JPH0230414A - Drill - Google Patents

Drill

Info

Publication number
JPH0230414A
JPH0230414A JP63089568A JP8956888A JPH0230414A JP H0230414 A JPH0230414 A JP H0230414A JP 63089568 A JP63089568 A JP 63089568A JP 8956888 A JP8956888 A JP 8956888A JP H0230414 A JPH0230414 A JP H0230414A
Authority
JP
Japan
Prior art keywords
wall
drill
chips
discharge groove
chip discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63089568A
Other languages
Japanese (ja)
Other versions
JP2603993B2 (en
Inventor
Toshiaki Hosoi
細井 俊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP63089568A priority Critical patent/JP2603993B2/en
Priority to US07/319,582 priority patent/US5004384A/en
Priority to CA000593121A priority patent/CA1308579C/en
Priority to KR1019890002836A priority patent/KR950006363B1/en
Priority to EP89302336A priority patent/EP0332437B1/en
Priority to DE68925049T priority patent/DE68925049T2/en
Publication of JPH0230414A publication Critical patent/JPH0230414A/en
Priority to US07/497,178 priority patent/US4975003A/en
Application granted granted Critical
Publication of JP2603993B2 publication Critical patent/JP2603993B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/02Twist drills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/04Angles, e.g. cutting angles
    • B23B2251/043Helix angles
    • B23B2251/046Variable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/24Overall form of drilling tools
    • B23B2251/241Cross sections of the diameter of the drill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/40Flutes, i.e. chip conveying grooves
    • B23B2251/406Flutes, i.e. chip conveying grooves of special form not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/48Chip breakers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T408/00Cutting by use of rotating axially moving tool
    • Y10T408/89Tool or Tool with support
    • Y10T408/909Having peripherally spaced cutting edges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T408/00Cutting by use of rotating axially moving tool
    • Y10T408/89Tool or Tool with support
    • Y10T408/909Having peripherally spaced cutting edges
    • Y10T408/9095Having peripherally spaced cutting edges with axially extending relief channel
    • Y10T408/9097Spiral channel

Abstract

PURPOSE:To make easy of discharge on cutting chip by forming cutting chip discharging channels in shallow and in nearly L letter shape in sectional form, and pressing a cutting chip on a flat plate part with a wall on rear side in rotational direction, while preventing the cutting chip from curing on making the cutting chip abut on a front side wall at a side end part. CONSTITUTION:A cutting chip discharging channel 3 is made to be in nearly L letter shape in cross sessional form, and an angle between a front side wall 31 in rotational direction and a rear side wall 32 is made in about 90 deg.. Together with formation of a projection 33 on the front side wall 31, a wall 35 is formed at a position retreated from the wall 31 on outer peripheral side than the projection. A generated cutting chip is pushed up as being pressed to the wall 32 at a flat plate part 40, and the same is moved into a portion widened on account of the wall 35 as being pressed to the wall 31 at a side part for being prevented from curling, thereby discharge is performed smoothly.

Description

【発明の詳細な説明】 (産業上の利用分野〕 この発明は切屑排出溝がシレンクに螺旋状または直線状
に形成されてなる深穴加にに適するドリルに関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a drill suitable for drilling deep holes in which a chip discharge groove is formed in a spiral or linear shape.

〔従来の技術) −・般に、ドリルはシャンクに螺旋状に切屑n1出溝が
形成され、この切屑排出溝を通して切屑をカールさせ1
円錐螺旋形切屑といわれる形状にしで排出させるように
しており、111出された切屑はドリルの回転とともに
回転して周辺の装置部分に巻イqくために、無人で自動
連続作業を行なう場合の障害となっている。また切屑が
連続しないJ、うに、短かい破片状の切屑を形成させる
試み−しなされている。さらに、切屑の排出をスムーズ
゛に行なわlるために、従来のドリルではカールした切
屑が容易に通過できるJ:うに切屑1jl出潜を大きく
形成している。
[Prior art] - In general, a drill has a spiral chip ejection groove formed on its shank, and the chips are curled through this chip ejection groove.
The chip is discharged in a shape called a conical spiral, and the chip rotates with the rotation of the drill and winds up around the surrounding parts of the equipment. It has become an obstacle. Attempts have also been made to form short, fragmented chips in which the chips are not continuous. Furthermore, in order to smoothly discharge the chips, the conventional drill has a large opening for curled chips to easily pass through.

