JPH0247627A - Automatic light controller - Google Patents

Automatic light controller

Info

Publication number
JPH0247627A
JPH0247627A JP63198437A JP19843788A JPH0247627A JP H0247627 A JPH0247627 A JP H0247627A JP 63198437 A JP63198437 A JP 63198437A JP 19843788 A JP19843788 A JP 19843788A JP H0247627 A JPH0247627 A JP H0247627A
Authority
JP
Japan
Prior art keywords
liquid crystal
conductive film
solar battery
transparent
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63198437A
Other languages
Japanese (ja)
Inventor
Hideki Nakabayashi
英毅 中林
Kenji Maekawa
前川 謙二
Shunzo Yamaguchi
山口 俊三
Yoshihiro Hamakawa
圭弘 浜川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP63198437A priority Critical patent/JPH0247627A/en
Publication of JPH0247627A publication Critical patent/JPH0247627A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • G02F1/13324Circuits comprising solar cells

Abstract

PURPOSE:To make it hard to identify a solar battery, to make the outward appearance excellent, and to eliminate the need for the space required for the solar battery by storing the solar battery between transparent plates together with liquid crystal. CONSTITUTION:A solar battery part 3 is formed at a specific place of a 1st transparent conductive film 2 and contacts a 2nd conductive film 11 formed on one surface of a 2nd glass substrate 10 as a 2nd transparent substrate across a silicon nitride film 4 and spacers 5. Further, solar battery parts 3 have plural solar batteries 30 connected in series by a metallic electrode 12a, one electrode, i.e. positive electrode of each solar battery part 3 is connected electrically to the 1st transparent conductive film 2, and the other electrode i.e. negative electrode is connected electrically to the 2nd transparent conductive film 11 from the metallic electrode 12b through conductive paste 14. Then the solar battery part 3 is charged by the 1st glass substrate 1, 2nd glass substrate 10, and sealing part 20 together with twisted nematic liquid crystal (TN liquid crystal) 21. Consequently, it is difficult to confirm the presence of the solar battery itself, the outward appearance is excellent, and the space for the solar battery need not be secured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光の強さの変化にともない、自動的に光透過
率を変化させる自動調光装置に関するものであり、特に
建物の天窓や自動車のサンルーフに使用される自動調光
装置に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to an automatic light control device that automatically changes light transmittance as the intensity of light changes, and is particularly applicable to skylights and skylights of buildings. This invention relates to an automatic light control device used in automobile sunroofs.

〔従来の技術〕[Conventional technology]

従来、建物や自動車の窓ガラスを介しての室内への日射
量の調光は、ブラインドやカーテンによって行なわれて
きた。さらにまた、最近では日射量の調光を自動的に行
なわしめるべく、液晶を使用することが提案されている
Conventionally, the amount of sunlight entering a room through the window glass of a building or automobile has been controlled by using blinds or curtains. Furthermore, recently it has been proposed to use liquid crystals to automatically adjust the amount of solar radiation.

このような液晶を使用する場合には、特開昭62−11
5416号公報に開示されるように液晶の電源に太陽電
池を用いることによって日射量が強くなることに従かい
太陽電池の起電力を高め、液晶を作動させるような太陽
電池を光センサとして用いる方法がある。
When using such a liquid crystal, the
As disclosed in Publication No. 5416, a method of using a solar cell as a light sensor as a power source for a liquid crystal, increasing the electromotive force of the solar cell as the amount of solar radiation increases and operating the liquid crystal. There is.

しかし従来の太陽電池によって液晶を作動させる自動調
光装置では、太陽電池の設置場所とじて窓ガラスの枠ま
たは周囲、さらにはガラス上に設置していたが、そのよ
うな太陽電池の設置方法では外観が良好とはいえず、さ
らには太陽電池の設置スペースが必要であった。
However, in conventional automatic light control devices that operate the LCD using solar cells, the solar cells are installed in or around the window glass frame, or even on the glass; It did not have a good appearance, and furthermore, it required space to install the solar cells.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

そこで本発明は太陽電池による外観悪化、およびスペー
ス不足のない自動調光装置を提供するものである。
Therefore, the present invention provides an automatic light control device that does not cause deterioration in appearance due to solar cells and does not lack space.

