JPH0253692B2 - - Google Patents

Info

Publication number
JPH0253692B2
JPH0253692B2 JP57115953A JP11595382A JPH0253692B2 JP H0253692 B2 JPH0253692 B2 JP H0253692B2 JP 57115953 A JP57115953 A JP 57115953A JP 11595382 A JP11595382 A JP 11595382A JP H0253692 B2 JPH0253692 B2 JP H0253692B2
Authority
JP
Japan
Prior art keywords
engine
valve
air
gas
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57115953A
Other languages
Japanese (ja)
Other versions
JPS596113A (en
Inventor
Hideki Koseki
Tamotsu Nomaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11595382A priority Critical patent/JPS596113A/en
Publication of JPS596113A publication Critical patent/JPS596113A/en
Publication of JPH0253692B2 publication Critical patent/JPH0253692B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00764Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being a vehicle driving condition, e.g. speed

Description

【発明の詳細な説明】 この発明はエンジン駆動冷暖房給湯装置に関す
るものである 第3図は、例えば雑誌(IEE PROC.Vol.127
pt.A.No.5 June 1980)に記載された従来のエン
ジン駆動暖房給湯装置の構成図であり、図におい
て、1はガスエンジン、2はガスエンジンに結合
された圧縮機、3は凝縮器、4は蒸発器、5は減
圧装置、6は冷媒配置であり、2,3,4,5,
6によりヒートポンプ回路が構成されている。1
1はガスエンジン1へガス燃料を供給する燃料供
給管、14はガスエンジン1からの燃焼排気ガス
を大気へ捨てる排気管、23は燃焼排気ガスより
水に熱回収を行なう排気ガス熱交換器、25は凝
縮器3、ガスエンジン1、排気ガス熱交換器23
に給水する水配管である。32はガスエンジン1
から圧縮機2に動力を伝達するベルトである。
[Detailed Description of the Invention] The present invention relates to an engine-driven cooling/heating/water heating system.
pt.A.No.5 June 1980), in which 1 is a gas engine, 2 is a compressor coupled to the gas engine, and 3 is a condenser. , 4 is an evaporator, 5 is a pressure reducing device, 6 is a refrigerant arrangement, 2, 3, 4, 5,
6 constitutes a heat pump circuit. 1
1 is a fuel supply pipe that supplies gas fuel to the gas engine 1; 14 is an exhaust pipe that discharges combustion exhaust gas from the gas engine 1 to the atmosphere; 23 is an exhaust gas heat exchanger that recovers heat from the combustion exhaust gas into water; 25 is a condenser 3, a gas engine 1, an exhaust gas heat exchanger 23
This is the water piping that supplies water to the area. 32 is gas engine 1
This is a belt that transmits power from the compressor 2 to the compressor 2.

次に動作について説明する。 Next, the operation will be explained.

燃料供給管11より供給されたガス燃料は吸気
管(図示せず)より導入される空気と混合され、
ガスエンジン1に供給される。点火プラグ(図示
せず)によつて点火された混合気は普通の内燃機
関同様出力を生じる。出力はベルト32を介して
圧縮機2に伝達される。圧縮機2、凝縮器3、蒸
発器4、減圧装置5、冷媒配管6により構成され
るヒートポンプにより、蒸発器4で吸熱が、凝縮
器3で放熱が行なわれる。給水管25より給水さ
れた水は、凝縮器3、ガスエンジン1、排気ガス
熱交換器23を通過し、徐々に加熱され、温水と
なる。この温水は、室内暖房や給湯に用いられ
る。一方、蒸発器4に供給された空気は、蒸発器
4で放熱されたのち、系外に排出される。
The gas fuel supplied from the fuel supply pipe 11 is mixed with air introduced from the intake pipe (not shown),
It is supplied to the gas engine 1. The mixture ignited by a spark plug (not shown) produces power similar to a conventional internal combustion engine. Power is transmitted to compressor 2 via belt 32. A heat pump composed of a compressor 2, a condenser 3, an evaporator 4, a pressure reducing device 5, and a refrigerant pipe 6 absorbs heat in the evaporator 4 and radiates heat in the condenser 3. Water supplied from the water supply pipe 25 passes through the condenser 3, the gas engine 1, and the exhaust gas heat exchanger 23, and is gradually heated to become hot water. This hot water is used for room heating and hot water supply. On the other hand, the air supplied to the evaporator 4 is discharged to the outside of the system after being radiated by the evaporator 4.

