JPH0243716A - Electric double layer capacitor - Google Patents

Electric double layer capacitor

Info

Publication number
JPH0243716A
JPH0243716A JP63193542A JP19354288A JPH0243716A JP H0243716 A JPH0243716 A JP H0243716A JP 63193542 A JP63193542 A JP 63193542A JP 19354288 A JP19354288 A JP 19354288A JP H0243716 A JPH0243716 A JP H0243716A
Authority
JP
Japan
Prior art keywords
activated carbon
double layer
electric double
layer capacitor
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63193542A
Other languages
Japanese (ja)
Inventor
Takeshi Morimoto
剛 森本
Kazuya Hiratsuka
和也 平塚
Yasuhiro Sanada
恭宏 真田
Hiroshi Ariga
広志 有賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elna Co Ltd
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Elna Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Elna Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP63193542A priority Critical patent/JPH0243716A/en
Publication of JPH0243716A publication Critical patent/JPH0243716A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PURPOSE:To obtain the title capacitor having a large capacitance and an excellent long-term reliability by a method wherein a polarization electrode, consisting of the activated carbon obtained by carbonizing and activating the phenol resin powder having heat-fusing property, is used by combining it with a non-aqueous solvent electrolyte. CONSTITUTION:In an electric double layer capacitor utilizing the electric double layer formed on the interface of polarization electrodes 1 and 2 and an electrolyte, the polarization electrodes 1 and 2, consisting of activated carbon obtained by carbonizing and activating the phenol resin powder having heat-fusing property, and a non-aqueous solvent electrolyte are used in combination. For example, an activated carbon of the specific surface area of 3100m<2>/g can be obtained by having heat-fusing phenol-formaldehyde resin powder heated at 1100 deg.C for three hours in an algon gas atmosphere. The mixture obtained by adding carbon black and PTFE powder to the above-mentioned activated carbon powder, is formed into a sheet, and the polarization electrodes 1 and 2 are formed. Also, the solution formed by having tetrabutylphosphonium tetrafluoroborate dissolved with propylene carbonate in the concentration of 1M/l is used as the electrolyte.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電気二重層コンデンサ、詳しくは活性炭よりな
る分極性電極を用いた電気二重層コンデンサに関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an electric double layer capacitor, and more particularly to an electric double layer capacitor using polarizable electrodes made of activated carbon.

(従来の技術、発明が解決しようとする問題点)電気二
重層コンデンサに用いる分極性電極としては従来、アル
ミニウムなどの金属よりなる薄板、ネットまたはパンチ
ングメタル、活性炭その他種々のものが使用されてきた
(Prior Art, Problems to be Solved by the Invention) Conventionally, as polarizable electrodes used in electric double layer capacitors, thin plates made of metal such as aluminum, net or punched metal, activated carbon, and various other materials have been used. .

活性炭を用いた例としては、特公昭55−41015号
公報などに電解液と混合してペースト化して用いる電極
が提案されている。しかしながら、このようなペースト
電極に使用された活性炭の比表面積は、最高1,500
m/g程度であり、この電極を用いたコンデンサは単位
体積当りの容量が不十分であった。
As an example of using activated carbon, an electrode that is used by mixing it with an electrolyte to form a paste is proposed in Japanese Patent Publication No. 55-41015. However, the specific surface area of activated carbon used in such paste electrodes is up to 1,500
m/g, and a capacitor using this electrode had insufficient capacity per unit volume.

また、炭素質として活性炭繊維を使用した電極も特公昭
60−15138号公報などに開示されている。しかし
ながら、活性炭繊維は空隙率が大きくて、単位体積当り
の容量を大きくしにくいという問題点があった。
Further, an electrode using activated carbon fiber as the carbon material is also disclosed in Japanese Patent Publication No. 15138/1983. However, activated carbon fibers have a large porosity, making it difficult to increase the capacity per unit volume.