〔課題を解決するための手段〕[Means to solve the problem]

そこで本発明では、一方の面に第1の透明導電膜が形成
された第1の透光性基板と、 一方の面に第2の透明導電膜が形成された第2の透光性
基板と、 第1の透明導電膜と一方の電極とが電気的に接続され、
第2の透明導電膜と他方の電極と電気的に接続され、か
つ少なくとも第1の透光性基板の一方の面と第2の透光
性基板の一方の面とによって液晶とともに封入される太
陽電池とからなる自動調光装置を提供するものである。
Therefore, in the present invention, a first transparent substrate with a first transparent conductive film formed on one surface, and a second transparent substrate with a second transparent conductive film formed on one surface. , the first transparent conductive film and one electrode are electrically connected,
A solar panel electrically connected to the second transparent conductive film and the other electrode and encapsulated together with the liquid crystal by at least one surface of the first transparent substrate and one surface of the second transparent substrate. The present invention provides an automatic light control device comprising a battery.

〔作用〕[Effect]

上記手段を用いることより、第1の透光性基板と第2の
透光性基板とによって液晶とともに太陽電池を封入した
ので、太陽電池自体の存在の確認を困難とすることによ
って外観も良好とし、さらに太陽電池の必要なスペース
を設けなくてもよくすることができるため、太陽電池に
よるスペースの確保を必要としなくなった。
By using the above method, the solar cell is encapsulated together with the liquid crystal by the first transparent substrate and the second transparent substrate, which makes it difficult to confirm the presence of the solar cell itself, resulting in a good appearance. Furthermore, since it is not necessary to provide the necessary space for solar cells, it is no longer necessary to secure space for solar cells.

〔実施例〕〔Example〕

(第1実施例) 第1図は自動調光装置の一例である自動車のサンルーフ
等に用いられる自動調光窓の断面図を示す。
(First Embodiment) FIG. 1 shows a sectional view of an automatic light control window used in an automobile sunroof, which is an example of an automatic light control device.

第1の透光性基板である第1ガラス基板1の一方の面に
は180nmのITOおよび20nmのSnO。
180 nm of ITO and 20 nm of SnO are deposited on one surface of the first glass substrate 1, which is a first transparent substrate.

よりなる第1透明導電膜2がほぼ全面に形成されている
。この第1透明導電膜2の所定の場所には太陽電池部3
がプラズマCVD法およびバターニング等により形成さ
れ、窒化珪素膜4.スペーサ5を介して第2の透光性基
板である第2ガラス基板10の一方の面に形成された第
2導電膜11と接している。また太陽電池部3は、第2
図に示す如く複数の太陽電池30が金属電極12aによ
って直列に接続されており、太陽電池部3の一方の電極
である正極は第1透明導電膜2に、また他方の電極であ
る負極は第3図の如く金属電極12bから導電性ペース
ト14を介して第2透明導電膜11に電気的に接続され
ている。そして、太陽電池部3は、第1ガラス基板1.
第2ガラス基板10および封止部20によってツィステ
ッドネマチック液晶(TN液晶)21とともに封入され
ている。さらに、第1ガラス基板1および第2ガラス基
板10のそれぞれの他方の面には偏光板22゜23が設
けられている。
A first transparent conductive film 2 consisting of the following is formed on almost the entire surface. A solar cell section 3 is provided at a predetermined location of the first transparent conductive film 2.
is formed by plasma CVD method, buttering, etc., and the silicon nitride film 4. It is in contact with a second conductive film 11 formed on one surface of a second glass substrate 10, which is a second transparent substrate, via a spacer 5. In addition, the solar cell section 3
As shown in the figure, a plurality of solar cells 30 are connected in series by metal electrodes 12a, one positive electrode of the solar cell part 3 is connected to the first transparent conductive film 2, and the other electrode, the negative electrode, is connected to the first transparent conductive film 2. As shown in FIG. 3, the metal electrode 12b is electrically connected to the second transparent conductive film 11 via the conductive paste 14. The solar cell section 3 includes the first glass substrate 1.
It is sealed together with twisted nematic liquid crystal (TN liquid crystal) 21 by the second glass substrate 10 and the sealing part 20 . Further, polarizing plates 22 and 23 are provided on the other surface of each of the first glass substrate 1 and the second glass substrate 10.

