JPH0251412A - Production of graphite crystal having high orientation characteristic - Google Patents

Production of graphite crystal having high orientation characteristic

Info

Publication number
JPH0251412A
JPH0251412A JP63203032A JP20303288A JPH0251412A JP H0251412 A JPH0251412 A JP H0251412A JP 63203032 A JP63203032 A JP 63203032A JP 20303288 A JP20303288 A JP 20303288A JP H0251412 A JPH0251412 A JP H0251412A
Authority
JP
Japan
Prior art keywords
graphite
pressure
thermosetting resin
temperature
highly oriented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63203032A
Other languages
Japanese (ja)
Other versions
JP2633638B2 (en
Inventor
Kazuo Muramatsu
一生 村松
Yoshihiko Sakashita
由彦 坂下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP63203032A priority Critical patent/JP2633638B2/en
Publication of JPH0251412A publication Critical patent/JPH0251412A/en
Application granted granted Critical
Publication of JP2633638B2 publication Critical patent/JP2633638B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain quickly and inexpensively a graphite crystal having high orientation characteristic being suitable as a host material for an intercalated compd. of graphite by calcining previously a molded body of a thermosetting resin, and subjecting the molded thermosetting resin to hot hydrostatic pressing after completing the previous calcination while leaving H2. CONSTITUTION:A molded body of a thermosetting resin (e.g., phenolformaldehyde resin) is calcined previously and the previous calcination is completed while H2 remains. Suitable H2 concn. to be left is 50-5000ppm. A graphite crystal having high orientation characteristic is obtd. by subjecting the obtained previously calcined product to hot hydrostatic pressure treatment, suitably at 2000-3000 deg.C, 1000-3000atm. It is preferred to elevate the pressure to a specified pressure at a temp. <= the previous calcination temp., then elevating the temp. to a specified temp. Thus, a large sized graphite crystal is obtd. stably, and novel field of use of graphite wafer for epitaxial growth can be developed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はX線又は中性子線モノクロメータ及び黒鉛層間
化合物のホスト材料として好適の高配向性黒鉛結晶の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing highly oriented graphite crystals suitable as host materials for X-ray or neutron beam monochromators and graphite intercalation compounds.

[従来の技術] 人造黒鉛は、通常、微細な結晶粒の集合体として得られ
、単結晶のものは得にくい。また、天然黒鉛の場合でも
、単結晶として確認されているものの結晶粒は高々2乃
至3開の小さなものである。
[Prior Art] Artificial graphite is usually obtained as an aggregate of fine crystal grains, and it is difficult to obtain a single crystal. Furthermore, even in the case of natural graphite, although it has been confirmed as a single crystal, the crystal grains are as small as 2 to 3 crystals.

これは、黒鉛が常圧では溶融せず、蒸気圧が2500°
にで約10−6気圧と著しく低いため、単結晶を育成す
ることは極めて困難であるためである。
This is because graphite does not melt at normal pressure, and its vapor pressure is 2500°.
This is because the atmospheric pressure is extremely low at approximately 10-6 atmospheres, making it extremely difficult to grow single crystals.

而して、学術的には、黒鉛の基礎物性及び結晶成長メカ
ニズム等の解明にとって、また工業的には、X線又は中
性子線のモノ、クロメータ及び黒鉛層間化合物のホスト
材料としても、巨視的スケールの黒鉛結晶を有する材料
を得るということ、又は大きな黒鉛単結晶を育成すると
いうことは極めて重要な課題であり、従来から大きな悪
心がもたれていた。
Academically, it is used to elucidate the basic physical properties and crystal growth mechanism of graphite, and industrially, it is used as a host material for X-ray or neutron beam monomers, chromators, and graphite intercalation compounds on a macroscopic scale. Obtaining a material having graphite crystals or growing a large graphite single crystal is an extremely important issue, and has traditionally been a cause for concern.

このような背景のもとで、近時、黒鉛の単結晶を育成す
る技術が2,3提案されているが、この単結晶育成技術
はその作成方法により、■金属融体からの再結晶、■金
属炭化物の分解、■熱分解炭素の加圧熱処理に分類され
る。
Against this background, a few techniques for growing single crystals of graphite have been proposed in recent years, but these single crystal growing techniques depend on the method of preparation: recrystallization from a metal melt; It is classified into ■decomposition of metal carbides, and ■pressure heat treatment of pyrolytic carbon.