この点を改良するために、粉砕された活性炭繊維や特殊
なバインダーを使用した電極も提案されている(特開昭
61−26207号、同61−26208号公報)。し
かしながら、この場合にも、依然として活性炭の比表面
積は十分大きくないためjji位体積当りの容■の改善
効果が不十分であり、しかも活性炭繊維の機械的強度が
損なわれるという不利な点が加わる。
In order to improve this point, electrodes using pulverized activated carbon fibers or special binders have been proposed (Japanese Patent Application Laid-Open Nos. 61-26207 and 61-26208). However, even in this case, the specific surface area of the activated carbon is still not large enough, so that the effect of improving the volume per unit volume is insufficient, and furthermore, there is the additional disadvantage that the mechanical strength of the activated carbon fibers is impaired.

さらに、特開昭60−27112号および同60−27
113号公報には熱融着性を有するフェノール樹脂成型
体を炭化・賦活してなる活性炭を電極に使用した例が開
示されている。しかしながら、フィルム状あるいはシー
ト状のフェノール樹脂を活性炭化した場合には、電極と
しての機械的強度や集電性に問題があり、電極を金属基
体によって補強する必要があるばかりか、粉末状で賦活
した場合と比べて反応表面積が小さく、したがって比表
面積の小さいc i、ooo〜2,50Or+(/ g
 )活性炭しか得られないという問題点があった。
Furthermore, JP-A-60-27112 and JP-A-60-27
Publication No. 113 discloses an example in which activated carbon, which is obtained by carbonizing and activating a molded phenolic resin having heat-fusible properties, is used for an electrode. However, when phenol resin in the form of a film or sheet is activated carbonized, there are problems with its mechanical strength and current collecting ability as an electrode, and not only does the electrode need to be reinforced with a metal base, but it can also be activated in powder form. The reaction surface area is smaller compared to the case where the reaction surface area is smaller, and therefore the specific surface area is smaller c
) There was a problem that only activated carbon could be obtained.

本発明は前記の問題点を解決して、容量が大きく、かつ
長期信頼性に優れた電気二重層コンデンサを提供するこ
とを目的とするものである。
An object of the present invention is to solve the above-mentioned problems and provide an electric double layer capacitor with a large capacity and excellent long-term reliability.

(問題点を解決するための手段) 前記の問題点を解決するため本発明は、分極性電極と電
解液との界面で形成される電気二重層を利用する電気二
重層コンデンサにおいて、熱融着性を有するフェノール
系樹脂粉末を炭化・賦活して得られる活性炭よりなる分
極性電極と非水溶媒系電解液とを組合せて使用すること
をvF徴とする電気二重層コンデンサを提供するもので
ある。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides an electric double layer capacitor that utilizes an electric double layer formed at the interface between a polarizable electrode and an electrolyte. The present invention provides an electric double layer capacitor whose vF characteristic is the use of a polarizable electrode made of activated carbon obtained by carbonizing and activating a phenolic resin powder having a polarity and a non-aqueous electrolyte in combination. .

本発明で分極性電極に用いる活性炭の原料としては、0
.5〜100μm好ましくは1〜20μmの粒径を有す
る熱融着性を備えたフェノール系樹脂粉末が用いられる
。フェノール系樹脂としては、たとえばフェノールとホ
ルムアルデヒド、アセトアルデヒド、フルフラールなど
のアルデヒド類との縮合反応による樹脂があげられるが
、フェノールホルムアルデヒド樹脂が特に好適に使用さ
れる。
The raw materials for activated carbon used in the polarizable electrode in the present invention include 0
.. A phenolic resin powder having a particle size of 5 to 100 μm, preferably 1 to 20 μm and having thermal adhesive properties is used. Examples of the phenolic resin include resins produced by a condensation reaction between phenol and aldehydes such as formaldehyde, acetaldehyde, and furfural, and phenol formaldehyde resins are particularly preferably used.

前記ノフェノール系樹脂粉末を窒素、アルゴンなどの不
活性ガス雰囲気中において500−1800℃好ましく
は600〜1,100’Cで0.5〜30時間処理して
炭化および賦活を行う。この際、ガス雰囲気中に水蒸気
を混入させたり、触媒として塩化亜鉛などを用いたりす
ることもできる。
The nophenolic resin powder is carbonized and activated by treating it at 500-1800°C, preferably 600-1,100'C, for 0.5-30 hours in an inert gas atmosphere such as nitrogen or argon. At this time, water vapor may be mixed into the gas atmosphere, or zinc chloride or the like may be used as a catalyst.