従来のエンジン駆動冷暖房給湯装置において、
出力制御は自動車等で一般に用いられている吸気
絞り弁を用いて行なわれている。吸気絞り弁はエ
ンジンが吸入する混合気密度を変えることによつ
て出力を制御しているが部分負荷時は絞り弁にお
ける圧力降下による吸込み仕事が増大し、熱効率
を低下させる要因となつている。エンジン駆動冷
暖房給湯装置においても吸気絞り弁による部分負
荷時の熱効率低下のためシステム全体としての成
積係数が低下するという欠点があつた。
In conventional engine-driven heating/cooling/water heating systems,
Output control is performed using an intake throttle valve commonly used in automobiles and the like. The intake throttle valve controls the output by changing the density of the air-fuel mixture that the engine takes in, but when the engine is under partial load, the suction work increases due to the pressure drop at the throttle valve, which is a factor that reduces thermal efficiency. Engine-driven air-conditioning, heating, and water heating systems also have the disadvantage that the thermal efficiency of the intake throttle valve during partial load is reduced, resulting in a reduction in the product coefficient of the system as a whole.

この発明は上記欠点を改善するために吸気絞り
弁、吸気加熱バイパス管路開閉弁の開度調節によ
つて出力制御を行ない。吸気絞り弁のみで出力制
御を行なうよりも高効率な運転を行なうことによ
りシステム全体としての成積係数の向上したエン
ジン駆動冷暖房給湯装置を提供することを目的と
している。
In order to improve the above-mentioned drawbacks, the present invention performs output control by adjusting the openings of an intake throttle valve and an intake air heating bypass line opening/closing valve. It is an object of the present invention to provide an engine-driven air-conditioning, heating, and hot-water supply system in which the production coefficient of the system as a whole is improved by performing more efficient operation than when output control is performed using only an intake throttle valve.