第4図は第1実施例に採用する非透光性太陽電池30の
構造図である。太陽電池30は第1ガラス基板1上に形
成された透明導電膜2上にプラズマCVD法によってp
型非晶質炭化珪素層(pa−3iC)31が15nm、
i型非晶質珪素層(t−a−3i)32が400n11
1、およびn型非晶貿珪素層(n−a−3i)33が2
0nm、順次積層されている。そして金属電極12によ
って、複数の太陽電池30を直列に接続させ太陽電池部
3を構成している。
FIG. 4 is a structural diagram of a non-transparent solar cell 30 employed in the first embodiment. The solar cell 30 is formed by a plasma CVD method on a transparent conductive film 2 formed on a first glass substrate 1.
type amorphous silicon carbide layer (pa-3iC) 31 is 15 nm,
The i-type amorphous silicon layer (ta-3i) 32 is 400n11
1, and the n-type amorphous silicon layer (n-a-3i) 33 is 2
0 nm, and are sequentially laminated. A plurality of solar cells 30 are connected in series using the metal electrodes 12 to form the solar cell section 3.

次に第1実施例の自動調光窓の製造方法を説明する。Next, a method of manufacturing the automatic light control window of the first embodiment will be explained.

第1ガラス基板1の一方の面に透明導電膜2を形成した
のち、正極が透明導電膜2に導通された太陽電池部3を
プラズマCVD法、およびバターニングによって形成す
る。
After forming a transparent conductive film 2 on one surface of the first glass substrate 1, a solar cell section 3 having a positive electrode electrically connected to the transparent conductive film 2 is formed by plasma CVD and patterning.

その後、電子ビーム蒸着装置で、金属電極12を所定の
形状に600nm形成し、太陽電池部3の表面の保護膜
である窒化珪素膜4をプラズマCVDで全面に形成しフ
ォトリソグラフィーにより所定の形状にバターニングす
る。さらに、太陽電池部3の上に窒化珪素膜4を介して
エポキシ樹脂よりなるスペーサ5をスクリーン印刷によ
って形成した。
Thereafter, a metal electrode 12 with a thickness of 600 nm is formed into a predetermined shape using an electron beam evaporation device, and a silicon nitride film 4, which is a protective film on the surface of the solar cell section 3, is formed on the entire surface using plasma CVD, and then into a predetermined shape using photolithography. Buttering. Furthermore, a spacer 5 made of epoxy resin was formed on the solar cell part 3 via a silicon nitride film 4 by screen printing.

そして第1ガラス基板1の透明導電膜2上および第2ガ
ラス基Fi10の透明導電膜11上に配向剤であるポリ
イミド樹脂をスピンナー塗布によって1100nの膜厚
に形成する。その後、最後に封入する液晶が平行配向す
るように布で表面をラビングした。そして、この第1ガ
ラス基板1.第2ガラス基板10の周囲にエポキシ樹脂
よりなる封止部20を図示しない液晶注入孔部を除いて
形成し、第1ガラス基板1.第2ガラス基板10および
封止部20よりなる厚さlOμm程度の空間を形成させ
る。なお、この時あらかじめ太陽電池部30の頁捲電極
である金属電極12bを導電性ペースト14を介して透
明導電膜11に電気的に接続させておく。
Then, polyimide resin as an alignment agent is formed to a thickness of 1100 nm on the transparent conductive film 2 of the first glass substrate 1 and the transparent conductive film 11 of the second glass substrate Fi10 by spinner coating. Thereafter, the surface was rubbed with a cloth so that the liquid crystal to be sealed was aligned in parallel. Then, this first glass substrate 1. A sealing part 20 made of epoxy resin is formed around the second glass substrate 10 except for a liquid crystal injection hole part (not shown), and the first glass substrate 1. A space having a thickness of approximately 10 μm is formed by the second glass substrate 10 and the sealing portion 20. Note that at this time, the metal electrode 12b, which is the page-turning electrode of the solar cell section 30, is electrically connected to the transparent conductive film 11 via the conductive paste 14 in advance.