(発明が解決しようとり−る課題) 上記のように、切屑をカールさせて排出させる場合には
、それを取除く作業に手間がかかるという問題があり、
とくに深穴の加工の場合に切屑の刊出が良好に行なわれ
ずに、切屑がυ1出満中で詰り、穴あ(プ加■の遂行が
不可能となるという問題がある3゜ また切屑の排出性を良好にするために、切1i% JJ
I出溝を大きく形成づると、シャンクのねじり剛性が小
ざくなり、効率のよい穴あり加工が行なえないという問
題が起る。
(Problems to be Solved by the Invention) As mentioned above, when the chips are curled and discharged, there is a problem in that it takes time and effort to remove them.
Particularly when machining deep holes, there is a problem that the chips are not released well, and the chips become clogged when they are fully discharged, making it impossible to perform drilling. In order to improve discharge performance, cut 1i% JJ
If the I groove is formed to be large, the torsional rigidity of the shank decreases, causing the problem that efficient hole machining cannot be performed.

ざらに深穴加工においでは切削部にオイルを供給する必
要があるが、外部から切屑υ1出渦を通して供給すると
カールした切屑が漏月形と’+7って上R?I−るため
に切+1if刊出満に供給されたメイルを掬い上げ、そ
の結果オイルを切削部に到達さけることがでさイrいと
いう1.Iii題ムある1、このための対策として、従
来はねじれ満を右づるドリルにd3いては、シ(7ンク
に軸方向に穴を形成した後にねじりを付与してオイル供
給口を形成するという複郭な加工を覆る必要があった。
When drilling deep holes, it is necessary to supply oil to the cutting part, but when oil is supplied from the outside through a vortex where chips υ1 emerge, the curled chips become moon-shaped and '+7' is an upper R? 1. It is difficult to scoop up the mail supplied to the cutting surface in order to avoid oil reaching the cutting part. As a countermeasure for this, conventionally, when using a drill with a right-handed helix, a hole is formed in the axial direction at the link (7) and then twisted to form an oil supply port. It was necessary to cover the complex machining.

この発明はこのような従来の欠点を解消覆るためになさ
れたものであり、切屑拮出講をはぼ1−字形に浅く形成
Jることにより、ドリルの剛性を高めるとともに切屑を
連続した状態でカールづるのを防止して排出させ、これ
によって深穴加工にd5いて一6切屑↑j1出猫の溝深
ざを大さ−くすることなく切屑のIJI出がスムーズに
行なわれるようにづるどと−しに、排出されIご切屑が
加工穴から出た際、あるい(まドリルから劃れる際に自
然に破断されるようにしたドリルを提供り−ることを目
的とするものである。
This invention was made in order to eliminate and overcome these conventional drawbacks, and by forming the swarf in a shallow, hollow-shape, the rigidity of the drill is increased and the swarf is kept in a continuous state. By preventing curling and ejecting chips, this method allows chips to be smoothly ejected from d5 to 16 during deep hole machining without increasing the groove depth. The object of the present invention is to provide a drill in which the discharged chips are naturally broken when they come out of the machined hole or when they are removed from the drill. .

〔課題をM決するための手段〕[Means for deciding issues]

この発明の第1の要旨は、切屑j1出溝がシャンクに螺
旋状また(ま直線状に形成されるとともに、シャンクの
先端部に一対の切刃が回転中心か15外周部ま(′連続
して形成されてなるドリルにおいて、外周側の切刃によ
り形成される切屑の平根部が圧着されるドリルの回転方
向後側の壁とこの切屑の側端部が当接することにより切
屑がカールJるのが阻止される回転方向前側の壁とによ
って各切屑′kAl出渦が形成されているものである。
The first gist of the invention is that the chip exit groove is formed in a spiral or straight line on the shank, and a pair of cutting edges are provided at the tip of the shank in a continuous manner from the center of rotation to the outer periphery. In the drill formed by the cutting edge, the flat root of the chip formed by the cutting edge on the outer circumferential side comes into contact with the rear wall in the rotating direction of the drill to which the flat root part of the chip is crimped, so that the chip curls. Each chip 'kAl outflow vortex is formed by the wall on the front side in the rotational direction, which prevents the cutting.