■の金属融体からの再結晶により単結晶黒鉛を得る方法
は、炭素−溶融Ni、炭素−溶融ホウ化チタン又は炭素
−溶融鉄から黒鉛結晶を析出させるものである。工業的
には、製鉄プラントの磁鉄から析出する黒鉛がキッシュ
黒鉛として製造されている。
In the method (2) of obtaining single crystal graphite by recrystallization from a metal melt, graphite crystals are precipitated from carbon-molten Ni, carbon-molten titanium boride, or carbon-molten iron. Industrially, graphite precipitated from magnetic iron in steel plants is produced as quiche graphite.

一方、■の金属炭化物の分解によって単結晶黒鉛を得る
方法としては、タンタルカーバイド及びアルミニウムカ
ーバイドを熱処理して結晶を析出させる方法とか、炭化
ケイ素のハロゲンガスを使用した分解により結晶を得る
方法がある。
On the other hand, methods for obtaining single-crystal graphite by decomposing metal carbides in (2) include a method in which tantalum carbide and aluminum carbide are heat-treated to precipitate crystals, and a method in which crystals are obtained by decomposing silicon carbide using halogen gas. .

更に、■の熱分解炭素の加圧熱処理方法は、1964年
にMoore等によって発表されて以来、黒鉛の基礎研
究に広く使用されると共に、その特異な性質を利用して
特殊な用途に実用化されている。
Furthermore, since the pressurized heat treatment method of pyrolytic carbon (2) was announced by Moore et al. in 1964, it has been widely used in basic research on graphite, and its unique properties have been used to put it into practical use for special purposes. has been done.

この高配向性熱分解黒鉛の製造方法においては、先ず熱
分解炭素に対し3000℃で250kg / cn(の
応力を一軸方向に印加して一軸加圧・加熱し、次いで3
500℃以上に加熱して再熱処理する。この方法におい
ては3000℃の加圧熱処理によって黒鉛がクリープし
、熱分解炭素特有のペブル及び円錐構造が消失する。こ
のようにして得られたH OP Gは単結晶的物性を示
し、X線又は中性子線モノクロメータ等に実用化される
一方、高導電性が期待されている黒鉛層化合物の研究に
も利用されている。
In this method for producing highly oriented pyrolytic graphite, first, a stress of 250 kg/cn (250 kg/cn) is applied to pyrolytic carbon in a uniaxial direction at 3000°C, and then uniaxial pressure and heating are performed.
Reheat treatment by heating to 500°C or higher. In this method, graphite creeps by pressurized heat treatment at 3000° C., and the pebble and conical structures peculiar to pyrolytic carbon disappear. HOP G obtained in this way exhibits single-crystal-like physical properties and is used in practical applications such as X-ray or neutron beam monochromators, while it is also used in research on graphite layer compounds, which are expected to have high conductivity. ing.

[発明が解決しようとする課題] しかしながら、前述の■及び■の方法は、理想的な結晶
構造を有する単結晶が得られるものの、いずれも層面の
広がりが高々数mmのフレーク状で析出し、大きな形状
のものが得られないという難点がある。また、これらの
方法により製造された単結晶は金属融体と接触するので
、純度が高いものが得にくい。従って、黒鉛材料として
の有用性に著しい制約がある。
[Problems to be Solved by the Invention] However, although the above-mentioned methods (1) and (2) yield a single crystal with an ideal crystal structure, in both methods, the layer plane is precipitated in the form of flakes with a spread of several mm at most. The problem is that large shapes cannot be obtained. Furthermore, since the single crystals produced by these methods come into contact with a metal melt, it is difficult to obtain a single crystal with high purity. Therefore, there are significant limitations on its usefulness as a graphite material.

一方、前述の■の方法は、3000℃を超える超高温で
処理する必要があり、この超高温を得ることの困難性か
ら、大量生産が極めて難しく、その材料供給に不安があ
る。
On the other hand, the method (2) described above requires processing at an ultra-high temperature of over 3000° C. Due to the difficulty of achieving this ultra-high temperature, mass production is extremely difficult and there is concern about the supply of materials.

本発明はかかる問題点に鑑みてなされたものであって、
高配向性黒鉛結晶を迅速に且つ低コストで製造すること
−ができる高配向性黒鉛結晶の製造方法を提供すること
を目的とする。
The present invention has been made in view of such problems, and includes:
It is an object of the present invention to provide a method for manufacturing highly oriented graphite crystals, which allows highly oriented graphite crystals to be manufactured quickly and at low cost.