さらに、ガラス基板1の一方の面等によって形成した空
間を充分に真空脱気し、水分、不純物ガス等を取り除い
た後、TN液晶を図示しない液晶注入孔部から注入し、
空間にTN液晶を充填し液晶部21を形成する。充填後
注入孔をエポキシ樹脂によって封止する。
Furthermore, the space formed by one surface of the glass substrate 1 is sufficiently vacuum degassed to remove moisture, impurity gas, etc., and then TN liquid crystal is injected from a liquid crystal injection hole (not shown).
A liquid crystal section 21 is formed by filling the space with TN liquid crystal. After filling, the injection hole is sealed with epoxy resin.

最後に、ガラス基板1,10の表面に偏光フィルム22
,23を90°偏光させて接着する。
Finally, a polarizing film 22 is placed on the surface of the glass substrates 1 and 10.
, 23 with 90° polarization and bonding.

以上のようにして、2枚のガラス基板の間に、太陽電池
部3とTN型液晶が封入された自動調光窓を得ることか
できる。
In the manner described above, it is possible to obtain an automatic light control window in which the solar cell section 3 and the TN type liquid crystal are sealed between two glass substrates.

次に第1実施例の作用を述べる。Next, the operation of the first embodiment will be described.

第1実施例の自動調光窓の第1ガラス基板1から第2ガ
ラス基板10に入射する光の照度が低い場合、太陽電池
部3による起電力は低く、液晶が作動せず自動調光窓の
光透過率はほとんど変化がない。
When the illuminance of the light incident on the second glass substrate 10 from the first glass substrate 1 of the automatic dimming window of the first embodiment is low, the electromotive force by the solar cell section 3 is low, the liquid crystal does not operate, and the automatic dimming window There is almost no change in the light transmittance.

自動調光窓の第1ガラス基板1から第2ガラス基板10
に入射する光の照度が高くなって(ると太陽電池部3に
よる起電力が上がり、この起電力の上昇に従い、対向電
極としての第1透明導電膜2、第2透明導電膜11間に
電圧が加わる。この電圧がTN液晶の作動電圧(第1実
施例では4V)以上になると液晶の配向が徐々に変化し
始め、自動調光窓の光透過率が減少しはじめる。さらに
光の照度が高くなり太陽電池部3によっである電圧(第
1実施例では6V)に達すると液晶によって光を全く透
過させなくなる。
First glass substrate 1 to second glass substrate 10 of automatic light control window
When the illuminance of the light incident on the solar cell section 3 increases (as the electromotive force by the solar cell section 3 increases, and as this electromotive force increases, a voltage increases between the first transparent conductive film 2 and the second transparent conductive film 11 as counter electrodes). is applied.When this voltage exceeds the operating voltage of the TN liquid crystal (4V in the first embodiment), the orientation of the liquid crystal begins to gradually change, and the light transmittance of the automatic dimming window begins to decrease.Furthermore, the illuminance of the light increases. When the voltage becomes high and reaches a certain voltage (6V in the first embodiment) by the solar cell unit 3, the liquid crystal no longer transmits any light.

この第1実施例によって ■従来、問題となっていた太陽電池の取り付スペースの
確保が必要なくなる。
This first embodiment eliminates the need to secure mounting space for solar cells, which has been a problem in the past.

■太陽電池を封止する別体の容器が必要なくなる。■No need for a separate container to seal the solar cells.