この発明の第2の要旨は、切屑排出溝がシ′Irンクに
螺旋状または直線状に形成されるとどもに、シャンクの
先端部に一対の切刃が回転中心から外周部まで連続して
形成されてなるドリルにおいて、各切屑排出溝はその横
断面形状がほぼ(−字形に形成され、この切屑刊出満の
回転方向前側の壁ど後側の壁とのなす角が700・〜1
200の範囲内に設定されているものである。
The second gist of the invention is that when the chip discharge groove is formed in the shank in a spiral or linear shape, a pair of cutting edges are provided at the tip of the shank continuously from the center of rotation to the outer periphery. In the drill, each chip evacuation groove has a cross-sectional shape of approximately (-), and the angle between the front wall and the rear wall in the direction of rotation of the chip ejection groove is 700° to 1.
This is set within the range of 200.

上記切屑排出溝の潜深ざがドリルの直径の0゜25〜0
.10倍の範囲内に設定することが好よしい。また」−
記切屑排出溝は、その外周側が回転方向前側に広げられ
るように前側の壁を後退して形成してもよい。
The depth of the above chip discharge groove is 0°25 to 0 of the diameter of the drill.
.. It is preferable to set it within a range of 10 times. Again”-
The chip discharge groove may be formed by retracting the front wall so that the outer peripheral side of the groove is widened toward the front in the rotational direction.

〔作用〕[Effect]

に記構成−(・は、切屑は切屑υ1出満の壁によってカ
ールされるのが阻止されて中心部の切屑は外側の切屑に
J:って引ぎ伸ばされる塑性変形を受(プ、平板状にさ
れて連続して加工穴から突出して排出され、遠心力と排
出溝の終端部(十端部)で外方に折曲げられることによ
り破断される。そして排出溝中では切屑は連続している
ために、深穴加工に、:15いても渦中で詰ることなく
スム−ズに排出される。
The structure described in - () is a flat plate in which the chips are prevented from being curled by the wall of chips υ1, and the chips in the center undergo plastic deformation that is stretched by the outer chips. The chips are continuously ejected from the machined hole, and are broken by centrifugal force and being bent outward at the terminal end (ten end) of the ejection groove.In the ejection groove, the chips are continuously ejected. Because of this, it can be smoothly discharged without getting clogged in the whirlpool even when drilling deep holes.

さらに切屑がカールしないためにオイルを切屑77+ 
fH溝から切削部に供給することも容易に可能である。
Furthermore, to prevent the chips from curling, apply oil to the chips 77+
It is also easily possible to supply the cutting portion from the fH groove.

(実施例) 第1図〜第3図において、ドリルのシャンク10には螺
旋状に切屑排出溝3が形成され、シャンク10の頂部は
円錐状に形成され、その先端の回転中心Oを始端どして
点対称に一対の切刃2が形成されている。この切刃2は
ヂげル部に研ぎ出される切刃21どそれより外周側の切
刃22どからなり、これらの切刃21.22はほぼ直線
に形成され、底面図において切刃21と切刃22との接
続点を頂点とする山形に形成されている。この切刃21
.22は回転方向前方または後方のいずれかに湾曲した
曲線に形成してもよい。
(Example) In FIGS. 1 to 3, a chip discharge groove 3 is formed in a spiral shape in the shank 10 of the drill, and the top of the shank 10 is formed in a conical shape, and the rotation center O at the tip is located at the starting point. A pair of cutting edges 2 are formed point-symmetrically. This cutting edge 2 consists of a cutting edge 21, which is sharpened on the beveled part, and a cutting edge 22, which is on the outer circumferential side. It is formed into a mountain shape with the connection point with the cutting blade 22 as the apex. This cutting blade 21
.. 22 may be formed into a curve curved either forward or backward in the rotational direction.

シャンク10の頂面は切刃2の逼げ面13ど、その回転
方向後方の傾斜面からなるランド部20どから構成され
ている。
The top surface of the shank 10 is composed of a tightened surface 13 of the cutting blade 2, and a land portion 20 formed of an inclined surface rearward in the direction of rotation.

各切屑排出溝3は、その横断面形状がほば1−字形に形
成され、この切屑刊出溝3の回転方向前側の壁31と後
側の壁32とのなM角は90Qに設定されている。この
角度は70’〜1200の範囲内に設定づればよく、り
Tましくは85°〜100゛の範囲内に設定する。これ
J:り大きな角度にすると、後述の切屑の一側部に圧着
されて切屑がカールするのを防止する作用が果されず、
またこれJ:り小さな角度に設定するとfMの加工が困
難になるからである。
The cross-sectional shape of each chip discharge groove 3 is approximately 1-shaped, and the M angle between the front wall 31 and the rear wall 32 in the rotational direction of the chip discharge groove 3 is set to 90Q. ing. This angle may be set within the range of 70' to 1200°, preferably within the range of 85° to 100°. If the angle is too large, the effect of preventing the chips from curling due to pressure bonding to one side of the chips, which will be described later, will not be achieved.
Furthermore, if J: is set to a small angle, machining of fM becomes difficult.

また上記切屑排出溝3は、その外周側が回転方向前側に
広げられるように前側の壁31が後退して(削り取られ
て)形成されている。すなわら、前側の壁31には突起
33が形成されるとともに、イれより外周側には壁31
より後退した位置に壁35が形成されている。また壁3
5を形成する代りに、外周部はど溝幅が広がるJ:うな
傾斜した壁39を形成してもよい。この突起33は、第
1図に示ずJ:うに上記切屑排出溝3のほぼ中央部に沿
って連続して延びている。
Further, the chip discharge groove 3 is formed by receding (shaving off) the front wall 31 so that the outer peripheral side thereof is expanded forward in the rotational direction. That is, a protrusion 33 is formed on the front wall 31, and a wall 31 is formed on the outer peripheral side of the front side.
A wall 35 is formed at a more retreated position. Also wall 3
Instead of forming the groove width 5, a slanted wall 39 may be formed, in which the width of the groove increases at the outer periphery. This protrusion 33 extends continuously along approximately the center of the chip discharge groove 3 (not shown in FIG. 1).

」−記切屑II出満3の溝深ざAは、ドリル10の直径
りの0.25〜0.40倍の範囲内に設定することが好
ましい。これより溝深さ八が小さいと、切屑の排出に支
障をきたし、これより深いとシャンク10の剛性を弱め
ることになるからである。
It is preferable that the groove depth A of the chips II and 3 is set within a range of 0.25 to 0.40 times the diameter of the drill 10. If the groove depth is smaller than this, it will be difficult to discharge chips, and if it is deeper than this, the rigidity of the shank 10 will be weakened.

図面では溝深さAをドリルの直径りの0.25@に設定
した例を示している。また切屑1ノ1出溝3の外周部の
拡大部の寸法Bは0.15D程度、Cは0、IDPi1
度に設定すればよい。
The drawing shows an example in which the groove depth A is set to 0.25@ which is the diameter of the drill. In addition, the dimension B of the enlarged outer peripheral part of the chip 1 no. 1 exit groove 3 is about 0.15D, C is 0, IDPi1
You can set it once.

第4図はこの発明の別の実施例を示し、切屑排出溝3が
!jいに直交する壁31ど32とから形成されている点
は上記同様であるか、壁31には突起33は形成されず
、壁31が外周部まで延びている点が異なっている。
FIG. 4 shows another embodiment of the present invention, in which the chip discharge groove 3! The difference is that the wall 31 is formed from walls 31 and 32 that are orthogonal to each other, or that the wall 31 is not formed with a protrusion 33 and that the wall 31 extends to the outer periphery.

上記切屑排出溝3を形成する壁31および32はそれぞ
れ横断面形状にJ5いて直線に形成し、両者の聞き角を
90°に設定した例を示したが、これら(よ第5〜10
図に示すにうに種々の変形が可能である。
The walls 31 and 32 forming the chip discharge groove 3 are each formed in a straight line with a cross-sectional shape of J5, and the hearing angle between them is set to 90°.
Various modifications are possible as shown in the figure.

ず41わち、第5図では、ドリルの回転方向前側の壁6
1と後側の壁62とが120″の聞き角で形成され、横
断面形状におりる各壁61d3よび62はそれぞれ直線
に形成されている。第6図は上記壁61と62との代り
に内側(切屑排出溝3側)に湾曲した壁63と64とが
形成され、両者の基部(交差部付近)におりる実質上の
聞き角θは小さく形成されている。第7図は直線の壁6
1,62の代りに外側に湾曲した壁65.66が形成さ
れている。
41, that is, in FIG. 5, the wall 6 on the front side in the direction of rotation of the drill
1 and the rear wall 62 are formed with a hearing angle of 120'', and each wall 61d3 and 62 falling in the cross-sectional shape is formed in a straight line. FIG. Walls 63 and 64 are formed that are curved inwardly (on the side of the chip discharge groove 3), and the substantial hearing angle θ at the base of both (near the intersection) is formed small. wall 6
1, 62 are replaced by outwardly curved walls 65, 66.

また図示は省略しているが、上記壁61と壁64、壁6
1ど壁66、壁63と壁62、壁63と壁66、壁65
と壁62、壁65ど壁64の組合せにJ:る溝形状とし
てもよい。
Although not shown, the walls 61 and 64, the walls 6
1st wall 66, wall 63 and wall 62, wall 63 and wall 66, wall 65
The combination of the walls 62, 65, and 64 may have a groove shape.

また第8図では切屑排出溝3が溝幅の狭いU字状に形成
され、回転方向後方の壁72は直線に形成されるととも
に、回転方向前側の壁は基端部付近では湾曲し1.:壁
71が形成され、その外側に直線の壁73が形成されて
いる。この場合の切屑排出溝3の太ささおよび壁71の
曲率rは、第8図に示づ゛ように切屑4が支障なく生成
される程度の大きざ、例えばドリルの直径りの1/10
程度、あるいはそれj:り大きく設定すればよい。
Further, in FIG. 8, the chip discharge groove 3 is formed in a U-shape with a narrow groove width, the wall 72 at the rear in the direction of rotation is formed in a straight line, and the wall at the front in the direction of rotation is curved near the base end. : A wall 71 is formed, and a straight wall 73 is formed on the outside thereof. In this case, the thickness of the chip discharge groove 3 and the curvature r of the wall 71 are such that chips 4 are generated without any problem, as shown in FIG. 8, for example, 1/10 of the diameter of the drill.
It is sufficient to set the degree or its value to a larger value.

第9図は」■2壁72と73との代りに内側(切屑排出
溝3側)に湾曲した壁74と75とが形成されている。
In FIG. 9, instead of walls 72 and 73, walls 74 and 75 are formed that are curved inward (toward the chip discharge groove 3 side).

第10図は直線の壁72と73の代りに外側に湾曲した
壁76と77とが形成されている。
In FIG. 10, instead of straight walls 72 and 73, outwardly curved walls 76 and 77 are formed.

この場合においても、上記壁72と壁75、壁72と壁
77、壁73と壁ア4、壁73と壁76、壁75と壁7
6、壁7/lど壁77の組合せによる溝形状としてもよ
い。
In this case as well, the walls 72 and 75, the walls 72 and 77, the walls 73 and wall A4, the walls 73 and walls 76, and the walls 75 and 7
6. A groove shape may be formed by a combination of walls 77 and 77.

上記構成のドリルによって穴加工をfT ’t+うど、
第11図に示すような切屑4が生成される。すなわち、
切屑4は切刃2の中心イ」近の部分により生成される小
さなカール部41と、それより外周側で生成される平板
部40とからなり、この平板部40の一側部から一体に
延びたカール部41が平板部40の長さ方向に断続的に
形成され、またこの−側部には亀裂44が生じている。
Hole drilling is performed using the drill with the above configuration.
Chips 4 as shown in FIG. 11 are generated. That is,
The chips 4 consist of a small curl portion 41 generated near the center of the cutting edge 2 and a flat plate portion 40 generated on the outer peripheral side thereof, and extend integrally from one side of the flat plate portion 40. Curled portions 41 are formed intermittently in the length direction of the flat plate portion 40, and cracks 44 are formed on the negative side portions.

このような形状の切屑4が生成されるのは、第4図にお
いて、切刃2の外周部(切刃22)にJこり切削されて
切屑排出溝3中に押出された切屑の平板部40がその一
側部を壁31の基部に圧着されるとともに、その面が壁
32に圧着されることによりカールしようとするのが阻
止され(切削の際の塑性変形に加えてさらに外周部の切
屑ににっで引き伸ばされる塑性変形を受り)、上記−側
部に亀裂44の入った平板帯状体となって切屑IJI出
溝3中を押上げられる。そして切屑排出溝3の緩い螺旋
形状に沿って上昇し、加工穴から出て遠心力によって亀
裂44の部分から折断される。また加工穴が深い場合に
は第1図に示づようにその上端部の湾曲部33で外方に
折曲げられ、このため亀裂に加えて大きな塑性変形を受
りて脆くなっている切屑4は破片状に破断される。
The chips 4 having such a shape are generated in the flat plate portion 40 of the chips that are extruded into the chip discharge groove 3 after being cut into the outer circumferential portion (the cutting blade 22) of the cutting blade 2 by a J-shape, as shown in FIG. One side of the wall 31 is crimped to the base of the wall 31, and its surface is crimped to the wall 32, preventing it from curling (in addition to plastic deformation during cutting, chips on the outer periphery It undergoes plastic deformation (stretched) and becomes a flat band-like body with cracks 44 on the above-mentioned side and is pushed up in the chip IJI outlet groove 3. The chip then ascends along the loose spiral shape of the chip discharge groove 3, emerges from the machined hole, and is broken off at the crack 44 by centrifugal force. In addition, if the drilled hole is deep, the chips 4 are bent outward at the curved part 33 at the upper end, as shown in Figure 1, and as a result, in addition to cracking, the chips 4 undergo large plastic deformation and become brittle. is broken into pieces.

