JPH024988B2 - - Google Patents

Info

Publication number
JPH024988B2
JPH024988B2 JP55031553A JP3155380A JPH024988B2 JP H024988 B2 JPH024988 B2 JP H024988B2 JP 55031553 A JP55031553 A JP 55031553A JP 3155380 A JP3155380 A JP 3155380A JP H024988 B2 JPH024988 B2 JP H024988B2
Authority
JP
Japan
Prior art keywords
lithium ion
ion conductivity
lithium
solid electrolyte
lii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55031553A
Other languages
Japanese (ja)
Other versions
JPS56128580A (en
Inventor
Tatsu Nagai
Hidehito Oohayashi
Akira Goto
Tetsuichi Kudo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3155380A priority Critical patent/JPS56128580A/en
Priority to DE3039900A priority patent/DE3039900C2/en
Priority to FR8022648A priority patent/FR2469009A1/en
Priority to CH7940/80A priority patent/CH649869A5/en
Priority to GB8034679A priority patent/GB2062345B/en
Priority to US06/201,766 priority patent/US4367269A/en
Priority to NLAANVRAGE8005939,A priority patent/NL177958C/en
Publication of JPS56128580A publication Critical patent/JPS56128580A/en
Publication of JPH024988B2 publication Critical patent/JPH024988B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Conductive Materials (AREA)
  • Primary Cells (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は固体電解質に関し、詳しくは、リチウ
ム電池やエレクトロクロミツクデイスプレイにと
くに好適な、高リチウム導電性を有する固体電解
質に関する。 周知のように、リチウムイオン導電性を有する
固体電解質を用いた電気化学デバイスは、漏液の
恐れがなく長寿命であること、極めて小型薄型に
できることなど、多くの特長を有しているため、
超薄形電池やエレクトロクロミツクデイスプレイ
など、多くの用途が期待されている。しかし、従
来の固体電解質は、常温におけるリチウムイオン
導電性が極めて低いので、現在は広く用いられる
には至つていない。 本発明の目的は、上記従来の問題を解決し、常
温においても、高いリチウムイオン導電性を有す
る固体電解質を提供することである。 以下、本発明を詳細に説明する。 本発明にかかる固体電解質は実質的にチツ化リ
チウム(Li3N)、ヨウ化リチウム(LiI)および
水酸化リチウムからなる。 このような組成を有する固体電解質は、Li3N、
LiIおよびLiOHを原料に用い、これらの原料の
所定量を混合粉砕して、加熱焼成することにより
形成される。 また、Li3NやLiIの水和物を原料に用いれば、
水和物の結晶水がLi3Nの一部分と反応し、LiOH
とNH3が生ずるので、やはり、Li3N、LiIおよび
LiOHを使用した上記場合と同じ物質が形成され
る。 ただし、LiIには1水和物、2水和物および3
水和物という3種の水和物が存在し、Li3Nも
LiOHに変化しやすいので、所定電解質を得るた
めには、出発原料の調整には、十分注意する必要
がある。 これら出発原料を用いて、本発明にかかる固体
電解質を合成する反応は、水分や酸素による影響
を受けやすいため、所定の組成を持つた固体電解
質を得るためには、水分や酸素を十分に除いた雰
囲気中で行なわねばならない。 実施例 原料として用いる特級LiIは、150℃10時間真空
乾燥した後、高純度窒素雰囲気中で、400℃、10
時間の熱処理を行なつて、水分や過剰のヨウ素な
どを除去して、化学量論的な組成のズレを除い
た。 同様に、特級LiOHは、高純度窒素雰囲気で
300℃、10時間の熱処理によつて、十分乾燥した。 LiOHは、市販品(純度98%)をそのまま使用
した。これらの原料物質を、種々の割合で混合
し、550℃で3時間焼成し、冷却する。微粉末に
粉砕し、2トン/cm2の圧力を印加して成型した
後、350℃で1時間加熱して焼結させ、ペレツト
を形成した。 なお、これら一連の処理工程は、水分や酸素に
よる影響を除くため、いずれも、高純度窒素ガス
雰囲気中において行なつたことはいうまでもな
い。 このように形成されたペレツトの対向する面上
に、蒸着によつて銀電極を形成し、25℃における
1KHzの交流導電率を測定し、第1表に示した結
果を得た。 従来の代表的なリチウムイオン導電性固体電解
質であるLiI・Al2O3(40モル%Al2O3)のリチウ
ムイオン導電率は1×10-5((Ω・cm)-1であるこ
とが知られている(C.C.Liang.J.Electrochem.
Soc.、120、10、1289(1973))。 すなわち、第1表における判定欄の記号は、リ
チウムイオン導電率が1×10-4(Ω・cm)-1より大
きいものを○、1×10-4〜1×10-5(Ω・cm)-1
ものを△、1×10-5〜1×10-6(Ω・cm)-1のもの
The present invention relates to a solid electrolyte, and more particularly to a solid electrolyte having high lithium conductivity and particularly suitable for lithium batteries and electrochromic displays. As is well known, electrochemical devices using solid electrolytes with lithium ion conductivity have many advantages, such as long life without the risk of leakage, and the ability to be made extremely small and thin.
It is expected to have many uses, including ultra-thin batteries and electrochromic displays. However, since conventional solid electrolytes have extremely low lithium ion conductivity at room temperature, they are not currently widely used. An object of the present invention is to solve the above-mentioned conventional problems and provide a solid electrolyte that has high lithium ion conductivity even at room temperature. The present invention will be explained in detail below. The solid electrolyte according to the present invention consists essentially of lithium nitride (Li 3 N), lithium iodide (LiI) and lithium hydroxide. A solid electrolyte with such a composition is Li 3 N,
It is formed by using LiI and LiOH as raw materials, mixing and pulverizing predetermined amounts of these raw materials, and heating and firing. In addition, if hydrates of Li 3 N or LiI are used as raw materials,
The water of crystallization of the hydrate reacts with a portion of Li 3 N, forming LiOH
and NH 3 are produced, so Li 3 N, LiI and
The same material is formed as in the case above using LiOH. However, LiI contains monohydrate, dihydrate and trihydrate.
There are three types of hydrates, including Li 3 N.
Since it easily changes to LiOH, sufficient care must be taken in adjusting the starting materials in order to obtain the desired electrolyte. The reaction for synthesizing the solid electrolyte according to the present invention using these starting materials is easily affected by moisture and oxygen, so in order to obtain a solid electrolyte with a predetermined composition, moisture and oxygen must be sufficiently removed. It must be carried out in a friendly atmosphere. Example Special grade LiI used as a raw material was vacuum dried at 150°C for 10 hours and then dried at 400°C for 10 hours in a high-purity nitrogen atmosphere.
Heat treatment was performed for several hours to remove moisture and excess iodine, and to remove any deviations in stoichiometric composition. Similarly, special grade LiOH can be used in a high-purity nitrogen atmosphere.
It was thoroughly dried by heat treatment at 300°C for 10 hours. A commercially available LiOH (purity 98%) was used as is. These raw materials are mixed in various proportions, fired at 550° C. for 3 hours, and cooled. The powder was ground into fine powder, molded under a pressure of 2 tons/cm 2 , and then heated at 350° C. for 1 hour to sinter to form pellets. It goes without saying that these series of processing steps were all carried out in a high-purity nitrogen gas atmosphere in order to eliminate the effects of moisture and oxygen. Silver electrodes were formed by vapor deposition on the opposing surfaces of the pellets formed in this way, and the pellets were heated at 25°C.
The AC conductivity at 1KHz was measured and the results shown in Table 1 were obtained. The lithium ion conductivity of LiI・Al 2 O 3 (40 mol% Al 2 O 3 ), which is a typical conventional lithium ion conductive solid electrolyte, is 1×10 -5 ((Ω・cm) -1 is known (CCLiang.J.Electrochem.
Soc., 120 , 10, 1289 (1973)). In other words, the symbols in the judgment column in Table 1 are ○ for lithium ion conductivity greater than 1 x 10 -4 (Ω cm) -1 , and 1 x 10 -4 to 1 x 10 -5 (Ω cm) ) -1 is △, 1×10 -5 ~1×10 -6 (Ω・cm) -1