以下この発明の一実施例を図について説明す
る。第1図において、1はガスエンジン、2はガ
スエンジンに結合された圧縮機、3は室外熱交換
器、4は室内熱交換器、5は減圧装置、6は冷媒
配管である。7はエアフイルタ、8は電動式吸気
絞り弁、9は吸気管、10はエアフイルタ7と吸
気絞り弁8の間に設けらられた空気燃料混合部で
ある。11は空気燃料混合部10に開放されてい
る燃料供給管、12は電動式燃料弁、13は定圧
燃料供給装置である。14は排気管、15は排気
保有熱を空気燃料混合気に回収する吸気加熱熱交
換器、16は吸気管9と吸気加熱熱交換器15の
間に設けられた混合気分岐用バイパス管、17は
吸気管9と吸気加熱熱交換器15の間に設けられ
た混合気合流用バイパス管、18は混合気合流用
バイパス管に設けられ、加熱される混合気の流量
を調節するバイパス弁である。19は排気管14
に設けられた酸素センサ、20は酸素センサ19
の出力に応じて電動式燃料弁12を駆動させる燃
料弁制御装置である。21は室内熱交換器4に設
けられた室温、測定用熱電対、22は熱電対21
の出力に応じて電動式吸気絞り弁8、電動式バイ
パス弁18を駆動させることによつてエンジン出
力を制御するエンジン出力制御装置である。な
お、圧縮機2、冷媒配管6、室外熱交換器3、減
圧装置5、室内熱交換器4によつてヒートポンプ
が形成される。図示はしていないが冷媒の流れる
方向を四方弁によつて変え室内の冷暖房は可能と
なる。23は排気ガスの保有熱で水を暖める排気
ガス熱交換器、24は熱交換器23で暖められた
湯を貯える貯湯タンク、25は熱交換器23と貯
湯タンク24を結ぶ水配管、26は水配管25の
途中に設置された水循環用ポンプ、27は貯湯タ
ンクへの給水量を調節する給水バルブ、28は貯
湯タンクからの給湯量を調節する給湯バルブであ
る。なお図示はしていないが給湯タンク24に接
続される熱交換器は排気ガス熱交換器23の他に
エンジン冷却水の保有熱からの熱回収を行なうエ
ンジン冷却水熱交換器でも良い。29は貯湯タン
クの湯温を測定する熱電対でこの出力はエンジン
出力制御装置22にインプツトされる。30は排
気ガス浄化用三元触媒である。31は電気信号線
を示す。
An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, 1 is a gas engine, 2 is a compressor connected to the gas engine, 3 is an outdoor heat exchanger, 4 is an indoor heat exchanger, 5 is a pressure reducing device, and 6 is a refrigerant pipe. 7 is an air filter, 8 is an electric intake throttle valve, 9 is an intake pipe, and 10 is an air-fuel mixing section provided between the air filter 7 and the intake throttle valve 8. 11 is a fuel supply pipe open to the air-fuel mixing section 10, 12 is an electric fuel valve, and 13 is a constant pressure fuel supply device. 14 is an exhaust pipe; 15 is an intake air heating heat exchanger for recovering the heat retained in the exhaust gas into the air-fuel mixture; 16 is an air mixture branching bypass pipe provided between the intake pipe 9 and the intake air heating heat exchanger 15; 17 Reference numeral 18 designates a bypass pipe for air-fuel mixture merging provided between the intake pipe 9 and the intake air heating heat exchanger 15, and 18 a bypass valve provided in the bypass pipe for air-fuel mixture merging to adjust the flow rate of the air-fuel mixture to be heated. 19 is the exhaust pipe 14
An oxygen sensor 20 is provided in the oxygen sensor 19.
This is a fuel valve control device that drives an electric fuel valve 12 according to the output of the fuel valve 12. 21 is a room temperature measurement thermocouple provided in the indoor heat exchanger 4; 22 is a thermocouple 21;
This is an engine output control device that controls engine output by driving an electric intake throttle valve 8 and an electric bypass valve 18 according to the output of the engine. Note that the compressor 2, refrigerant piping 6, outdoor heat exchanger 3, pressure reducing device 5, and indoor heat exchanger 4 form a heat pump. Although not shown, a four-way valve changes the direction in which the refrigerant flows, making it possible to heat and cool the room. 23 is an exhaust gas heat exchanger that warms water using the heat retained in the exhaust gas; 24 is a hot water storage tank that stores hot water heated by the heat exchanger 23; 25 is a water pipe that connects the heat exchanger 23 and the hot water storage tank 24; A water circulation pump is installed in the middle of the water pipe 25, 27 is a water supply valve that adjusts the amount of water supplied to the hot water storage tank, and 28 is a hot water supply valve that adjusts the amount of hot water supplied from the hot water storage tank. Although not shown, the heat exchanger connected to the hot water tank 24 may be an engine cooling water heat exchanger that recovers heat from the heat retained in the engine cooling water, in addition to the exhaust gas heat exchanger 23. A thermocouple 29 measures the temperature of hot water in the hot water storage tank, and its output is input to the engine output control device 22. 30 is a three-way catalyst for exhaust gas purification. 31 indicates an electric signal line.