[課題を解決するための手段] 本発明に係る高配向性黒鉛結晶の製造方法は、熱硬化性
樹脂の成形体を予備焼成し水素が残存する状態でこれを
終了する工程と、この予備焼成品を熱間静水圧加圧処理
する工程と、を有することを特徴とする。
[Means for Solving the Problems] The method for producing highly oriented graphite crystals according to the present invention includes a step of pre-calcining a thermosetting resin molded body and finishing it in a state in which hydrogen remains, The method is characterized by comprising a step of subjecting the product to hot isostatic pressure treatment.

[作用] 本願発明者等は、大形状の高配向性黒鉛結晶を迅速に製
造する方法を開発すべく鋭意研究した結果、加熱処理に
より黒鉛結晶に成長し得る低分子炭化水素を内部に含む
カラス状炭素成形体を予備焼成した後、所定の条件で熱
間静水圧加圧(HIP)処理することにより、成形体内
部に高配向性黒鉛結晶を析出させることができることを
見出した。本願発明はこのような知見に基いてなされた
ものである。
[Function] As a result of intensive research aimed at developing a method for rapidly producing large-sized highly oriented graphite crystals, the inventors of the present application have developed a method for rapidly producing large-sized highly oriented graphite crystals. It has been found that highly oriented graphite crystals can be precipitated inside the shaped carbon compact by pre-firing the shaped carbon compact and then subjecting it to hot isostatic pressing (HIP) under predetermined conditions. The present invention has been made based on this knowledge.

本発明においては、フェノールホルムアルデヒド樹脂又
はフルフリルアルコール等の熱硬化性樹脂を成形した後
、所定の温度まで加熱して予備焼成する。これらの熱硬
化性樹脂は加熱された熱分解の過程で、H2O,Co□
、CO,CH4及びH2の各ガスを発生しながら炭素化
していく。そして、最終的に水素ガス発生が終了する温
度まで焼成すると、炭素−炭素結合は環化が進み、所謂
ガラス状炭素となる。
In the present invention, after a thermosetting resin such as phenol formaldehyde resin or furfuryl alcohol is molded, it is heated to a predetermined temperature and pre-baked. These thermosetting resins generate H2O, Co□ during the heated pyrolysis process.
, CO, CH4, and H2 gases are generated during carbonization. When the carbon-carbon bond is finally fired to a temperature at which hydrogen gas generation ends, cyclization of the carbon-carbon bond progresses, resulting in so-called glassy carbon.

而して、これらの熱硬化性樹脂成形体を熱処理する際、
未だ水素発生が可能の温度、換言すると、低分子炭化水
素が残存する温度以下の温度で予備焼成を停止し、引き
続いて超高温熱間静水圧加圧装置(超高温HIP)等を
使用してHIP処理することにより、成形体の内部に高
配向性黒鉛結晶が析出する。
Therefore, when heat-treating these thermosetting resin molded bodies,
Preliminary firing is stopped at a temperature at which hydrogen generation is still possible, in other words, at a temperature below the temperature at which low-molecular hydrocarbons remain, and then an ultra-high temperature hot isostatic pressing device (ultra-high temperature HIP) is used. By performing the HIP treatment, highly oriented graphite crystals are precipitated inside the molded body.

このHIP処理における加熱温度は2000乃至300
0℃1加圧力は1000乃至3000気圧であることが
好ましい。これにより、ガラス状炭素に囲まれた状態で
大形状の高配向性黒鉛結晶が成形体内部に析出する。
The heating temperature in this HIP treatment is 2000 to 300℃.
The applied pressure at 0° C. is preferably 1,000 to 3,000 atm. As a result, large highly oriented graphite crystals are precipitated inside the compact while being surrounded by glassy carbon.

結晶相発生の機構については明らかでない点も多いが、
予備焼成後の超高温HIP処理において、カラス状炭素
成形体から発生した低分子炭化水素又は易黒釦化成分が
高圧力下(等方的)で成形体外部に放出されずに内部に
て圧縮され、黒鉛結晶として析出及び成長したものと推
察される。
Although many aspects of the mechanism of crystal phase generation are not clear,
In the ultra-high temperature HIP treatment after pre-firing, the low-molecular hydrocarbons or easily blackened components generated from the glass-like carbon molded body are compressed inside the molded body under high pressure (isotropically) without being released to the outside. It is presumed that the crystals precipitated and grew as graphite crystals.