■液晶板と太陽電池との間の電気的な導通手段が必要な
くなる。
■No need for electrical continuity between the liquid crystal panel and the solar cell.

という効果が得られただけでなく、太陽電池部3上にス
ペーサ5を設けたので、第1ガラス基板1と第2ガラス
基Fi10とのクリアランスの保持を容易にすることが
できる。
In addition to this effect, since the spacer 5 is provided on the solar cell section 3, it is possible to easily maintain the clearance between the first glass substrate 1 and the second glass substrate Fi10.

(第2実施例) 第2実施例では、第1実施例で用いた太陽電池30の代
りに半透光性太陽電池40を採用し、他は第1実施例と
同様な構造とした。
(Second Example) In the second example, a semi-transparent solar cell 40 was used in place of the solar cell 30 used in the first example, and the other structure was the same as that of the first example.

この半透過性太陽電池40の構造図を第5図に示す。半
透光性太陽電池40はガラス基板1に形成された透明導
電膜2を所定の形状にパターニングした後、プラズマC
VD法等によりp型非晶質炭化珪素層(p−a−3i 
C) 41を15nm、i型非晶質炭化珪素N (i−
a−3iC)42を200na+、およびn型非晶質珪
素層(n−a−3i)43を20nm順次堆積する。そ
してフォトリソグラフィーにより、所定の形状にパター
ニング後第1実施例における金属電極の代りとしての透
明導電膜45および表面保護膜である窒化珪素膜4を形
成した。
A structural diagram of this semi-transparent solar cell 40 is shown in FIG. The semi-transparent solar cell 40 is manufactured by patterning a transparent conductive film 2 formed on a glass substrate 1 into a predetermined shape, and then applying plasma C.
A p-type amorphous silicon carbide layer (p-a-3i
C) 15 nm of 41, i-type amorphous silicon carbide N (i-
A-3iC) 42 of 200 nm and an n-type amorphous silicon layer (na-3i) 43 of 20 nm are sequentially deposited. After patterning into a predetermined shape by photolithography, a transparent conductive film 45 as a substitute for the metal electrode in the first embodiment and a silicon nitride film 4 as a surface protection film were formed.

第2実施例では、第1実施例に採用した非透光性太陽電
池3の代りに、半透光性太陽電池40を用いたので、第
1実施例によって得られる効果だけでなく太陽電池部分
によってできる非透光性領域をなくすことができた。
In the second embodiment, a semi-transparent solar cell 40 was used instead of the non-transparent solar cell 3 employed in the first embodiment, so that not only the effects obtained by the first embodiment but also the solar cell portion We were able to eliminate the non-transparent areas caused by this.

さらに、半透光性太陽電池の上に透明スペーサを設けて
あり、第1実施例のスペーサによる効果の他に半透光性
太陽電池による色ムラのある液晶表示を避けられるばか
りでなく、透明スペーサによって太陽電池上に液晶がま
わりこまないようにすることができた。
Furthermore, a transparent spacer is provided on the semi-transparent solar cell, and in addition to the effect of the spacer of the first embodiment, it is possible to avoid not only the liquid crystal display with uneven color caused by the semi-transparent solar cell, but also the transparent spacer. The spacer made it possible to prevent the liquid crystal from wrapping around the solar cells.

(第3実施例) 液晶として第1実施例で採用したTN液晶のかわりにゲ
スト−ホスl−(OH)液晶を使用する。
(Third Embodiment) A guest-phos l-(OH) liquid crystal is used as the liquid crystal instead of the TN liquid crystal employed in the first embodiment.

OH液晶を使用した場合、太陽電池からの印加電圧が液
晶の作動電圧以上になった場合、液晶の配向が変化し、
液晶層が着色し、光透過率を減少させるがTN液晶のよ
うに光を遮断させない。このOH液晶に混合する染料を
選択すれば、日射量の多い時に任意の色に着色すること
が可能となる。
When using an OH liquid crystal, if the voltage applied from the solar cell exceeds the operating voltage of the liquid crystal, the orientation of the liquid crystal changes,
The liquid crystal layer is colored and reduces light transmittance, but does not block light like TN liquid crystal. By selecting a dye to be mixed with this OH liquid crystal, it becomes possible to color it in any color when the amount of solar radiation is large.