【表】【table】

【表】 を×、1×10-6(Ω・cm)-1より小さいものを●、
をそれぞれ表わすが、第1表において、記号○お
よび△をつけた領成の固体電解質は、上記LiI・
Al2O3よりも、大きなリチウムイオン導電性を有
していることがわかる。 第1表に示した結果を、Li3N−LiI−LiOH三
元系組成図で表わしたのが第1図である。第1図
における記号○、△、×、●およびこれらの記号
に付してある数字は、第1表における判定欄内の
記号および番号欄内の数字に対応する。 第1図および第1表から明らかなように、
Li3N、LiIおよびLiOHの比が領域A内にあると、
リチウムイオン導電率は1×10-4(Ω・cm)-1以上
になり、リチウムイオン導電性固体電解質とし
て、極めてすぐれている。とくに、Li3N、LiIお
よびLiOHのモル比が36:35:29のもの(番号
1)のリチウムイオン導電率は、2.8×10-4(Ω・
cm)-1に達した。 第1図において、領域Bは、上記領域Aに外接
する領域であり、上記記号△で表わされるリチウ
ムイオン導電性を示す。記号△は、上記のよう
に、リチウムイオン導電率が1×10-4〜1×10-5
(Ω・cm)-1の範囲内にあることを表わすから、結
局領域AおよびB内の組成を有していれば、従来
の代表的な固体電解質であるLiI・Al2O3よりも
高いリチウムイオン導電性が得れることになる。 領域CおよびDは、それぞれ上記記号×および
●で表わされる領域であつて、リチウムイオン導
電率が1×10-5〜1×10-6(Ω・cm)-1および1×
10-6(Ω・cm)-1以下となり、上記従来の固体電解
質よりもリチウムイオン導電性が劣る。 したがつて、本発明にかかる固体電解質は、領
域AおよびB内に入る組成を有していることが、
とくに好ましい。 ただし、本発明は、リチウムイオン導電率以外
の点においても、従来の固体電解質よりすぐれた
点を有している。 すなわち、本発明にかかる固体電解質は、従来
のものより分解電圧が高いという特長を有してい
る。 分解電圧が高いと電池の保存寿命が長く、かつ
高エネルギー密度の電池を作成することができ
る。 周知のように、Li3N単結晶は、27℃で1.2×
10-3(Ω・cm)-1という極めて高いリチウムイオン
導電性を、C軸方向に有している(U.V.Alpen
他、Applied Physics Letter、30、12、621
(1977)。しかし、Li3Nの分解電圧は0.445Vで非
常に低いため、高エネルギー密度が要求されるリ
チウム電池には、使用できない。 一方、本発明の場合分解電圧は、上記最高のリ
チウムイオン導電率を示した0.36Li3N・
0.35LiI・0.29LiOH(番号1)が2.6V以上である
ことからもわかるように、非常に高く、高エネル
ギー密度が必要なリチウム電池に用いるめには、
非常に有利である。 本発明の他の特長の一つは、製造が極めて容易
であることである。 たとえば、β−Al2O3は、最もよく知られた陽
イオン導電体の一つであるが、この物質をホツト
プレス法によつて合成するには、約1500℃以上に
することが必要であり、加熱焼成のみによつて焼
結体を形成するためには、約1850℃に加熱しなけ
ればならない。 このような高温度の熱処理は、多量生産を行な
うためには、極めて不便であるが、本発明による
固体電解質を形成するには、400〜600℃程度の低
温加熱でよく、雰囲気に留意すればよいのである
から、多量生産も容易である。
[Table] ×, 1×10 -6 (Ω・cm) -1 is smaller than ●,
In Table 1, the solid electrolytes in the regions marked with symbols ○ and △ are the above-mentioned LiI and
It can be seen that it has greater lithium ion conductivity than Al 2 O 3 . FIG. 1 shows the results shown in Table 1 as a Li 3 N-LiI-LiOH ternary system composition diagram. The symbols ○, Δ, ×, ● and the numbers attached to these symbols in FIG. 1 correspond to the symbols in the judgment column and the numbers in the number column in Table 1. As is clear from Figure 1 and Table 1,
When the ratio of Li 3 N, LiI and LiOH is within region A,
The lithium ion conductivity is 1×10 -4 (Ωcm) -1 or higher, making it an extremely good lithium ion conductive solid electrolyte. In particular, the lithium ion conductivity of the one in which the molar ratio of Li 3 N, LiI, and LiOH is 36:35:29 (number 1) is 2.8 × 10 -4 (Ω・
cm) reached -1 . In FIG. 1, region B is a region circumscribing the region A, and exhibits lithium ion conductivity represented by the symbol Δ. As mentioned above, the symbol △ indicates that the lithium ion conductivity is 1×10 -4 to 1×10 -5
(Ω・cm) -1 , so if it has a composition within regions A and B, it is higher than LiI・Al 2 O 3 , which is a typical conventional solid electrolyte. Lithium ion conductivity will be obtained. Regions C and D are represented by the above symbols × and ●, respectively, and have lithium ion conductivities of 1×10 −5 to 1×10 −6 (Ω·cm) −1 and 1×
10 -6 (Ωcm) -1 or less, and the lithium ion conductivity is inferior to the conventional solid electrolyte mentioned above. Therefore, the solid electrolyte according to the present invention has a composition that falls within regions A and B.
Particularly preferred. However, the present invention is superior to conventional solid electrolytes in points other than lithium ion conductivity. That is, the solid electrolyte according to the present invention has a feature of having a higher decomposition voltage than conventional ones. A high decomposition voltage allows the battery to have a long shelf life and to create a battery with high energy density. As is well known, Li 3 N single crystal has a temperature of 1.2× at 27℃
It has an extremely high lithium ion conductivity of 10 -3 (Ω cm) -1 in the C-axis direction (UVAlpen
et al., Applied Physics Letters, 30 , 12, 621.
(1977). However, the decomposition voltage of Li 3 N is extremely low at 0.445V, so it cannot be used in lithium batteries that require high energy density. On the other hand, in the case of the present invention, the decomposition voltage is 0.36Li 3 N, which showed the highest lithium ion conductivity.
As can be seen from the fact that 0.35LiI/0.29LiOH (number 1) is 2.6V or more, it is extremely high and in order to be used in lithium batteries that require high energy density,
Very advantageous. Another advantage of the invention is that it is extremely easy to manufacture. For example, β-Al 2 O 3 is one of the most well-known cationic conductors, but in order to synthesize this material by hot pressing, it is necessary to heat the material to approximately 1500°C or higher. In order to form a sintered body only by heating and firing, it must be heated to about 1850°C. Such high-temperature heat treatment is extremely inconvenient for mass production, but in order to form the solid electrolyte of the present invention, low-temperature heating of approximately 400 to 600°C is sufficient, and as long as attention is paid to the atmosphere, Since it is of good quality, mass production is also easy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はLiI−Li3N−LiOH三元系組成図であ
る。 A……リチウムイオン導電率が1×10-4(Ω・
cm)-1以上となる領域、B……リチウムイオン導
電率が1×10-4〜1×10-5(Ω・cm)-1の範囲にあ
る領域、C……リチウムイオン導電率が1×10-5
〜1×10-6(Ω・cm)-1の範囲にある領域、D……
リチウムイオン導電率が1×10-6(Ω・cm)-1以下
になる領域。
FIG. 1 is a ternary composition diagram of LiI-Li 3 N-LiOH. A...Lithium ion conductivity is 1×10 -4 (Ω・
cm) -1 or more, B...area where the lithium ion conductivity is in the range of 1 x 10 -4 to 1 x 10 -5 (Ωcm) -1 , C... the area where the lithium ion conductivity is 1 ×10 -5
Area in the range of ~1×10 -6 (Ω・cm) -1 , D...
A region where the lithium ion conductivity is 1×10 -6 (Ωcm) -1 or less.

