granular fertilizer characterized by granulating fine powder with a binder, which is 2% or less in the mm range, 75% or less in the range of less than 0.6 mm to 0.15 mm, and 25% or more in the less than 0.15 mm range. . 2. When granulating the fine powder of the magnesium silicate mineral described in claim 1, after sufficiently moistening the mineral powder with an aqueous solution or suspension of a binder, the mineral powder is coated on the outer surface of the mineral powder. A method for producing granular fertilizer characterized by layering.
JP9645088A 1988-04-18 1988-04-18 Granular fertilizer and production thereof Granted JPH01270583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9645088A JPH01270583A (en) 1988-04-18 1988-04-18 Granular fertilizer and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9645088A JPH01270583A (en) 1988-04-18 1988-04-18 Granular fertilizer and production thereof

Publications (2)

Publication Number Publication Date
JPH01270583A JPH01270583A (en) 1989-10-27
JPH0255397B2 true JPH0255397B2 (en) 1990-11-27

Family

ID=14165357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9645088A Granted JPH01270583A (en) 1988-04-18 1988-04-18 Granular fertilizer and production thereof

Country Status (1)

Country Link
JP (1) JPH01270583A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59507760D1 (en) * 1994-03-25 2000-03-16 Rainer Holland Process for the production of fertilizers for the supply of bases to all soils
WO2001046089A1 (en) * 1999-12-21 2001-06-28 Asahi Kasei Kabushiki Kaisha Granular silica fertilizers
JP2002068869A (en) * 2000-09-04 2002-03-08 Ig Tech Res Inc Siliceous fertilizer
JP5002096B2 (en) * 2001-08-10 2012-08-15 アイジー工業株式会社 Recycled fertilizer and soil conditioner
FR2878173B1 (en) * 2004-11-25 2007-01-19 Valoragri Sa Sa PROCESS FOR TREATING EXTINCTOR POWDER WASTE, AND FERTILIZER OBTAINED BY SUCH A METHOD
BRPI1104018B1 (en) 2011-08-31 2016-12-20 Cargill Inc anti-dusting additive, process for manufacturing anti-dusting additive, use of anti-dusting additive, method for reducing fertilizer dust emission and method for reducing dust emission in the mining industry
WO2014032131A1 (en) 2012-08-30 2014-03-06 Cargill, Incorporated Sugar-containing additive as anti-dusting agent
DE102013004597A1 (en) * 2013-03-15 2014-09-18 K-Utec Ag Salt Technologies Process for press granulation of non-ductile salts
CN110283021A (en) * 2019-08-12 2019-09-27 河北百禾丰化肥有限公司 A kind of ecotype compound fertilizer preparation method

Also Published As

Publication number Publication date
JPH01270583A (en) 1989-10-27

Similar Documents

Publication Publication Date Title
EA021511B1 (en) Dispersible sulphur fertilizer pellets
CN103304311B (en) Zeolite controlled-release fertilizer and manufacturing method for same
US20210147310A1 (en) Granulated polyhalite and potash mixture and a process for the production thereof
US4402891A (en) Method of processing waste cement kiln dust to make a soil treatment composition
JPH0255397B2 (en)
US3214261A (en) Granular soil neutralizer and the process of preparing said product
CN106220338A (en) A kind of pelletize disintegrating agent for producing rounded grain mineral fertilizer
EP3758836B1 (en) Potash dust granulation process
TWI555721B (en) Sulfur fertilizer
SI9010019A (en) Process for producing a soil-conditioning agent
JP3029190B2 (en) Granular mixed phosphate fertilizer
DE2748152C3 (en) Process for the production of granulated kieserite
KR20120041488A (en) Method for improving soil using granite waste powder
JPH07121836B2 (en) Soil improvement fertilizer
JP2002047087A (en) Fertilizer containing oyster shell
RU2804199C1 (en) Method for granulating highly effective organomineral fertilizer biohumus
RU2775276C1 (en) Organomineral fertilizer based on the zoocompost of the black lion fly material
KR100301699B1 (en) Granular Organic Silicate Fertilizer and Manufacturing Method of the Same
RU2139270C1 (en) Method of preparing organomineral fertilizer
JP4218761B2 (en) Granulation method of highly dehydrated lime cake
AT396465B (en) Process for producing a particulate composition for soil improvement
SU1198045A1 (en) Method of granulating phosphorite meal
RU2029756C1 (en) Granulated phosphate-potassium fertilizer production method
JPS599513B2 (en) Calcareous fertilizer manufacturing method
JPS61221283A (en) Preparation of silicic acid-based particulate thawing agent

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees