JPH0238418Y2 - - Google Patents

Info

Publication number
JPH0238418Y2
JPH0238418Y2 JP2853280U JP2853280U JPH0238418Y2 JP H0238418 Y2 JPH0238418 Y2 JP H0238418Y2 JP 2853280 U JP2853280 U JP 2853280U JP 2853280 U JP2853280 U JP 2853280U JP H0238418 Y2 JPH0238418 Y2 JP H0238418Y2
Authority
JP
Japan
Prior art keywords
core
magnetic
support plate
laminated
iron core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2853280U
Other languages
Japanese (ja)
Other versions
JPS56129716U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2853280U priority Critical patent/JPH0238418Y2/ja
Publication of JPS56129716U publication Critical patent/JPS56129716U/ja
Application granted granted Critical
Publication of JPH0238418Y2 publication Critical patent/JPH0238418Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Regulation Of General Use Transformers (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 この考案は特性上問題になりがちな振動、騒音
を低減し且つ安価に製造可能なたとえば電力用等
の比較的容量の大きいリアクトル装置に関するも
のである。
[Detailed description of the invention] [Field of industrial application] This invention relates to a reactor device with a relatively large capacity, for example, for electric power, which can reduce vibration and noise that tend to be problematic due to its characteristics, and can be manufactured at low cost. It is.

〔従来の技術〕[Conventional technology]

従来この種の装置として第3図および第4図に
示すものがあつた。図において、1は磁性体2と
非磁性体3とを交互に配置して構成される磁気回
路部(以下、ギヤツプドコアと称する。)で、継
鉄部4と共にリアクトルの主たる磁気回路を構成
している。5はギヤツプドコア1に巻回される巻
線、6はギヤツプドコア1を締め付け固定する締
付ボルトである。
Conventionally, there have been devices of this type as shown in FIGS. 3 and 4. In the figure, reference numeral 1 denotes a magnetic circuit section (hereinafter referred to as a gapped core) composed of alternating magnetic bodies 2 and non-magnetic bodies 3, which together with a yoke section 4 constitutes the main magnetic circuit of the reactor. There is. 5 is a winding wound around the gapped core 1, and 6 is a tightening bolt for tightening and fixing the gapped core 1.

上記のように構成される従来のリアクトル装置
において、磁性体2は通常、硅素鋼板を通過磁束
(図中φにて示す)の方向と直交する方向に積層
して形成されているが、その他の方法としては公
知のようにインボリユートコアあるいは放射状鉄
心により形成する方法も採用されている。
In the conventional reactor device configured as described above, the magnetic body 2 is usually formed by laminating silicon steel plates in a direction perpendicular to the direction of passing magnetic flux (indicated by φ in the figure). As a known method, a method of forming the core using an involute core or a radial core is also adopted.

また、非磁性体3は所要のリアクタンスを得る
ために設けられ、エポキシ樹脂積層品あるいはセ
ラミツク等が用いられている。この非磁性体3は
磁性体2を所定の間隔に保持して所要の非磁性体
部を確保するスペーサの機能を果している。
Further, the non-magnetic material 3 is provided to obtain the required reactance, and is made of an epoxy resin laminate, ceramic, or the like. This non-magnetic material 3 functions as a spacer that holds the magnetic material 2 at a predetermined interval to ensure a required non-magnetic material portion.

今、このリアクトル装置の巻線5に交流電圧が
印加されると、ギヤツプドコア1部には交番磁束
が発生し磁性体2間には次式で与えられる磁気吸
引力が作用する。
Now, when an alternating current voltage is applied to the winding 5 of this reactor device, an alternating magnetic flux is generated in the gapped core 1 portion, and a magnetic attraction force given by the following equation acts between the magnetic bodies 2.

f=B2/2μ0〔N/m2〕 −(1) ただし f:磁性体2相互間に作用する単位面積当り磁
気吸引力〔N/m2〕 μ0:非磁性体3の透磁率〔H/m〕 B:ギヤツプコア1部における磁束密度
〔Wb/m2〕 ところで、磁束密度Bは印加電圧と同じ周波数
の交番磁束であり、その最大値をBm〔Wb/m2
とすれば B=Bmsinωt〔Wb/m2〕 −(2) で表わされる。そして式(2)を式(1)に代入すれば f=B2m/4μ0−B2m/4μ0cos2ωt〔N/m2〕 −(3) 即ち、式(3)から明らかな如く磁気吸引力fは式
(3)の右辺第1項に示される直流分と、同第2項に
示される印加電圧の2倍の周波数の単弦振動分を
有することになる。この為、ギヤツプドコア1部
には直流分による圧縮弾性歪に加えて、振動分に
よる動的な変位(振動)を生じることになるが、
通常、リアクトルではこの振動分による動的変位
を如何に低いレベルに抑えるかが重要な問題にな
つている。次に、この振動を低レベルに抑える点
について説明する。
f=B 2 /2μ 0 [N/m 2 ] −(1) where f: Magnetic attraction force per unit area that acts between the magnetic materials 2 [N/m 2 ] μ 0 : Magnetic permeability of the non-magnetic material 3 [H/m] B: Magnetic flux density in the first part of the gap core [Wb/m 2 ] By the way, the magnetic flux density B is an alternating magnetic flux with the same frequency as the applied voltage, and its maximum value is Bm [Wb/m 2 ]
Then, it is expressed as B=Bmsinωt [Wb/m 2 ] −(2). Then, by substituting equation (2) into equation (1), f=B 2 m/4μ 0 −B 2 m/4μ 0 cos2ωt [N/m 2 ] −(3) That is, as is clear from equation (3) The magnetic attraction force f is the formula
It has a DC component shown in the first term on the right side of (3) and a single chord vibration component with a frequency twice the applied voltage shown in the second term. Therefore, in addition to the compressive elastic strain caused by the direct current component, dynamic displacement (vibration) will occur in the gapped core 1 part due to the vibration component.
Usually, in a reactor, an important issue is how to suppress the dynamic displacement caused by this vibration component to a low level. Next, the point of suppressing this vibration to a low level will be explained.

ギヤツプドコア1部に式3右辺第2項で示され
る振動分の力が作用した場合の運動方程式を一般
的に示せば次式で表わされる。
The general equation of motion when a force corresponding to the vibration represented by the second term on the right side of Equation 3 acts on the gapped core 1 is expressed by the following equation.

Fmcosωat=KX+Rdx/dt+Md2x/dt2〔N〕 −(4) ただし Fm:ギヤツプドコア1部に作用する磁気吸引
力振動分の最大値=B2mS/4μ0〔N〕 S:ギヤツプドコア1部の断面積〔m2〕 ωa=2ω〔rad/sec〕 X:変位〔m〕 K,R,M:ギヤツプドコア1部の機械特性に
より定まる定数 式(4)においてRdx/dtはdx/dt即ち速度に比例する 成分で摩擦力に代表される要素であるが一般的に
この値はあまり大きな値にならないのでこれを無
視して式(4)を解けば次式のように表わせる。
Fmcosωat=KX+Rdx/dt+Md 2 x/dt 2 [N] −(4) where Fm: Maximum value of magnetic attraction force vibration acting on 1 part of gapped core = B 2 mS/4μ 0 [N] S: Maximum value of vibration of magnetic attraction force acting on 1 part of gapped core Cross-sectional area [m 2 ] ωa=2ω [rad/sec] This is a proportional component, typified by frictional force, but generally this value is not very large, so if you ignore this and solve equation (4), you can express it as the following equation.

Fm=|K−ωa2M|Xm〔N〕 −(5) ここで K:ギヤツプドコア1部のバネ定数〔N/m〕 ωaM:ギヤツプドコア1部の機械インピーダ
ンス〔N/m〕 M:ギヤツプドコア1部の運動を考慮した等価
的な質量〔Kg〕 Xm:動的変位の最大値、即ち振巾〔m〕 式(5)から明らかな如く振巾Xmを小さくするた
めにはK≫ω2aMとしかつバネ定数Kの絶対値が
大きい値になるようにするか、K≪ω2aMとしか
つ機械インピーダンスω2aMの絶対値が大きい値
になるようにすれば良いことになる。しかし実際
上振動及び騒音が問題にならないレベルにするた
めには振巾Xmを10-5〔m〕以下、即ち数ミクロ
ンのレベルに抑えるのが望ましいのに対し数十
〔Mvar〕のリアクトルにあつては磁気吸引力Fm
が5×104〔N〕程度にもなることから振巾Xmを
機械インピーダンスω2aMで抑制しようとすれば
電源周波数が50〔Hz〕ないし60〔Hz〕の商用周波数
のもとではωaは200π(rad/sec)ないし240π
(rad/sec)になることからバネ定数Kを無視し
たとしても質量Mは10〔トン〕程度以上を必要と
し、またバネ定数Kは磁気吸引力の直流分に耐え
るギヤツプドコア1部にするためにもあまり小さ
い値には出来ないので機械インピーダンスω2aM
によつて振動を制御するのは不経済かつ困難とな
つている。従つて実際上の振動抑制のための解決
策はバネ定数Kを如何に大きい値が得られるよう
にするかと云う事になる。
Fm=|K−ωa 2 M|Xm[N] −(5) where K: Spring constant of gapped core 1 part [N/m] ωaM: Mechanical impedance of gapped core 1 part [N/m] M: Gapped core 1 part Equivalent mass [Kg] taking into account the motion of In addition, the absolute value of the spring constant K should be a large value, or K≪ω 2 aM and the absolute value of the mechanical impedance ω 2 aM should be a large value. However, in order to bring the vibration and noise to a level where they do not become a problem, it is desirable to suppress the amplitude Xm to 10 -5 [m] or less, that is, to the level of several microns, whereas it is desirable to suppress the amplitude Xm to a level of several microns. The magnetic attraction force Fm
is about 5×10 4 [N], so if we try to suppress the amplitude Xm with mechanical impedance ω 2 aM, then ωa becomes 200π (rad/sec) or 240π
(rad/sec), so even if the spring constant K is ignored, the mass M needs to be about 10 [tons] or more, and the spring constant K is in order to make one part of the gapped core capable of withstanding the direct current component of the magnetic attraction force. cannot be made too small, so the mechanical impedance ω 2 aM
It has become uneconomical and difficult to control vibrations by Therefore, the practical solution for vibration suppression is how large the spring constant K can be obtained.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

以上の観点から上記従来装置をみればバネ定数
Kを大きくするためにはヤング率の大きい材質の
太い締付ボルト6を選んで極力強固に締め付けれ
ば良いことになるが、実用的なヤング率の大きい
材料は例えばステンレス鋼等の金属材であり、他
面金属材は一般的に導電性を有するのでギヤツプ
ドコア1部の高磁界のもとではうず電流損失が過
大に生じることによる過熱が問題になるためあま
り太い締付ボルト6は使用できないことになる。
また、磁性体2と非磁性体3間で断点ができて連
続性を有さないのでギヤツプドコア1部の剛性は
均質と云えず、運転中にガタの生じる要因ともな
つて大きいバネ定数で均等な剛性ものが得られに
くいという欠点を有していた。
Looking at the above conventional device from the above point of view, in order to increase the spring constant K, it is sufficient to select a thick tightening bolt 6 made of a material with a large Young's modulus and tighten it as firmly as possible. The material with a large value is, for example, a metal material such as stainless steel, and on the other hand, metal materials are generally conductive, so under the high magnetic field of the gapped core part, overheating due to excessive eddy current loss is a problem. Therefore, a tightening bolt 6 that is too thick cannot be used.
In addition, since there is a break between the magnetic material 2 and the non-magnetic material 3 and there is no continuity, the stiffness of the gapped core 1 cannot be said to be homogeneous, which may cause backlash during operation. However, it has the disadvantage that it is difficult to obtain a material with high rigidity.

この考案は上記のような従来のものの欠点を解
消するために成されたもので、振動、騒音が軽減
され且つ経済的なリアクトル装置を提供すること
を目的とするものである。
This invention was made to eliminate the above-mentioned drawbacks of the conventional reactor, and its purpose is to provide an economical reactor device that reduces vibration and noise.

〔問題点を解決するための手段〕[Means for solving problems]

この考案に係るリアクトル装置は、磁路の一部
に第1の空〓を有する成層鉄心と、その両端は上
記成層鉄心間に挟持固定されると共に上記成層鉄
心の成層方向に所定の間〓を介して上記第1の空
源間に連架される複数の非磁性体からなる支持板
と、上記成層鉄心と同方向に成層され上記磁路方
向に第2の空〓を介し上記各支持板間に介挿され
成層方向に貫通する締付ボルトによつて上記各支
持板と一体に固定される成層鉄心片とを備えたも
のである。
The reactor device according to this invention includes a layered core having a first air in a part of the magnetic path, and both ends of the layered core are sandwiched and fixed between the layered cores, and a predetermined gap is maintained in the layering direction of the layered core. a support plate made of a plurality of non-magnetic materials connected between the first air sources via a support plate; and a support plate made of a plurality of non-magnetic materials that is connected to each other between the first air sources via a second air source that is layered in the same direction as the layered iron core and in the magnetic path direction. The laminated iron core piece is integrally fixed to each of the support plates by a tightening bolt inserted therebetween and penetrating in the lamination direction.

〔作用〕[Effect]

この考案においては成層鉄心片に働く磁気吸引
力は、この成層鉄心片と締付ボルトによつて一体
に構成された支持板に伝わり、この支持板自体へ
の分布荷重として働く。
In this invention, the magnetic attraction force acting on the layered core piece is transmitted to the support plate that is integrally formed with the layered core piece and the tightening bolt, and acts as a distributed load on the support plate itself.

〔実施例〕〔Example〕

以下、この考案の一実施例におけるリアクトル
装置を図について説明する。
Hereinafter, a reactor device according to an embodiment of this invention will be explained with reference to the drawings.

第1図および第2図において、継鉄部4、巻線
5は従来のものと同様である。11は継鉄部4に
形成される第1の空〓、7はその両端は継鉄部4
を構成する成層鉄心間に挟持固定され、この成層
鉄心の成層方向に所定の間〓12を介して第1の
空〓11間に連架される複数の支持板で、非磁性
で而もヤング率の大きい例えばステンレス鋼、セ
ラミツク、エポキシ樹脂積層品などから成る。8
は磁路方向に第2の空〓13を介して各支持板7
間に介挿される成層鉄心片、9はこの成層鉄心片
8と各支持板7を成層方向に貫通し成層鉄心片8
と各支持板7とを固定する締付ボルトである。
In FIGS. 1 and 2, the yoke portion 4 and the winding 5 are the same as those of the conventional one. 1 1 is the first cavity formed in the yoke part 4, 7 is the first cavity formed in the yoke part 4, and 7 is the first cavity formed in the yoke part 4.
A plurality of supporting plates are sandwiched and fixed between the laminated cores constituting the laminated core, and are connected between the first spaces (1) and ( 11 ) for a predetermined distance in the layering direction of the laminated cores. It is also made of materials with high Young's modulus, such as stainless steel, ceramics, and epoxy resin laminates. 8
is connected to each support plate 7 through the second air 1 3 in the magnetic path direction.
The laminated core piece 9 inserted between the laminated core pieces 9 penetrates this laminated iron core piece 8 and each support plate 7 in the stratification direction.
This is a tightening bolt that fixes the support plate 7 and each support plate 7.

上記のように構成されるこの考案の一実施例に
よれば、磁路方向に断点のない支持板7が設けら
れ、これに磁性体としての成層鉄心片8が固定さ
れて、磁気吸引力方向に一体をなした支持板7に
よつて成層鉄心片8が第1の空〓11内に支持さ
れているので、成層鉄心片8に働く磁気吸引力は
そのまま支持板7に伝わり支持板7自体への分布
荷重として働くことになる。従つて、この磁気吸
引力に対しては支持板7自体の内部応力が対抗す
ることになり、その高い剛性から振動騒音が十分
小さく抑制され、長期間の運転によつても磁気吸
引力によるガタの生じ難い構造となる。
According to one embodiment of the invention constructed as described above, a support plate 7 without any break point in the direction of the magnetic path is provided, and a stratified core piece 8 as a magnetic material is fixed to this support plate 7 to generate a magnetic attraction force. Since the laminated core piece 8 is supported in the first space 11 by the support plate 7 which is integrated in the direction, the magnetic attraction force acting on the laminated iron core piece 8 is directly transmitted to the support plate 7 and the support plate This will act as a distributed load on 7 itself. Therefore, this magnetic attraction force is opposed by the internal stress of the support plate 7 itself, and due to its high rigidity, vibration noise is suppressed to a sufficiently low level, and even during long-term operation, there is no backlash due to the magnetic attraction force. The structure is such that it is difficult for this to occur.

また、上記実施例において支持板7は非磁性の
ものを使用しているが、たとえば導電性の金属材
を使用した場合においても、その個数を増し個々
の支持板7の厚さを薄くすることにより、うず電
流損失を抑制でき、かつ支持板7全体の断面積を
大きくして容易にバネ定数Kを大きくすることが
できるので上記実施例同様の効果を奏する。
Furthermore, in the above embodiment, the support plates 7 are made of non-magnetic material, but even if a conductive metal material is used, for example, the number of the support plates 7 can be increased and the thickness of each support plate 7 can be made thinner. As a result, eddy current loss can be suppressed, and the cross-sectional area of the support plate 7 as a whole can be increased to easily increase the spring constant K, so that effects similar to those of the above-mentioned embodiments can be achieved.

又、上記実施例説明の便宜上、1脚分のギヤツ
プドコア1部における実施例について説明したが
多脚のギヤツプドコア1部を有する単相あるいは
多相リアクトルについてもその各々のギヤツプド
コア1部に対してこの考案が適用されることは云
うまでもない。
Furthermore, for the convenience of explaining the embodiments above, an example in which one part of the gapped core for one leg was explained, but this invention can also be applied to one part of each gapped core in a single-phase or multi-phase reactor having one part of gapped cores with multiple legs. Needless to say, this applies.

〔考案の効果〕[Effect of idea]

以上のように、この考案によれば磁路の一部に
第1の空〓を有する成層鉄心と、その両端は上記
成層鉄心に挟持固定されると共に上記成層鉄心の
成層方向に所定の間〓を介して上記第1の空〓間
に連架される複数の非磁性体からなる支持板と、
上記成層鉄心と同方向に成層され上記磁路方向に
第2の空〓を介し上記各支持板間に介挿され成層
方向に貫通する締付ボルトによつて上記各支持板
と一体に固定される成層鉄心片とを備えることに
より、上記成層鉄心片に働く磁気吸引力を上記支
持板の内部応力で吸収して振動、騒音が軽減され
且つ経済的なリアクトル装置を提供することがで
きる。
As described above, according to this invention, a layered core having a first air hole in a part of the magnetic path, both ends of which are clamped and fixed to the layered core, and a predetermined gap in the layering direction of the layered core. a support plate made of a plurality of non-magnetic materials connected to the first space via a support plate;
The laminated iron core is laminated in the same direction as the laminated iron core, and is fixed integrally with each of the support plates by a tightening bolt that is inserted between the support plates through a second hole in the direction of the magnetic path and penetrates in the direction of lamination. By providing a layered core piece, it is possible to provide an economical reactor device in which the magnetic attraction force acting on the layered core piece is absorbed by the internal stress of the support plate, vibration and noise are reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はこの考案の一実施例にお
けるリアクトル装置を示す正面図および側面図、
第3図および第4図は従来のリアクトル装置を示
す側面図および正面図である。 図において、7は支持板、8は成層鉄心片、9
は締付ボルト、11は第1の空〓、12は間〓、1
は第2の空〓である。尚、各図中同一符号はそ
れぞれ同一又は相当部分を示す。
1 and 2 are a front view and a side view showing a reactor device in an embodiment of this invention,
FIG. 3 and FIG. 4 are a side view and a front view showing a conventional reactor device. In the figure, 7 is a support plate, 8 is a layered core piece, 9
is the tightening bolt, 1 1 is the first space, 1 2 is the space, 1
3 is the second sky. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 磁路の一部に第1の空隙を有する成層鉄心と、
その両端は上記成層鉄心間に挟持固定されると共
に上記成層鉄心の成層方向に所定の間〓を介して
上記第1の空〓間に連架される複数の非磁性体か
ら成る支持板と、上記成層鉄心と同方向に成層さ
れ上記磁路方向に第2の空〓を介し上記各支持板
間に介挿され成層方向に貫通する締付ボルトによ
つて上記各支持板と一体に固定される成層鉄心片
とを備えたことを特徴とするリアクトル装置。
a stratified iron core having a first air gap in a part of the magnetic path;
a support plate made of a plurality of non-magnetic materials, both ends of which are sandwiched and fixed between the laminated iron cores and connected to the first space via a predetermined gap in the layering direction of the laminated iron core; The laminated iron core is laminated in the same direction as the laminated iron core, and is fixed integrally with each of the support plates by a tightening bolt that is inserted between the support plates through a second hole in the direction of the magnetic path and penetrates in the direction of lamination. A reactor device characterized by comprising a layered core piece.
JP2853280U 1980-03-04 1980-03-04 Expired JPH0238418Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2853280U JPH0238418Y2 (en) 1980-03-04 1980-03-04

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2853280U JPH0238418Y2 (en) 1980-03-04 1980-03-04

Publications (2)

Publication Number Publication Date
JPS56129716U JPS56129716U (en) 1981-10-02
JPH0238418Y2 true JPH0238418Y2 (en) 1990-10-17

Family

ID=29624454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2853280U Expired JPH0238418Y2 (en) 1980-03-04 1980-03-04

Country Status (1)

Country Link
JP (1) JPH0238418Y2 (en)

Also Published As

Publication number Publication date
JPS56129716U (en) 1981-10-02

Similar Documents

Publication Publication Date Title
US5617026A (en) Quiet magnetic resonance imaging apparatus
JPH0238418Y2 (en)
JPH08111322A (en) Low noise transformer and reactor core
JPH0461211A (en) Magnetic iron core
US3363227A (en) Electroacoustic transducer with improved electromagnetic drive
JPS61224307A (en) Gapped core type reactor
JPS607109A (en) Shell type transformer for electric power
JPH06302442A (en) Gapped core type reactor
JPH028541Y2 (en)
JPS6134247B2 (en)
JPS6327006A (en) Reactor
JP2501321B2 (en) Iron core type reactor with gear gap
JPS5849010B2 (en) Wound core with gap
JP3357706B2 (en) Iron core type reactor with gap
JPH0229703Y2 (en)
JP7220072B2 (en) Iron core for stationary induction electric machine
JPS60101906A (en) Three-phase three legs iron core type reactor with gaps
JPH0140184Y2 (en)
JPH0474403A (en) Shell-type transformer
JPS63233511A (en) Iron-core reactor with cap
JPH06267758A (en) Core-type reactor with gap
SU1630853A1 (en) Vibration exciter
JPH01308009A (en) Iron-core type reactor with gap
JPH07230926A (en) Iron core-type reactor with magnetic gap
JPH0632658Y2 (en) Oil-filled gear up core reactor