このように構成されたシステムの動作としては
ガスエンジン1によつて駆動された圧縮機2、室
内熱交換器4、室外熱交換器3減圧装置5により
冷暖房運転がなされる。排気管14を通つてきた
排気ガスは三元触媒30で炭化水素、一酸化炭
素、窒素酸化物が浄化された後、排気ガス熱交換
器23で排気の保有熱が水に与えられる。給水バ
ルブ27によつて貯湯タンク24に貯えられた水
は水循環用ポンプ26によつて排ガス熱交換器と
の間を循環し温度が上昇する。沸いた湯は給湯ポ
ンプ28によつて取り出される。
As for the operation of the system configured in this manner, the compressor 2 driven by the gas engine 1, the indoor heat exchanger 4, the outdoor heat exchanger 3 and the pressure reducing device 5 perform heating and cooling operations. The exhaust gas that has passed through the exhaust pipe 14 is purified of hydrocarbons, carbon monoxide, and nitrogen oxides by the three-way catalyst 30, and then the heat retained in the exhaust gas is given to water by the exhaust gas heat exchanger 23. Water stored in the hot water storage tank 24 by the water supply valve 27 is circulated between the exhaust gas heat exchanger and the water circulation pump 26, and its temperature increases. Boiled water is taken out by a hot water pump 28.

なお、ガスエンジン1は圧縮機2側の冷媒回路
のバイパスか圧縮機2とガスエンジン1の軸の間
に設置されたクラツチによりアンロードされてか
らスタータにより始動される。エンジン始動後ア
ンロードは解除される。設定された室温もしくは
湯温と実際の室温もしくは湯温との相違に応じて
ガスエンジン1の出力はガスエンジン出力制御回
路22によつて設定される。この時のエンジンの
熱効率については図に基づいて説明する。第2図
はあるエンジン回転数におけるエンジンの熱効率
とトルク、吸気絞り弁開度、バイパス弁開度の関
係を示したものである。横軸はトルク縦軸は熱効
率でA点は吸気絞り弁8が全開でバイパス弁18
は全閉の点である。一点鎖線はバイパス弁18を
全閉のまま吸気絞り弁8の開度のみを変えてトル
ク制御を行なつた従来の運転法による熱効率で、
吸気絞り弁開度を小さくする程シリンダ内に吸込
まれる混合気の重量が減少するのでトルクは減少
し又吸込み損失が増大するので熱効率も減少す
る。実線は吸気絞り弁8を全開に保、吸気加熱バ
イパス弁18の開度を段々と大きくしていつた時
の熱効率を示し、A点を出発点として徐々にトル
クは小さくなりそれに伴つて熱効率も小さくなる
が吸気絞り弁開度のみによつて出力を制御した1
点鎖線の従来の熱効率よりも高くなる。これは吸
気温度の上昇に伴つて吸気圧が上昇し、混合気の
密度は小さくなるが、エンジンに供給される全体
としての混合気の圧力は混合気の主流路があるの
で、大気圧とあまり変わらず、その結果、吸い込
み損失が減少するのと空気と燃料の混合が良くな
り点火性が改善され機関のサイクル間の変動、気
筒間の不均一が抑えられるためである。なお吸気
絞り弁開度と吸気加熱バイパス弁開度によつて混
合気の密度、即ち重量流量を制御して、エンジン
の出力制御を行なうと必然的にガスエンジン1に
供給される混合気の空燃比は変化するので酸素セ
ンサ19からの信号によつて燃料弁制御装置20
が電動式燃料弁12を作動させて常に所定の空燃
比が保たれる。その結果三元触媒が有効に働いて
一酸化炭素、炭化水素、窒素酸化物が浄化され
る。また図示はしていないがこの時点火時期は自
動的に調節され、点火時期の不適合による熱効率
の低下は起こらない。なお必要があれば吸気絞り
弁8をB点まで絞りそれからバイパス弁18を次
第に開いていけばB点を出発点とした破線のよう
な熱効率での運転も可能である。
The gas engine 1 is unloaded by a bypass of the refrigerant circuit on the compressor 2 side or by a clutch installed between the shafts of the compressor 2 and the gas engine 1, and then is started by the starter. Unloading is canceled after the engine starts. The output of the gas engine 1 is set by the gas engine output control circuit 22 according to the difference between the set room temperature or hot water temperature and the actual room temperature or hot water temperature. The thermal efficiency of the engine at this time will be explained based on the diagram. FIG. 2 shows the relationship between engine thermal efficiency, torque, intake throttle valve opening, and bypass valve opening at a certain engine speed. The horizontal axis is the torque. The vertical axis is the thermal efficiency. At point A, the intake throttle valve 8 is fully open and the bypass valve 18 is