従来、HIPのように等方的圧力の下では、黒鉛結晶の
成長を阻害するものと考えられていたが、本発明のよう
に予備焼成した後、等方的加圧を行った場合は、ガラス
状炭素相に囲まれた成形体内部で水素ガスが発生するこ
とにより、このガス圧によって異方性が増加し、黒鉛結
晶の成長を促進するものと考えられる。
Conventionally, it was thought that isotropic pressure as in HIP inhibits the growth of graphite crystals, but when isotropic pressure is applied after pre-firing as in the present invention, It is thought that hydrogen gas is generated inside the molded body surrounded by the glassy carbon phase, and this gas pressure increases anisotropy and promotes the growth of graphite crystals.

予備焼成温度は水素ガスの発生が終了する温度以下であ
ることが必要である。予備焼成温度がこの温度を超える
場合は、残留水素濃度が低過ぎて次工程で超高温HIP
処理を行っても黒鉛結晶の析出が生じない。
The pre-firing temperature needs to be below the temperature at which the generation of hydrogen gas ends. If the pre-firing temperature exceeds this temperature, the residual hydrogen concentration is too low and ultra-high temperature HIP is required in the next step.
Graphite crystals do not precipitate even after treatment.

一方、予備焼成温度が低過ぎると、黒鉛結晶相を取り囲
むガラス状炭素相が脆弱であり、大形状の黒鉛結晶を製
造することができない。
On the other hand, if the pre-calcination temperature is too low, the glassy carbon phase surrounding the graphite crystal phase will be fragile, making it impossible to produce large-sized graphite crystals.

このため、予備焼成温度は残留水素濃度が50乃至50
00ppmの範囲になるようにすることが好ましい。
For this reason, the pre-firing temperature is set at a residual hydrogen concentration of 50 to 50.
It is preferable that the amount is within the range of 00 ppm.

[実施例コ 以下、本発明の実施例について更に具体的に説明する。[Example code] Examples of the present invention will be described in more detail below.

本発明においては、全表面がガラス状炭素に囲まれた状
態で成形体内部に黒鉛の単結晶を析出させる。従って、
予備焼成によって成形体表面部をガラス状炭素にする必
要があるが、このように予備焼成後にガラス状炭素とな
る熱硬化性樹脂としては、粉末状で得られるものとして
、フェノール系樹脂、フラン系樹脂、キシレン系樹脂、
メラミン系樹脂及びアニリン系樹脂等があり、水性又は
油状で得られるものとして、レゾール及びノボラック型
のフェノールホルムアルデヒド系樹脂、フラン系樹脂、
キシレン系樹脂、メラミン系樹脂及びアニリン系樹脂等
がある。
In the present invention, a single crystal of graphite is deposited inside the molded body in a state where the entire surface is surrounded by glassy carbon. Therefore,
It is necessary to make the surface of the compact into glassy carbon by pre-firing, but thermosetting resins that become glassy carbon after pre-firing include phenolic resins, furan-based resins, etc., which can be obtained in powder form. resin, xylene resin,
There are melamine resins, aniline resins, etc. Those obtained in aqueous or oily form include resol and novolac type phenol formaldehyde resins, furan resins,
There are xylene resins, melamine resins, aniline resins, etc.

先ず、これらの熱硬化性樹脂を公知の方法により所定形
状に成形する。この成形方法としては、例えば、液状の
熱硬化性樹脂を枠に流しこんで型造めする方法とか、粉
末状の熱硬化性樹脂を金型を使用して冷間及び熱間にて
プレスする方法がある。
First, these thermosetting resins are molded into a predetermined shape by a known method. Examples of this molding method include, for example, pouring liquid thermosetting resin into a frame to form a mold, or pressing powdered thermosetting resin using a mold in cold and hot conditions. There is a way.

次いで、この熱硬化性樹脂成形体をN2又はArガス等
の不活性ガス雰囲気で、成形体の残留水素濃度が50〜
5000ppmになるように加熱して予備焼成する。
Next, this thermosetting resin molded body is heated in an inert gas atmosphere such as N2 or Ar gas until the residual hydrogen concentration of the molded body is 50~50.
Preliminary firing is performed by heating to a concentration of 5000 ppm.