(第4実施例) 第6図は第4実施例の自動調光装置を示す。本実施例で
は太陽電池60と液晶部65をマトリ・ンクス状に分割
し、透明導電膜70もマトリックス状に分割した構造と
する。おのおのの太陽電池60の電極と、透明導電膜7
0との接続は前記第1実施例の方法で行なう。
(Fourth Embodiment) FIG. 6 shows an automatic light control device of a fourth embodiment. In this embodiment, the solar cell 60 and the liquid crystal section 65 are divided into matrix shapes, and the transparent conductive film 70 is also divided into matrix shapes. Electrodes of each solar cell 60 and transparent conductive film 7
Connection with 0 is performed by the method of the first embodiment.

透明導電膜70を、マトリックス状に分割することによ
り、自動調光装置のガラス基板1,10の一部のみに強
い光が照射した場合、光の当たつたガラス基板1.10
の部分のみが光透過率の変化を起こし、他の部分の光透
過率は変化しない。
By dividing the transparent conductive film 70 into a matrix, when only a part of the glass substrates 1 and 10 of the automatic light control device is irradiated with strong light, the glass substrates 1 and 10 that are irradiated with the light are
The light transmittance of only the portion changes, and the light transmittance of the other portions remains unchanged.

すなわち、自動調光窓内で部分的に液晶の配向を変化さ
せることができる。
That is, it is possible to partially change the orientation of the liquid crystal within the automatic light control window.

このように、自動調光窓の一部にのみに光が照射された
場合、、その部分のみの光透過率を変化させることは従
来液晶部と太陽電池の設置場所が離れている為不可能で
あった。
In this way, if only a part of the automatic dimming window is irradiated with light, it is impossible to change the light transmittance of only that part because the liquid crystal part and the solar cell are conventionally installed far apart. Met.

以上のように、第5実施例を採用することにより、強い
光が照射されている部分の光透過率のみを変化させるこ
とを可能とした。
As described above, by employing the fifth embodiment, it is possible to change only the light transmittance of the portion irradiated with strong light.

前記実施例ではガラス基板間に封入した液晶としてTN
液晶、OH液晶を用いたが、本発明はこれらの液晶に限
られるものではない。
In the above embodiment, TN was used as the liquid crystal sealed between the glass substrates.
Although liquid crystal and OH liquid crystal were used, the present invention is not limited to these liquid crystals.

前記実施例では太陽電池と第2の透光性板との間にスペ
ーサを設けたが、このスペーサは設けな(でもよい。
In the embodiment described above, a spacer was provided between the solar cell and the second transparent plate, but this spacer may not be provided.

前記半透光性太陽電池を用いた実施例では光の透過方向
は第1の透光性板から第2の透光性板の方向としたが、
第2の透光性板から第1の透光性板に光を透過させても
よい。
In the embodiment using the semi-transparent solar cell, the direction of light transmission was from the first transparent plate to the second transparent plate,
Light may be transmitted from the second light-transmitting plate to the first light-transmitting plate.

太陽電池の構造は前記構造に限定されるものではなく、
光によって起電力が得られる太陽電池であればよい。
The structure of the solar cell is not limited to the above structure,
Any solar cell that can generate electromotive force from light may be used.

前記実施例では封止部を用いて、液晶を封入していたが
、透光性板の端部を屈曲させて封止部としてもよい。
In the embodiment described above, the liquid crystal was sealed using the sealing part, but the end part of the light-transmitting plate may be bent to serve as the sealing part.