前記の工程を経て、比表面積(BET法> 2,000
〜3.500 tri / g好ましくは2,500〜
3.400イ/g1かさ密度0.1〜1.5 g/ml
好ましくは0.2〜1.0g/mj!、全細孔容積0.
5〜3.0m l / g好ましくは0.8〜2.8m
 l / Hの物性を有する活性炭粉末が得られる。
Through the above steps, the specific surface area (BET method > 2,000
~3.500 tri/g preferably ~2,500
3.400 i/g1 Bulk density 0.1-1.5 g/ml
Preferably 0.2 to 1.0 g/mj! , total pore volume 0.
5-3.0ml/g preferably 0.8-2.8m
Activated carbon powder with physical properties of l/H is obtained.

本発明で用いる電極としては、この活性炭粉末を電解液
と混合してペースト化したものを電極として用いること
も可能である。しかしながら、単位体積当りの容量と機
械的強度がさらに良好な電極としては、ポリテトラフル
オロエチレン(以下、PTFEと略称する)など耐化学
薬品性の優れた結着剤を用いて活性炭粉末をシート化し
てなる電極があげられる。このようなシート状電極とじ
ては、まず活性炭微粉末に対して好ましくは1〜50f
flffi%、さらに好ましくは5〜30重皿%の好ま
しくはPTFE分散液を混合し、得られた粘稠な混合物
を圧縮、押出もしくは圧延、またはこれらの手段を組合
せることによってシート状に成型したものが好適に使用
できる。
As the electrode used in the present invention, it is also possible to use as an electrode a paste obtained by mixing this activated carbon powder with an electrolytic solution. However, an electrode with even better capacity per unit volume and mechanical strength can be created by forming activated carbon powder into a sheet using a binder with excellent chemical resistance such as polytetrafluoroethylene (hereinafter abbreviated as PTFE). There are electrodes that can be used. For such a sheet-like electrode, first, preferably 1 to 50 f is applied to the activated carbon fine powder.
flfffi%, more preferably 5 to 30% of a PTFE dispersion was mixed, and the resulting viscous mixture was formed into a sheet by compression, extrusion or rolling, or a combination of these means. can be used suitably.

このシート状成型物は、さらに必要に応じて一輔方向、
または二軸方向に延伸処理される。この延伸処理は、2
0〜380℃好ましくは20〜200℃において、好ま
しくは蒸製の1.1〜5.0倍特に好ましくは1.2〜
2.0倍になるように公知の方法(たとえば、特開昭5
9−166541号公報)により行われる。このように
して得られた延伸処理物は、そのまま使用することもで
きるが、必要に応じて、さらにロール、プレスなどによ
り圧延または圧縮処理した後、焼成または半焼成処理し
て使用する。
This sheet-like molded product can be further processed in one direction as needed.
Or biaxially stretched. This stretching process consists of 2
0 to 380°C, preferably 20 to 200°C, preferably 1.1 to 5.0 times that of steaming, particularly preferably 1.2 to 200°C.
2.0 times by a known method (for example, Japanese Patent Application Laid-open No. 5
9-166541). The stretched product thus obtained can be used as it is, but if necessary, it can be further rolled or compressed using a roll, press, etc., and then fired or semi-baked before use.

本発明の分極性電極は非水溶媒系電解液と組合せて使用
するが、このような電解液は特に限定されるものではな
く、電気二重層コンデンサとじて使用可能なものが適宜
使用される。このような非水溶媒系電解液としては、た
とえば過塩素酸、6フツ化リン酸、4フツ化ホウ酸、パ
ーアルキルスルホン酸、またはトリフルオロメタンスル
ホン酸のテトラアルキルアンモニウム塩、テトラアルキ
ルホスホニウム塩、アンモニウム塩、またはアミン塩な
どの溶質を、プロピレンカーボネート、ブチレンカーボ
ネート、β−ブチロラクトン、γ−ブチロラクトン、ア
セトニトリル、ジメチルホルムアミド、1,2−ジメト
キシエタン、スルホラン、ニトロメタンなどの極性有機
溶媒に0.3〜1゜5M/l程度溶解させたものがあげ
られる。
The polarizable electrode of the present invention is used in combination with a non-aqueous electrolyte, but such electrolyte is not particularly limited, and any electrolyte that can be used as an electric double layer capacitor may be used as appropriate. Examples of such a non-aqueous electrolytic solution include tetraalkylammonium salts, tetraalkylphosphonium salts of perchloric acid, hexafluorophosphoric acid, tetrafluoroboric acid, peralkylsulfonic acid, or trifluoromethanesulfonic acid; A solute such as an ammonium salt or an amine salt is dissolved in a polar organic solvent such as propylene carbonate, butylene carbonate, β-butyrolactone, γ-butyrolactone, acetonitrile, dimethylformamide, 1,2-dimethoxyethane, sulfolane, nitromethane, etc. Examples include those dissolved at a concentration of about 1.5 M/l.