その後、予備焼成後の試料を超高温HIPを使用して、
2000乃至3000℃、1000乃至3000気圧の
条件でHIP処理する。この際、処理温度を予備焼成温
度以下に保持した状態で所定の圧力まで増圧した後、所
定温度まで昇温する圧力先行型パターンで処理すること
が有効である。昇温及び昇圧を同時に行うと、加圧が不
十分であるにも拘らず水素等が発生する温度域に加熱さ
れてしまい、これにより低分子炭化水素から黒鉛化する
成分が放出されてしまうため、黒鉛結晶の析出が起こり
にくい。
After that, the pre-fired sample was subjected to ultra-high temperature HIP,
HIP treatment is performed under conditions of 2000 to 3000°C and 1000 to 3000 atm. At this time, it is effective to carry out the treatment in a pressure-first pattern in which the pressure is increased to a predetermined pressure while the treatment temperature is maintained below the pre-firing temperature, and then the temperature is increased to a predetermined temperature. If the temperature and pressure are increased at the same time, the material will be heated to a temperature range where hydrogen, etc. will be generated even though the pressure is insufficient, and as a result, components that will graphitize from the low-molecular hydrocarbons will be released. , precipitation of graphite crystals is less likely to occur.

なお、熱硬化性樹脂単体から製造する方法以外に、石油
コークス、メソフェースピッチ等の易黒鉛化性炭素前駆
体を熱硬化性樹脂等の難黒鉛化性炭素前駆体で囲んだ形
で成形した後、同様に予備焼成及び超高温HIPを行う
方法もある。
In addition to the method of manufacturing from a single thermosetting resin, it is also possible to mold a graphitizable carbon precursor such as petroleum coke or mesoface pitch surrounded by a non-graphitizable carbon precursor such as a thermosetting resin. After that, there is also a method of similarly performing preliminary firing and ultra-high temperature HIP.

次に、本発明方法により実際に黒鉛結晶を製造した結果
について説明する。
Next, the results of actually producing graphite crystals using the method of the present invention will be explained.

及克匠L 粉末状のフェノールホルムアルデヒド樹脂をホットプレ
スにて直径が80mm、厚さが6 mmの形状に成形し
た。次いで、窒素ガス中で残留水素濃度が夫々(1) 
5100ppm (2) 200ppm(3) 25p
pmになるように3個の成形体を予備焼成した後、これ
らの予備焼成品に対し超高温HIPを使用して255θ
℃及び2000気圧の処理を行った。その結果、黒鉛相
の析出の有無等の種々の特性を下記第1表に示す。予備
焼成温度が残留水素濃度が5000ppmとなる温度よ
り低いと、ガラス状炭素相が脆弱であり、緻密な黒鉛結
晶相が得られない。また、残留水素濃度が50ppmよ
りも低濃度となるような高い温度では黒鉛相の析出は起
こらない。
A powdered phenol formaldehyde resin was molded into a shape with a diameter of 80 mm and a thickness of 6 mm using a hot press. Then, the residual hydrogen concentration in nitrogen gas is (1)
5100ppm (2) 200ppm (3) 25p
After pre-firing the three compacts to a temperature of 255θ using ultra-high temperature HIP,
℃ and 2000 atm. As a result, various characteristics such as presence or absence of precipitation of graphite phase are shown in Table 1 below. If the pre-calcination temperature is lower than the temperature at which the residual hydrogen concentration is 5000 ppm, the glassy carbon phase will be brittle and a dense graphite crystal phase will not be obtained. In addition, precipitation of graphite phase does not occur at such high temperatures that the residual hydrogen concentration is lower than 50 ppm.

実施例2一 実施例1と同様に成形した成形体を残留水素濃度が20
0ppmになるように予備焼成した後、HIPを使用し
て2550℃及び2000気圧の処理を行った。
Example 2 - A molded body molded in the same manner as in Example 1 was molded with a residual hydrogen concentration of 20
After pre-calcining to 0 ppm, treatment was performed at 2550° C. and 2000 atm using HIP.

この際、昇温速度が500℃/hrで(1)予備焼成温
度で2000気圧に増圧(圧力先行)(2)1800℃
で2000気圧(同時昇温昇圧)の各条件でHIP処理
を行った。その結果を下記第2表に示す。
At this time, the temperature increase rate is 500℃/hr (1) Pressure increase to 2000 atm at pre-firing temperature (pressure advance) (2) 1800℃
HIP treatment was performed under various conditions of 2000 atm (simultaneous temperature and pressure increase). The results are shown in Table 2 below.