is the point of complete closure. The one-dot chain line shows the thermal efficiency according to the conventional operation method in which torque control was performed by changing only the opening of the intake throttle valve 8 while keeping the bypass valve 18 fully closed.
As the opening of the intake throttle valve becomes smaller, the weight of the air-fuel mixture sucked into the cylinder decreases, so the torque decreases, and the suction loss increases, so the thermal efficiency also decreases. The solid line shows the thermal efficiency when the intake throttle valve 8 is kept fully open and the opening degree of the intake heating bypass valve 18 is gradually increased.Starting from point A, the torque gradually decreases and the thermal efficiency also decreases accordingly. However, the output was controlled only by the intake throttle valve opening.
The thermal efficiency is higher than the conventional thermal efficiency shown by the dotted chain line. This is because as the intake air temperature rises, the intake pressure increases and the density of the mixture decreases, but the overall pressure of the mixture supplied to the engine is not much higher than the atmospheric pressure because there is a main flow path for the mixture. As a result, suction losses are reduced, air and fuel are better mixed, ignition performance is improved, engine cycle-to-cycle fluctuations and cylinder-to-cylinder non-uniformity are suppressed. Note that if the density of the air-fuel mixture, that is, the weight flow rate, is controlled by the opening degree of the intake throttle valve and the opening degree of the intake heating bypass valve, and the output of the engine is controlled, the air-fuel mixture supplied to the gas engine 1 will inevitably be Since the fuel ratio changes, the fuel valve control device 20 is controlled by the signal from the oxygen sensor 19.
operates the electric fuel valve 12 to maintain a predetermined air-fuel ratio at all times. As a result, the three-way catalyst works effectively to purify carbon monoxide, hydrocarbons, and nitrogen oxides. Further, although not shown, the ignition timing is automatically adjusted at this point, so that thermal efficiency does not decrease due to mismatched ignition timing. If necessary, by restricting the intake throttle valve 8 to point B and then gradually opening the bypass valve 18, it is also possible to operate at the thermal efficiency shown by the broken line starting from point B.