前述のシート状物をコンデンサの形状に合せて加工・成
形した電極間に多孔質のセパレータを挟み、前記のよう
な電解液を含浸または満たしてケース中に密閉すること
によって本発明による電気二重層コンデンサが得られる
The electric double layer according to the present invention is produced by sandwiching a porous separator between electrodes made by processing and molding the sheet-like material described above to match the shape of a capacitor, impregnating or filling it with the electrolytic solution described above, and sealing it in a case. A capacitor is obtained.

多孔質セパレークとしては、たとえばポリプロピレン繊
維不織布、ガラス繊維混抄不織布などが好適に使用でき
る。また、セパレータの厚味は50〜200μmが適当
であり、100〜150μmとするのが特に好適である
As the porous separator, for example, polypropylene fiber nonwoven fabric, glass fiber mixed paper nonwoven fabric, etc. can be suitably used. Further, the thickness of the separator is suitably 50 to 200 μm, and particularly preferably 100 to 150 μm.

(作用および効果) 従来の活性炭粉末、活性炭繊維、またはフィルム状、シ
ート状などのフェノール樹脂成型品を炭化・賦活した活
性炭は、比表面積が1 、500〜2,000m1g程
度であり、これをさらに賦活して2,500m/g以上
に高めようとすると、収率が著しく低下するのに対して
、本発明によるフェノール系樹脂粉末を炭化・賦活して
得られる活性炭は賦活時に細孔の成長速度が大きく、収
率の低下を伴わずに3,000m/g程度の高い比表面
積が容易に得られるため、この活性炭を主成分とする分
極性電極を使用することにより、単位体積当りの容量が
大きく長期信頼性に優れた電気二重層コンデンサを得る
ことができる。
(Functions and Effects) Activated carbon obtained by carbonizing and activating conventional activated carbon powder, activated carbon fiber, or phenol resin molded products such as films and sheets has a specific surface area of about 1,500 to 2,000 ml/g, and even more. If an attempt is made to increase the yield to 2,500 m/g or more through activation, the yield will drop significantly, whereas the activated carbon obtained by carbonizing and activating the phenolic resin powder according to the present invention has a pore growth rate that is low during activation. is large, and a high specific surface area of about 3,000 m/g can be easily obtained without a decrease in yield. Therefore, by using a polarizable electrode whose main component is activated carbon, the capacity per unit volume can be increased. A large electric double layer capacitor with excellent long-term reliability can be obtained.

(実施例) 以下、本発明の実施例および比較例を図面を参照して具
体的に説明する。
(Example) Examples and comparative examples of the present invention will be specifically described below with reference to the drawings.

実施例1 粒径15μmの熱融着性フェノールホルムアルデヒド樹
脂粉末、“ベルバールS” (鐘紡社商品名、窒素中減
量開始温度380〜400°C1比重1.25)をアル
ゴンガス雰囲気中で1.100℃、3時間の炭化・賦活
を行って、比表面積(BET法)  3,100rr?
/g、かさ密度0.32g/mA、細孔容積1.522
mβ/gの物性を存する活性炭を得た。
Example 1 Heat-fusible phenol-formaldehyde resin powder with a particle size of 15 μm, “Belvar S” (Kanebo Co., Ltd. trade name, weight loss initiation temperature in nitrogen 380 to 400°C, specific gravity 1.25) was heated to 1.100 in an argon gas atmosphere. After carbonization and activation at ℃ for 3 hours, the specific surface area (BET method) was 3,100rr?
/g, bulk density 0.32g/mA, pore volume 1.522
Activated carbon having physical properties of mβ/g was obtained.

この活性炭80重四%、カーボンブラック10重量%お
よびPTFE粉末(粒子径0.3μm)10重世%より
なる粉末混合物100重量部に対して水200重量部を
添加し、V形ブレンダー中で混和した。
200 parts by weight of water was added to 100 parts by weight of this powder mixture consisting of 80% by weight of activated carbon, 10% by weight of carbon black, and 10% by weight of PTFE powder (particle size 0.3 μm), and mixed in a V-shaped blender. did.

得られたペースト状混和物をロール成型機を用いて圧延
し、厚さl 、 l usのシートとした。このシート
を300℃に予熱した状態で一軸方向に1.1倍の倍率
で延伸処理して厚さ0.6mmのシート状電極材料を得
た。
The obtained paste-like mixture was rolled using a roll forming machine to form a sheet having a thickness of l and l us. This sheet was preheated to 300° C. and stretched in the uniaxial direction at a magnification of 1.1 to obtain a sheet electrode material having a thickness of 0.6 mm.

このシート状電極材料を使用して、第1図に示すような
コイン型電気二重層コンデンサのユニットセル(直径2
0mm、厚み2.Omm)を下記の手順で作製した。
Using this sheet-like electrode material, a coin-type electric double layer capacitor unit cell (diameter 2
0mm, thickness 2. Omm) was produced using the following procedure.

前記シート状電極材料を円板状に打ち抜いて分極性電極
1および2(直径15鰭、厚さ0.7mm)とし、この
分極性電極1.2をポリプロピレン繊維不織布よりなる
セパレーク3を介して互いに対向させてステンレス鋼製
のキャップ4およびステンレス鋼製の缶5からなる外装
容器中に収納する。
Polarizable electrodes 1 and 2 (diameter: 15 fins, thickness: 0.7 mm) are punched out from the sheet-like electrode material into a disk shape, and these polarizable electrodes 1.2 are connected to each other via a separator plate 3 made of a nonwoven polypropylene fiber fabric. They are placed in an exterior container consisting of a stainless steel cap 4 and a stainless steel can 5, facing each other.

次に、ユニットセル中に所定の電解液(テトラブチルホ
スホニウムテトラフルオロボレートをプロピレンカーボ
ネートにIM/βの濃度で溶解したもの)を注入して分
極性電極1.2およびセパレータ3中にこの電解液を十
分に含浸させた後、ポリプロピレン製パフキング6を介
してキャップ4および缶5の端部をかしめて封口し一体
化した。
Next, a predetermined electrolytic solution (tetrabutylphosphonium tetrafluoroborate dissolved in propylene carbonate at a concentration of IM/β) is injected into the unit cell, and this electrolytic solution is poured into the polarizable electrode 1.2 and the separator 3. After sufficiently impregnating the can, the ends of the cap 4 and the can 5 were caulked and sealed via a polypropylene puffing 6 to integrate them.

前述のようにして作製した電気二重層コンデンサのユニ
ットセルを使用し、2.8vで30分間定電圧充電を行
い、その後1mA定電流放電し、放電時の端子間電圧が
0■に至るまでの時間を測定し単極単位体積当りの初期
容量(F/cnりを算出した。次に同セルを70°Cに
おいて1000時間2.8■連続印加した後の容量を同
様にして測定し、初期値と比較して容量劣化率を算出し
結果を第1表に示した。
Using the unit cell of the electric double layer capacitor produced as described above, constant voltage charging was performed at 2.8V for 30 minutes, and then 1mA constant current discharge was performed until the voltage between the terminals at the time of discharge reached 0■. The time was measured and the initial capacitance per unit volume of a single electrode (F/cn) was calculated.Next, the capacitance was measured in the same manner after 2.8 cm of continuous voltage was applied to the same cell at 70°C for 1000 hours. The capacity deterioration rate was calculated by comparing the values and the results are shown in Table 1.

実施例2 実施例1と同じフェノールホルムアルデヒド樹脂粉末を
、アルゴンガス雰囲気中において700℃で3時間炭化
・賦活を行って、比表面積2.800 tri/g、か
さ密度0.4g/mA、全細孔容積1.32mβ/gの
物性を有する活性炭粉末を得た。
Example 2 The same phenol formaldehyde resin powder as in Example 1 was carbonized and activated at 700°C for 3 hours in an argon gas atmosphere to give a specific surface area of 2.800 tri/g, bulk density of 0.4 g/mA, and total fineness. Activated carbon powder having physical properties with a pore volume of 1.32 mβ/g was obtained.

この活性炭粉末を用いて実施例1と同様にして分極性電
極を作製し、この電極を使用した電気二重層コンデンサ
のユニットセルについて実施例1と同様の評価を行って
結果を第1表に示した。
A polarizable electrode was prepared using this activated carbon powder in the same manner as in Example 1, and the unit cell of an electric double layer capacitor using this electrode was evaluated in the same manner as in Example 1. The results are shown in Table 1. Ta.

実施例3 粒径が100μmである以外は実施例1と同じフェノー
ルホルムアルデヒド樹脂粉末を、アルゴンガス雰囲気中
において1,100℃で3時間炭化・賦活を行って、比
表面積2,100m/g、かさ密度0゜38g/m6、
全細孔容積0.63m7!/ gの物性を有する活性炭
粉末を得た。
Example 3 The same phenol formaldehyde resin powder as in Example 1 except that the particle size was 100 μm was carbonized and activated at 1,100°C for 3 hours in an argon gas atmosphere to obtain a specific surface area of 2,100 m/g and bulk. Density 0゜38g/m6,
Total pore volume 0.63m7! Activated carbon powder having physical properties of /g was obtained.

この活性炭粉末を用いて、実施例1と同様の処理および
評価を行って結果を第1表に示した。
Using this activated carbon powder, the same treatment and evaluation as in Example 1 were performed and the results are shown in Table 1.

比較例1 比表面積が2.000 m / gの熱融着性フェノー
ルホルムアルデヒド樹脂シートを原料にした活性炭を用
いた以外は、実施例1と同様の処理および評価を行って
結果を第1表に示した。
Comparative Example 1 The same treatment and evaluation as in Example 1 were performed, and the results are shown in Table 1, except that activated carbon made from a heat-fusible phenol formaldehyde resin sheet with a specific surface area of 2.000 m / g was used. Indicated.

比較例2 比表面積が2,000m/gの熱融着性フェノール系樹
脂活性炭繊維を用いた以外は、実施例1と同様の処理お
よび評価を行って結果を第1表に示した。
Comparative Example 2 The same treatment and evaluation as in Example 1 were performed, except that heat-fusible phenolic resin activated carbon fibers having a specific surface area of 2,000 m/g were used, and the results are shown in Table 1.

第  1  表 (発明の効果) 以上説明したように本発明によれば、熱融着性を有する
フェノール系樹脂粉末を炭化・賦活して得られる活性炭
よりなる分極性電極を使用することにより、単位体積当
りの容量が大きく長IU1信頼性に優れた電気二重層コ
ンデンサを得ることができる。
Table 1 (Effects of the Invention) As explained above, according to the present invention, by using a polarizable electrode made of activated carbon obtained by carbonizing and activating a phenolic resin powder having heat-fusible properties, unit An electric double layer capacitor having a large capacity per volume and excellent long IU1 reliability can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による電気二重層コンデンサの一実施態
様を示す部分断面図である。 1.2・・・・・・分極性電極、 3・・・・・・セパレータ、 4・・・・・・キャップ、 5・・・・・・缶、 6・・・・・・パキッング。 特許出願人 旭硝子株式会社外7
FIG. 1 is a partial sectional view showing one embodiment of an electric double layer capacitor according to the present invention. 1.2... Polarizable electrode, 3... Separator, 4... Cap, 5... Can, 6... Packing. Patent applicant Asahi Glass Co., Ltd.7

Claims (4)

【特許請求の範囲】[Claims] (1)分極性電極と電解液との界面で形成される電気二
重層を利用する電気二重層コンデンサにおいて、熱融着
性を有するフェノール系樹脂粉末を炭化・賦活して得ら
れる活性炭よりなる分極性電極と非水溶媒系電解液とを
組合せて使用することを特徴とする電気二重層コンデン
サ。
(1) In an electric double layer capacitor that utilizes an electric double layer formed at the interface between a polarizable electrode and an electrolyte, a component made of activated carbon obtained by carbonizing and activating a phenolic resin powder that has thermal adhesive properties An electric double layer capacitor characterized by using a combination of a polar electrode and a non-aqueous electrolyte.
(2)前記フェノール系樹脂が、フェノールホルムアル
デヒド樹脂である特許請求の範囲第1項記載の電気二重
層コンデンサ。
(2) The electric double layer capacitor according to claim 1, wherein the phenolic resin is a phenol formaldehyde resin.
(3)前記フェノール系樹脂粉末の粒径が0.5〜10
0μmである特許請求の範囲第1項または第2項記載の
電気二重層コンデンサ。
(3) The particle size of the phenolic resin powder is 0.5 to 10
The electric double layer capacitor according to claim 1 or 2, which has a diameter of 0 μm.
(4)前記活性炭の比表面積が、2,000〜3,50
0m^2/gである特許請求の範囲第1〜3項のいずれ
かに記載の電気二重層コンデンサ。
(4) The activated carbon has a specific surface area of 2,000 to 3,50
The electric double layer capacitor according to any one of claims 1 to 3, wherein the electric double layer capacitor is 0 m^2/g.
JP63193542A 1988-08-04 1988-08-04 Electric double layer capacitor Pending JPH0243716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63193542A JPH0243716A (en) 1988-08-04 1988-08-04 Electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63193542A JPH0243716A (en) 1988-08-04 1988-08-04 Electric double layer capacitor

Publications (1)

Publication Number Publication Date
JPH0243716A true JPH0243716A (en) 1990-02-14

Family

ID=16309804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63193542A Pending JPH0243716A (en) 1988-08-04 1988-08-04 Electric double layer capacitor

Country Status (1)

Country Link
JP (1) JPH0243716A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083748A (en) * 2000-06-27 2002-03-22 Asahi Glass Co Ltd Activated carbon, manufacturing method therefor and electric double-layer capacitor
JP2009006823A (en) * 2007-06-27 2009-01-15 Toyoda Gosei Co Ltd Roof side weather strip for automobile

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083748A (en) * 2000-06-27 2002-03-22 Asahi Glass Co Ltd Activated carbon, manufacturing method therefor and electric double-layer capacitor
JP2009006823A (en) * 2007-06-27 2009-01-15 Toyoda Gosei Co Ltd Roof side weather strip for automobile

Similar Documents

Publication Publication Date Title
US6332990B1 (en) Method for fabricating composite carbon foam
US6721168B2 (en) Electric double-layer capacitor and carbon material therefor
US5973912A (en) Polarizable electrode
US8842417B2 (en) High voltage electro-chemical double layer capacitor
US8564934B2 (en) Ultracapacitor with improved aging performance
EP2508475A1 (en) Nitrogen-containing porous carbon material, method for producing same, and electric double layer capacitor using the nitrogen-containing porous carbon material
US9472353B2 (en) Ultracapacitor with improved aging performance
JPH0963905A (en) Electric double-layer capacitor and manufacture thereof
JPH01241811A (en) Electric double-layer capacitor
JP2002231585A (en) Electric double-layered capacitor
JPS63187614A (en) Electric double-layer capacitor
WO2005027158A2 (en) Process of producing activated carbon for electrode of electric double layer capacitor
JPH0243716A (en) Electric double layer capacitor
JPH06342739A (en) Electric double layer capacitor and manufacture thereof
JP2548546B2 (en) Electric double layer capacitor
JP2778425B2 (en) Polarizing electrode, method of manufacturing the same, and electric double layer capacitor using the same
JPS63226019A (en) Manufacture of polarizing electrode
JPH011219A (en) Manufacturing method of polarizable electrodes
JPS63153809A (en) Electric double-layer capacitor
JPS63153810A (en) Electric double-layer capacitor
JPH0770449B2 (en) Method of manufacturing polarizable electrodes
JPS6378514A (en) New type electric double-layer capacitor
JPH11121285A (en) Electric double-layer capacitor
JPH02252227A (en) Electric double layer capacitor
JP2761212B2 (en) Energy storage device using non-aqueous electrolyte