第1表 第2表 X11[と ピッチ中のメソフェース成分を抽出したメソカーボンマ
イクロビーズをフェノールホルムアルデヒド樹脂で囲ん
だ状態でホットプレス成形し、直径が501、厚さが6
 mmの成形体を得た(メソカーボンマイクロビーズの
部分は直径が40市、厚さが4 mm )。この成形体
を予備焼成した後、超高温HIPを使用して2500℃
及び2000気圧の処理を行い、直径か35mff1.
厚さが2.3111!l、嵩密度が2.15の黒鉛結晶
を得た。
Table 1 Table 2 Table 2
A molded body with a diameter of 40 mm and a thickness of 4 mm was obtained. After pre-firing this molded body, it is heated to 2500℃ using ultra-high temperature HIP.
and 2,000 atmospheres of pressure, with a diameter of 35 mff1.
The thickness is 2.3111! A graphite crystal with a bulk density of 2.15 was obtained.

実施例4 フェノールホルムアルデヒド樹脂粉末をホットプレスに
て(1)外径が80關、内径が60 mm、高さが1.
50 mmのパイプ状、(2)幅が50mm、13行が
50IIIII+、高さが150mm (肉N 5 m
m )の箱状、(3)直径が200mm、厚さが6mI
I+の円板状の3種類に成形し、予備焼成した後、超高
温HIP処理を行った。得られた黒鉛結晶の形状は下記
のとおりである。
Example 4 Phenol formaldehyde resin powder was hot-pressed into (1) an outer diameter of 80mm, an inner diameter of 60mm, and a height of 1mm.
50 mm pipe shape, (2) width 50 mm, 13 rows 50III+, height 150 mm (thickness N 5 m
m ) box shape, (3) diameter 200mm, thickness 6mI
Three types of I+ discs were formed, pre-fired, and then subjected to ultra-high temperature HIP treatment. The shape of the obtained graphite crystal is as follows.

(1)パイプ状に成形した場合 外径651、内径60關、高さ115關(2)箱状に成
形した場合 幅が35mm、奥行が35m+n、高さが115mm(
3)円板状に成形した場合 直径が1551、厚さが2.3+I1mこのように、極
めて大形状の黒鉛結晶が得られた。
(1) When formed into a pipe shape, the outer diameter is 651 mm, the inner diameter is 60 mm, and the height is 115 mm. (2) When formed into a box shape, the width is 35 mm, the depth is 35 m + n, and the height is 115 mm (
3) When molded into a disk shape, the diameter was 1551 m and the thickness was 2.3 + I1 m. In this way, an extremely large graphite crystal was obtained.

[発明の効果] 本発明によれば、予備焼成した後、熱間静水圧処理する
から、X線又は中性子線のモノクロメータ及び黒鉛層間
化合物のホスト材料として使用される高配向性黒鉛結晶
を迅速に且つ低コストで製造することができる。
[Effects of the Invention] According to the present invention, since hot isostatic pressure treatment is performed after preliminary firing, highly oriented graphite crystals used in X-ray or neutron beam monochromators and as a host material for graphite intercalation compounds can be rapidly produced. and can be manufactured at low cost.

このため、本発明によれば、大形状の黒鉛結晶を安定し
て供給することが可能になり、電子材料関係のスパッタ
リングターゲラ1〜、エピタキシャル成長用黒鉛ウェハ
ー、熱及び電気伝導性が優れた基板材料、血栓形成性が
低い人工心臓弁、磁気ヘッド基材等の摺動部材等の新し
い用途展開が可能になった。
Therefore, according to the present invention, it is possible to stably supply large-sized graphite crystals, and it is possible to supply sputtering targeters 1 to 1 for electronic materials, graphite wafers for epitaxial growth, and substrates with excellent thermal and electrical conductivity. It has become possible to develop new applications such as materials, artificial heart valves with low thrombogenicity, and sliding members such as magnetic head base materials.

更に、パイプ状、箱状等又は異形状の黒鉛結晶の製造が
可能になり、従来不可能であった用途に対して極めて有
益な材料を供給することができる。
Furthermore, it becomes possible to manufacture graphite crystals in shapes such as pipes, boxes, etc., and it is possible to supply extremely useful materials for applications that were previously impossible.

Claims (5)