Claims (1)

【特許請求の範囲】[Claims] 1 チツ化リチウム、ヨウ化リチウムおよび水酸
化リチウムからなる添附図面の三元組成図におい
て、領域Aおよび領域B内にあり、ただしチツ化
リチウム、ヨウ化リチウムよりなる二元組成を示
す線上を除いた組成を有することを特徴とする固
体電解質。
1 In the ternary composition diagram of the attached drawings consisting of lithium titanide, lithium iodide, and lithium hydroxide, it is within region A and region B, except on the line indicating the binary composition consisting of lithium titanide and lithium iodide. A solid electrolyte characterized by having a composition.
JP3155380A 1979-10-29 1980-03-14 Solid electrolyte Granted JPS56128580A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP3155380A JPS56128580A (en) 1980-03-14 1980-03-14 Solid electrolyte
DE3039900A DE3039900C2 (en) 1979-10-29 1980-10-22 Solid electrolyte
FR8022648A FR2469009A1 (en) 1979-10-29 1980-10-23 SOLID ELECTROLYTE
CH7940/80A CH649869A5 (en) 1979-10-29 1980-10-24 LITHIUM ION-DRYING ELECTROLYTE.
GB8034679A GB2062345B (en) 1979-10-29 1980-10-28 Solid electrolyte
US06/201,766 US4367269A (en) 1979-10-29 1980-10-29 Solid electrolyte
NLAANVRAGE8005939,A NL177958C (en) 1979-10-29 1980-10-29 LITHIUM ION CONDUCTIVE SOLID ELECTROLYTE.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3155380A JPS56128580A (en) 1980-03-14 1980-03-14 Solid electrolyte