前記実施例においては、透明導電膜2と太陽電池部3の
正極を接続し、透明導電膜2を正極として使用したが、
透明導電膜2と太陽電池部3の負極側電極とを接続し、
透明導電膜2を負極として使用することもできる。その
場合前記実施例と液晶に印加する電圧の方向が逆となる
が、本発明の効果は同様に得られる。
In the above embodiment, the transparent conductive film 2 and the positive electrode of the solar cell section 3 were connected and the transparent conductive film 2 was used as the positive electrode.
Connecting the transparent conductive film 2 and the negative electrode of the solar cell section 3,
The transparent conductive film 2 can also be used as a negative electrode. In that case, although the direction of the voltage applied to the liquid crystal is opposite to that of the above embodiment, the effects of the present invention can be obtained in the same way.

〔発明の効果〕〔Effect of the invention〕

本発明によって、太陽電池を液晶とともに透光性板間に
封入したので、太陽電池を識別することは困難とし、外
観を良好とし、かつ太陽電池のとるスペースを除くこと
ができた。
According to the present invention, since the solar cells are enclosed between the transparent plates together with the liquid crystal, it is difficult to identify the solar cells, the appearance is good, and the space taken up by the solar cells can be eliminated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例を示す構造図、第2図は第
1実施例を示す一部拡大図、第3図は第2図のA−A線
に沿う断面図、第4図は第1実施例に用いられる太陽電
池の構造図、第5図は第2実施例に用いられる太陽電池
の構造図、第6図(a)(b)は第4実施例を示す正面
図および断面図である。 1・・・第1のガラス基板(第1の透光性基板)3・・
・太陽電池、10・・・第2のガラス基板(第2の透光
性基板)、21・・・液晶。
Fig. 1 is a structural diagram showing a first embodiment of the present invention, Fig. 2 is a partially enlarged view showing the first embodiment, Fig. 3 is a sectional view taken along line A-A in Fig. 2, and Fig. 4 The figure is a structural diagram of the solar cell used in the first embodiment, FIG. 5 is a structural diagram of the solar cell used in the second embodiment, and FIGS. 6(a) and 6(b) are front views showing the fourth embodiment. and a cross-sectional view. 1... First glass substrate (first transparent substrate) 3...
- Solar cell, 10... second glass substrate (second transparent substrate), 21... liquid crystal.

Claims (1)

【特許請求の範囲】 一方の面に第1の透明導電膜が形成された第1の透光性
基板と、 一方の面に第2の透明導電膜が形成された第2の透光性
基板と、 前記第1の透明導電膜と一方の電極とが電気的に接続さ
れ、前記第2の透明導電膜と他方の電極とが電気的に接
続され、前記第1の透光性基板の一方の面と前記第2の
透光性基板の一方の面とによって液晶とともに封入され
る太陽電池とからなり、 前記太陽電池の起電力により前記液晶の光透過率を調整
することを特徴とする自動調光装置。
[Claims] A first transparent substrate with a first transparent conductive film formed on one surface, and a second transparent substrate with a second transparent conductive film formed on one surface. and the first transparent conductive film and one electrode are electrically connected, the second transparent conductive film and the other electrode are electrically connected, and one of the first transparent substrates is electrically connected to the other electrode. and a solar cell enclosed together with a liquid crystal by one surface of the second light-transmitting substrate, and the light transmittance of the liquid crystal is adjusted by the electromotive force of the solar cell. Dimmer device.
JP63198437A 1988-08-09 1988-08-09 Automatic light controller Pending JPH0247627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63198437A JPH0247627A (en) 1988-08-09 1988-08-09 Automatic light controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63198437A JPH0247627A (en) 1988-08-09 1988-08-09 Automatic light controller

Publications (1)

Publication Number Publication Date
JPH0247627A true JPH0247627A (en) 1990-02-16

Family

ID=16391069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63198437A Pending JPH0247627A (en) 1988-08-09 1988-08-09 Automatic light controller

Country Status (1)