【特許請求の範囲】[Claims] (1)熱硬化性樹脂の成形体を予備焼成し水素が残存す
る状態でこれを終了する工程と、この予備焼成品を熱間
静水圧加圧処理する工程と、を有することを特徴とする
高配向性黒鉛結晶の製造方法。
(1) A method comprising the steps of pre-calcining a thermosetting resin molded body and finishing the process with hydrogen remaining, and subjecting the pre-calcined product to hot isostatic pressing. A method for producing highly oriented graphite crystals.
(2)前記予備焼成工程は、前記成形体の残留水素濃度
が50乃至5000ppmであるときに終了することを
特徴とする請求項1に記載の高配向性黒鉛結晶の製造方
法。
(2) The method for producing highly oriented graphite crystals according to claim 1, wherein the preliminary firing step is completed when the residual hydrogen concentration of the compact is 50 to 5000 ppm.
(3)前記熱間静水圧加圧処理は、2000乃至300
0℃の場合及び1000乃至3000気圧で処理するこ
とを特徴とする請求項1又は2に記載の高配向性黒鉛結
晶の製造方法。
(3) The hot isostatic pressure treatment is carried out at 2000 to 300
The method for producing highly oriented graphite crystals according to claim 1 or 2, characterized in that the treatment is carried out at 0° C. and at 1,000 to 3,000 atmospheres.
(4)前記熱間静水圧加圧処理は、予備焼成温度以下の
温度で所定圧力まで増圧し、次いで所定温度まで昇温す
ることを特徴とする請求項1乃至3のいずれか1項に記
載の高配向性黒鉛結晶の製造方法。
(4) The hot isostatic pressing treatment is characterized in that the pressure is increased to a predetermined pressure at a temperature below the pre-firing temperature, and then the temperature is raised to a predetermined temperature. A method for producing highly oriented graphite crystals.
(5)易黒鉛化性炭素前記駆体を熱硬化性樹脂炭素前駆
体で囲んだ形で成形した熱硬化性樹脂の成形体を使用す
ることを特徴とする請求項1乃至4のいずれか1項に記
載の高配向性黒鉛結晶の製造方法。
(5) A thermosetting resin molded body is used, in which the graphitizable carbon precursor is surrounded by a thermosetting resin carbon precursor. A method for producing highly oriented graphite crystals as described in .
JP63203032A 1988-08-15 1988-08-15 Method for producing highly oriented graphite crystal Expired - Lifetime JP2633638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63203032A JP2633638B2 (en) 1988-08-15 1988-08-15 Method for producing highly oriented graphite crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63203032A JP2633638B2 (en) 1988-08-15 1988-08-15 Method for producing highly oriented graphite crystal

Publications (2)

Publication Number Publication Date
JPH0251412A true JPH0251412A (en) 1990-02-21
JP2633638B2 JP2633638B2 (en) 1997-07-23

Family

ID=16467220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63203032A Expired - Lifetime JP2633638B2 (en) 1988-08-15 1988-08-15 Method for producing highly oriented graphite crystal

Country Status (1)

Country Link
JP (1) JP2633638B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230471A (en) * 1987-11-07 1989-09-13 Kobe Steel Ltd Carbon material and production thereof
JPH03122007A (en) * 1989-10-03 1991-05-24 Kobe Steel Ltd Production of carbonaceous material
JPH06206716A (en) * 1993-01-08 1994-07-26 Kobe Steel Ltd Easily graphitizable high strength carbon material and its production
JP2009285938A (en) * 2008-05-28 2009-12-10 Tokyo Metropolitan Industrial Technology Research Institute Forming mold and method for producing the same
WO2010137592A1 (en) * 2009-05-26 2010-12-02 株式会社インキュベーション・アライアンス Carbon material and method for producing the same
WO2010128650A3 (en) * 2009-05-06 2011-01-06 株式会社インキュベーション・アライアンス Carbon material and manufacturing method therefor
CN102791628A (en) * 2010-02-19 2012-11-21 创业发展联盟技术有限公司 Carbon material and method for producing same
CN103201215A (en) * 2010-11-25 2013-07-10 创业发展联盟技术有限公司 Novel carbon nanotubes and production method therefor
WO2014185496A1 (en) * 2013-05-15 2014-11-20 昭和電工株式会社 Flaky graphite containing boron and production method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102158039B1 (en) * 2018-08-23 2020-09-21 한국화학연구원 Manufacturing method for producing graphite from waste PET