以上のように、この発明によれば空調用圧縮
機、この圧縮機を駆動するガスエンジン、エンジ
ン保有熱で水を暖める給湯部、上記ガスエンジン
に燃料ガスと空気との混合ガスを供給する吸気
管、上記ガスエンジンの排気ガスを排出する排気
管、上記吸気管を開閉する第1の弁、上記吸気管
を第1の弁の下流側で分岐して、上記混合ガスを
バイパスするバイパス管、このバイパス管内の上
記混合ガスを、上記ガスエンジンの排熱により加
熱する吸気加熱交換器、上記バイパス管を開閉す
る第2の弁、並びに室温または上記給湯部の設定
温度と検出温度の差が小なるときは、第1の弁開
度を小に、第2の弁開度を大に開閉制御する制御
部によりエンジン駆動冷暖房給湯装置を構成した
ので、大幅な熱効率の向上が達成でき、それによ
つてガスエンジン駆動冷暖房給湯装置の成績係数
が向上する効果がある。特に。混合気の重量が小
のとき(第1の弁開度が小のとき)バイパス流量
割合を大にすると、吸い込み損失の改善効果が大
となつて熱効率が改善される。
As described above, the present invention includes an air conditioning compressor, a gas engine that drives the compressor, a hot water supply unit that warms water using the heat retained in the engine, and an intake air supply that supplies a mixed gas of fuel gas and air to the gas engine. a pipe, an exhaust pipe that discharges exhaust gas from the gas engine, a first valve that opens and closes the intake pipe, a bypass pipe that branches the intake pipe downstream of the first valve and bypasses the mixed gas; An intake air heating exchanger that heats the mixed gas in the bypass pipe using the exhaust heat of the gas engine, a second valve that opens and closes the bypass pipe, and a small difference between the room temperature or the set temperature of the hot water supply section and the detected temperature. Since the engine-driven air conditioning/heating and hot water supply system is configured with a control unit that controls opening/closing of the first valve opening to a small degree and the second valve opening to a large degree, a significant improvement in thermal efficiency can be achieved. This has the effect of improving the coefficient of performance of the gas engine-driven air-conditioning, heating, and hot-water supply system. especially. When the weight of the air-fuel mixture is small (when the first valve opening is small), increasing the bypass flow rate increases the suction loss improvement effect and improves thermal efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例におけるガスエン
ジン駆動冷暖房給湯装置を示す構成図である。第
2図はあるエンジン回転数におけるエンジンの熱
効率とトルク、吸気加熱バイパス開度、吸気絞り
弁開度の関係を示す特性図である。第3図は従来
のエンジン駆動暖房給湯装置の構成図である。 図中1はガスエンジン、2は圧縮機、3は室外
熱交換器、4は室内熱交換器、5は減圧装置、6
は冷媒配管、7はエアフイルタ、8は吸気絞り
弁、9は吸気管、10は空気燃料混合部、11は
燃料供給管、12は燃料弁、13は定圧燃料供給
装置、14は排気管、15は吸気加熱熱交換器、
16は混合気分岐用バイパス管、17は混合気合
流用バイパス管、18はバイパス弁、19は酸素
センサ、20は燃料弁制御装置、21は室温測定
用熱電対、22はエンジン出力制御装置、23は
排気ガス熱交換器、24は貯湯タンク、25は水
配管、26は水循環用ポンプ、27は給水バル
ブ、28は給湯バルブ、29は湯温測定用熱電
対、30は排気ガス浄化用三元触媒、31は電気
信号線である。
FIG. 1 is a configuration diagram showing a gas engine-driven air-conditioning/heating/hot-water supply apparatus in one embodiment of the present invention. FIG. 2 is a characteristic diagram showing the relationship between engine thermal efficiency, torque, intake air heating bypass opening, and intake throttle valve opening at a certain engine speed. FIG. 3 is a configuration diagram of a conventional engine-driven heating and hot water supply device. In the figure, 1 is a gas engine, 2 is a compressor, 3 is an outdoor heat exchanger, 4 is an indoor heat exchanger, 5 is a pressure reducing device, 6
1 is a refrigerant pipe, 7 is an air filter, 8 is an intake throttle valve, 9 is an intake pipe, 10 is an air-fuel mixing section, 11 is a fuel supply pipe, 12 is a fuel valve, 13 is a constant pressure fuel supply device, 14 is an exhaust pipe, 15 is an intake air heating heat exchanger,
16 is a bypass pipe for mixture branching, 17 is a bypass pipe for mixture merging, 18 is a bypass valve, 19 is an oxygen sensor, 20 is a fuel valve control device, 21 is a thermocouple for measuring room temperature, 22 is an engine output control device, 23 is an exhaust gas heat exchanger, 24 is a hot water storage tank, 25 is a water pipe, 26 is a water circulation pump, 27 is a water supply valve, 28 is a hot water supply valve, 29 is a thermocouple for measuring hot water temperature, 30 is a ternary for exhaust gas purification The catalyst, 31 is an electric signal line.