Country Link
JP (1) JPH0247627A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0343627U (en) * 1989-09-04 1991-04-24
US5139578A (en) * 1991-01-22 1992-08-18 Valley Charles R Liquid crystal coverslides for solar cells
EP1037279A3 (en) * 1994-03-22 2000-11-22 Hyperchip Inc. Display architecture supporting integrated power supply means
US6498635B1 (en) * 1999-03-05 2002-12-24 Chartered Semiconductor Manufacturing Ltd. Method of forming insulating material alignment posts associated with active device structures
JP2018025786A (en) * 2016-07-29 2018-02-15 大日本印刷株式会社 Lighting control film, lighting control member and power supply method for vehicle and lighting control film
JP2022009944A (en) * 2017-03-03 2022-01-14 大日本印刷株式会社 vehicle
US11541731B2 (en) 2016-07-29 2023-01-03 Dai Nippon Printing Co., Ltd. Light control film, light control member, vehicle, and electricity supply method for light control film
JP2023023754A (en) * 2021-08-06 2023-02-16 凸版印刷株式会社 Light control system, light control sheet and screen

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6478237A (en) * 1987-09-19 1989-03-23 Fuji Electric Co Ltd Dimming transmission body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6478237A (en) * 1987-09-19 1989-03-23 Fuji Electric Co Ltd Dimming transmission body

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0343627U (en) * 1989-09-04 1991-04-24
US5139578A (en) * 1991-01-22 1992-08-18 Valley Charles R Liquid crystal coverslides for solar cells
EP1037279A3 (en) * 1994-03-22 2000-11-22 Hyperchip Inc. Display architecture supporting integrated power supply means
US6498635B1 (en) * 1999-03-05 2002-12-24 Chartered Semiconductor Manufacturing Ltd. Method of forming insulating material alignment posts associated with active device structures
JP2018025786A (en) * 2016-07-29 2018-02-15 大日本印刷株式会社 Lighting control film, lighting control member and power supply method for vehicle and lighting control film
US11541731B2 (en) 2016-07-29 2023-01-03 Dai Nippon Printing Co., Ltd. Light control film, light control member, vehicle, and electricity supply method for light control film
JP2022009944A (en) * 2017-03-03 2022-01-14 大日本印刷株式会社 vehicle
JP2023023754A (en) * 2021-08-06 2023-02-16 凸版印刷株式会社 Light control system, light control sheet and screen

Similar Documents

Publication Publication Date Title
US7098395B2 (en) Thin-film solar cell module of see-through type
JP4128528B2 (en) Transparent plane
KR20090031915A (en) Glass type electrochemical/electrically controllable device with variable optical and/or energetic characteristic
US20110181939A1 (en) Electrochromic device having controlled infrared reflection
US20050190332A1 (en) Light adjuster and laminated glass
KR20090075850A (en) High electric conductivity transparent layer with a metallic grid having an optimised electrochemical resistance
JPH1131834A (en) Glass sandwich type solar cell panel
KR20010043668A (en) Electrochemical device such as an electrically controlled system with variable optical and/or energy properties
TWI453521B (en) Parallax barrier device and fabricating method thereof
US9104057B2 (en) Liquid-crystal display (LCD) panel capable of achieving low-temperature display
US5069531A (en) Liquid crystal device having asymmetrical opposed contiguous surfaces being driven by a unipolar driving source
JPH0247627A (en) Automatic light controller
JP3534288B2 (en) Light control glass and manufacturing method thereof
KR20050089380A (en) Smart window apparatus
JPS58143087A (en) Window or door glass having light shielding apparatus
US20230403376A1 (en) Liquid crystal projection layer for glass, glass, vehicle and method for manufacturing the glass
CN214311227U (en) Dimming panel and dimming building glass
JPS62143032A (en) Light dimming body
JPH09331079A (en) Frameless solar cell module
JPH1096889A (en) Liquid crystal display device
KR20010040753A (en) Electrooptical cell or photovoltaic cell, and method for making same
JP2020201339A (en) Electrochromic device and smart window
KR20110034354A (en) Building integrated photovoltaic module attached liquid crystal panel
US20230176427A1 (en) Dimming panel, method for manufacturing same, method for driving same, and architectural dimming glass
JPS63106725A (en) Liquid crystal device