Publications (2)

Publication Number Publication Date
JPS56128580A JPS56128580A (en) 1981-10-08
JPH024988B2 true JPH024988B2 (en) 1990-01-31

Family

ID=12334370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3155380A Granted JPS56128580A (en) 1979-10-29 1980-03-14 Solid electrolyte

Country Status (1)

Country Link
JP (1) JPS56128580A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58142319A (en) * 1982-02-19 1983-08-24 Asahi Glass Co Ltd Ec dimmer
JPS61128622U (en) * 1985-01-30 1986-08-12
CN117334997B (en) * 2023-10-25 2024-06-04 浙江大学 Inorganic nitride and organosilane composite solid electrolyte and preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5596568A (en) * 1979-01-15 1980-07-22 Max Planck Gesellschaft Novel ion conductivity lithium compound*solid ion conductive material made of same* process for producing same compound and battery containing same ion conductive material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5596568A (en) * 1979-01-15 1980-07-22 Max Planck Gesellschaft Novel ion conductivity lithium compound*solid ion conductive material made of same* process for producing same compound and battery containing same ion conductive material

Also Published As

Publication number Publication date
JPS56128580A (en) 1981-10-08

Similar Documents

Publication Publication Date Title
US7901658B2 (en) Chemically stable solid lithium ion conductor
KR101168253B1 (en) Chemically stable solid lithium ion conductors
Liu et al. Electrochemical Characteristics of Spinel Phase LiMn2 O 4‐Based Cathode Materials Prepared by the Pechini Process: Influence of Firing Temperature and Dopants
JP3164583B2 (en) Method for synthesizing high-capacity Li lower x Mn lower 2 O lower 4 electrode compound for secondary battery
KR20030028447A (en) Cathod intercalation compositions, production methods and rechargeable lithium batteries containing the same
US20090004563A1 (en) Substituted lithium titanate spinel compound with improved electron conductivity and methods of making the same
GB2221213A (en) Synthesizing lithium manganese oxide
Doeff et al. Synthesis and characterization of a copper-substituted manganese oxide with the Na0. 44MnO2 structure
CN113066978A (en) Ta surface doped high-nickel single crystal positive electrode material and preparation method thereof
KR20010042062A (en) Method for producing lithium metal oxides
KR20010077415A (en) Preparation methode of cathode materials for Li-secondary battery
US4367269A (en) Solid electrolyte
JPH024988B2 (en)
EP1113993B1 (en) Method for producing lithium manganese oxide intercalation compounds and compounds produced thereby
KR102323724B1 (en) Li2S-P2S5-B2S3 glass ceramic and all-solid-state secondary battery
CN113346127A (en) NASICON type lithium ion solid electrolyte, preparation method and battery
JP2001283847A (en) Manufacturing method of positive active material and positive active material as well as lithium secondary battery using same
KR20200097858A (en) Hybrid type solid electrolyte and method for manufacturing the same
GB2245264A (en) Lithium manganese oxide
Sun et al. Cycling behavior of the oxysulfide LiAl0. 18Mn1. 82O3. 97S0. 03 cathode materials at elevated temperature
KR102605098B1 (en) Complex solid electrolyte, thermal battery including the same, and manufacturing method of complex solid electrolyte
Plichta et al. The Rechargeable LiAl/Li3. 6Ge0. 6 V 0.4 O 4/TiS2 High Temperature Solid‐State Cell
US4411971A (en) Lithium compounds
JP2001522133A (en) Transition metal-based ceramic materials and products thereof
Mentus Gel-Combustion synthesis