Claims (1)

【特許請求の範囲】[Claims] 1 空調用圧縮機、この圧縮機を駆動するガスエ
ンジン、エンジン保有熱で水を暖める給湯部、上
記ガスエンジンに燃料ガスと空気との混合ガスを
供給する吸気管、上記ガスエンジンの排気ガスを
排出する排気管、上記吸気管を開閉する第1の
弁、上記吸気管を第1の弁の下流側で分岐して、
上記混合ガスをバイパスするバイパス管、このバ
イパス管内の上記混合ガスを、上記ガスエンジン
の排熱により加熱する吸気加熱熱交換器、上記バ
イパス管を開閉する第2の弁、並びに室温または
上記給湯部の設定温度と検知温度の差が小なると
きは、第1の弁開度を小に、第2の弁開度を大に
開閉制御する制御部を備えたエンジン駆動冷暖房
給湯装置。
1. An air conditioning compressor, a gas engine that drives this compressor, a hot water supply unit that warms water using the heat retained in the engine, an intake pipe that supplies a mixture of fuel gas and air to the gas engine, and an intake pipe that supplies exhaust gas from the gas engine. an exhaust pipe for discharging air; a first valve for opening and closing the intake pipe; branching the intake pipe downstream of the first valve;
A bypass pipe that bypasses the mixed gas, an intake air heating heat exchanger that heats the mixed gas in the bypass pipe using the exhaust heat of the gas engine, a second valve that opens and closes the bypass pipe, and a room temperature or hot water supply section. When the difference between the set temperature and the detected temperature is small, the engine-driven air-conditioning/heating/water supply device includes a control unit that controls opening/closing of a first valve opening to a small degree and a second valve opening to a large degree.
JP11595382A 1982-07-02 1982-07-02 Hot-water supply device for engine driven air-conditioner Granted JPS596113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11595382A JPS596113A (en) 1982-07-02 1982-07-02 Hot-water supply device for engine driven air-conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11595382A JPS596113A (en) 1982-07-02 1982-07-02 Hot-water supply device for engine driven air-conditioner

Publications (2)

Publication Number Publication Date
JPS596113A JPS596113A (en) 1984-01-13
JPH0253692B2 true JPH0253692B2 (en) 1990-11-19

Family

ID=14675231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11595382A Granted JPS596113A (en) 1982-07-02 1982-07-02 Hot-water supply device for engine driven air-conditioner

Country Status (1)

Country Link
JP (1) JPS596113A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6288210U (en) * 1985-11-22 1987-06-05
JP4678139B2 (en) * 2004-05-10 2011-04-27 トヨタ自動車株式会社 Automotive heating control system
JP4873259B2 (en) * 2007-12-21 2012-02-08 積水ハウス株式会社 Wiring tool and method for constructing ceiling penetrating portion using the wiring tool

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5843446Y2 (en) * 1979-01-17 1983-10-01 富士重工業株式会社 Automotive heating system

Also Published As

Publication number Publication date
JPS596113A (en) 1984-01-13

Similar Documents

Publication Publication Date Title
US6675579B1 (en) HCCI engine intake/exhaust systems for fast inlet temperature and pressure control with intake pressure boosting
RU2697899C1 (en) Method for engine (versions) and corresponding system
JP4157752B2 (en) Engine exhaust heat recovery device
US4010613A (en) Turbocharged engine after cooling system and method
US20090125217A1 (en) Method and apparatus for controlling low pressure egr valve of a turbocharged diesel engine
US4077219A (en) Supercharged internal combustion engines
US5076248A (en) Internal combustion engine with preheating of the intake air, and method of operating the engine
US6230682B1 (en) Combustion engine and method of controlling same
JPS5840645B2 (en) Supercharging device for internal combustion engines
US4625911A (en) Air conditioner system for automobiles
JPH0253692B2 (en)
US11486331B2 (en) Gas engine heat pump
CN102062006A (en) Method and device for controlling output power of energy-saving and high-efficiency engine of automobile
US4467608A (en) Control method and apparatus for an internal combustion engine with a turbocharger
JP2000008961A (en) Charge air cooler for ghp gas engine
JPS5974345A (en) Cylinder-number controlling apparatus for engine
JPH0526049A (en) Supercharging control device for mechanical supercharger
JP4058784B2 (en) Idle air-fuel ratio control device for internal combustion engine
JPS60212616A (en) Inter-cooler controlling device in turbo-supercharger
JPS62247123A (en) Intake air cooling device for internal combustion engine
RU187571U1 (en) SYSTEM OF REGULATING THE TEMPERATURE OF THE AIRBURNING AIR OF THE MARINE INTERNAL COMBUSTION ENGINE
JPH08261598A (en) Engine-driven type air conditioner
JPS61268516A (en) Heating device for internal-combustion engine with supercharger
JPS627943A (en) Exhaust reflux device of diesel engine
JPS6090962A (en) Hot-water supplying and room heating equipment utilizing waste heat of engine