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230471A (en) * 1987-11-07 1989-09-13 Kobe Steel Ltd Carbon material and production thereof
JPH03122007A (en) * 1989-10-03 1991-05-24 Kobe Steel Ltd Production of carbonaceous material
JPH06206716A (en) * 1993-01-08 1994-07-26 Kobe Steel Ltd Easily graphitizable high strength carbon material and its production
JP2009285938A (en) * 2008-05-28 2009-12-10 Tokyo Metropolitan Industrial Technology Research Institute Forming mold and method for producing the same
JP5613662B2 (en) * 2009-05-06 2014-10-29 株式会社インキュベーション・アライアンス Carbon material and manufacturing method thereof
US9379385B2 (en) 2009-05-06 2016-06-28 Incubation Alliance, Inc. Carbon material and method for producing same
WO2010128650A3 (en) * 2009-05-06 2011-01-06 株式会社インキュベーション・アライアンス Carbon material and manufacturing method therefor
US8883112B2 (en) 2009-05-06 2014-11-11 Incubation Alliance, Inc. Carbon material and method for producing same
EP2436648A4 (en) * 2009-05-26 2015-05-20 Incubation Alliance Inc Carbon material and method for producing the same
CN102448880A (en) * 2009-05-26 2012-05-09 创业发展联盟技术有限公司 Carbon material and method for producing the same
KR101456904B1 (en) * 2009-05-26 2014-10-31 가부시키가이샤 인큐베이션 얼라이언스 Carbon material and method for producing the same
WO2010137592A1 (en) * 2009-05-26 2010-12-02 株式会社インキュベーション・アライアンス Carbon material and method for producing the same
US9783422B2 (en) 2009-05-26 2017-10-10 Incubation Alliance, Inc. Carbon material and method for producing same
JP5629681B2 (en) * 2009-05-26 2014-11-26 株式会社インキュベーション・アライアンス Carbon material and manufacturing method thereof
US8951451B2 (en) 2009-05-26 2015-02-10 Incubation Alliance, Inc. Carbon material and method for producing same
US9783423B2 (en) 2009-05-26 2017-10-10 Incubation Alliance, Inc. Carbon material and method for producing same
KR101499602B1 (en) * 2009-05-26 2015-03-09 가부시키가이샤 인큐베이션 얼라이언스 Carbon material and method for producing the same
CN104528693A (en) * 2009-05-26 2015-04-22 创业发展联盟技术有限公司 Carbon material and method for producing the same
US9221686B2 (en) 2010-02-19 2015-12-29 Incubation Alliance, Inc. Carbon material and method for producing same
CN102791628A (en) * 2010-02-19 2012-11-21 创业发展联盟技术有限公司 Carbon material and method for producing same
CN103201215A (en) * 2010-11-25 2013-07-10 创业发展联盟技术有限公司 Novel carbon nanotubes and production method therefor
US9403683B2 (en) 2010-11-25 2016-08-02 Incubation Alliance, Inc. Carbon nanotube and production method therefor
WO2014185496A1 (en) * 2013-05-15 2014-11-20 昭和電工株式会社 Flaky graphite containing boron and production method therefor
JP5680261B1 (en) * 2013-05-15 2015-03-04 昭和電工株式会社 Flaky graphite containing boron and method for producing the same

Also Published As

Publication number Publication date
JP2633638B2 (en) 1997-07-23

Similar Documents

Publication Publication Date Title
US6627169B1 (en) Silicon carbide powder and production method thereof
JP5891636B2 (en) Polycrystalline diamond and method for producing the same
KR20140012618A (en) Silicon carbide powder for production of silicon carbide single crystal, and method for producing same
JPH10291899A (en) Production of silicon carbide single crystal and apparatus for production therefor
JPH0251412A (en) Production of graphite crystal having high orientation characteristic
CN115094514A (en) Composite material crucible and preparation method thereof
US5783255A (en) Method for producing shaped article of silicon carbide
JP2021167266A (en) Method and system for producing silicon carbide ingot
JPH01264964A (en) Carbon fiber-reinforced composite material having excellent thermal impact resistance and its production
JPH10172738A (en) Glass like carbon heating element
JPH01167210A (en) Processed article of carbonaceous felt and production thereof
WO2010092996A1 (en) Process for the production of diamond materials
JPS6111911B2 (en)
JP5987629B2 (en) Polycrystalline diamond and method for producing the same
JPH03223196A (en) Melting crucible device
JP2016155694A (en) Silicon carbide sintered compact and method for producing the same
TWI571520B (en) Production method of high purity carbide mold
Shimoo et al. Effect of Vacuum Heat Treatment on Electron‐Beam‐Irradiation‐Cured Polycarbosilane Fibers
JPH0798333B2 (en) Binderless molding method for anisotropic carbon products
JPH1179847A (en) Production of silicon carbide sintered compact
WO2006080423A1 (en) Monitor wafer and method for monitoring wafer
Wang et al. 1300° C–1900° C heat treatment and mechanical properties optimization of RB-SiC ceramics
JPH0941166A (en) Electrode for etching and its manufacture
JPS63242968A (en) Manufacture of silicon carbide base sintered body
JPH01230471A (en) Carbon material and production thereof