また第1図・〜第3図の構成のものでは、切屑4の平板
部/IO【よ生成当1時はすくい而32aに圧着されな
がら排出溝3中を押上げられ、−側部は壁31に圧着さ
れるが、やがて第3図に示すように切1に4の外側部分
が加工穴内壁の干渉を受けて壁35により広げられた部
分に移動し、これによって切屑4の排出をよりスムーズ
に行なわせることになる。このように壁335を形成さ
ぜるど、壁31で平板部40の一側部を圧着させて切屑
のカールするのを防止する作用を果すとともに、それよ
り外方の部分の排出溝3が広げられた部分で切屑の通過
を容易にさせるので、とくに深穴加工の際に切屑4の排
出をスムーズに行なわける効果が有効に発揮さ机る。
In addition, in the structure shown in FIGS. 1 to 3, when the flat plate part of the chips 4 is generated, it is pushed up in the discharge groove 3 while being pressed against the scoop 32a, and the - side part is pressed against the wall. However, as shown in Fig. 3, the outer part of the cut 1 and 4 eventually moves to the part widened by the wall 35 due to interference from the inner wall of the machined hole, thereby making it easier to eject the chips 4. It will make it go smoothly. By forming the wall 335 in this way, the wall 31 serves to press one side of the flat plate part 40 to prevent the chips from curling, and the discharge groove 3 in the outer part thereof is prevented from curling. Since the expanded portion makes it easier for chips to pass through, the effect of smoothly discharging chips 4 is effectively exhibited, especially when drilling deep holes.

また第5図の構成のものでは、切屑4はその平板部4.
 Ob<壁62に8−着されるとともに、その端部が壁
61の基部に当接することにより切屑4が切屑排出溝3
中でカールするのが防止されてυ1j]1され、第8図
の構成のものでは、切屑4はそのゞI’−板部40が壁
72に圧着されるとともに、その端部が壁71に当接す
ることにより切屑4が切屑排出溝3中でカールするのが
防止されて排出される。
In addition, in the configuration shown in FIG. 5, the chips 4 are removed from the flat plate portion 4.
Ob
In the configuration shown in FIG. Due to the contact, the chips 4 are prevented from curling in the chip discharge groove 3 and are discharged.

第6図、第7図および第9図、第10図の構成のものは
、それぞれ第5図a3よび第8図のものと同様の作用効
果が達成される。
The configurations shown in FIGS. 6, 7, 9, and 10 achieve the same effects as those shown in FIGS. 5a3 and 8, respectively.

また上記構成では、切屑4を拮出満3中でカールさせず
に平板状のまま押出すJ:うにしているために、切屑排
出溝3はその深さを深くする必要はなく、このためシャ
ンク10の芯厚を厚くすることができ、これによってシ
17ンクの剛性を向−ヒさせることができ、したがって
ドリルの加工中の芯振れを防止することができる。
In addition, in the above structure, the chips 4 are extruded in a flat shape without being curled during the discharge process, so the depth of the chip discharge groove 3 does not need to be increased. The core thickness of the shank 10 can be increased, thereby increasing the rigidity of the shank 17, thereby preventing core run-out during drill machining.

さらに旧記楢成では、排出される切屑が切屑排出溝中に
供給されるオイルを掬い上げることがないために、外部
からオイルを切屑排出溝を通して供給することができ、
したがってドリルにAイル供給[1を形成しなくてもよ
いという利点がある。
In addition, in the former Nasei, since the discharged chips do not scoop up the oil supplied into the chip discharge groove, oil can be supplied from the outside through the chip discharge groove.
Therefore, there is an advantage that it is not necessary to form an A-il supply [1] in the drill.

また上記実施例では切屑排出+# 3をシャンクに螺旋
状に形成した例のみを示したが、これに限らずシャンク
に切屑排出溝を直線状に形成してもよい。
Further, in the above embodiment, only an example in which the chip discharge groove +#3 is formed in a spiral shape on the shank is shown, but the chip discharge groove is not limited to this, and the chip discharge groove may be formed in a linear shape in the shank.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば切屑は切屑排出
溝の壁によってカールされるのが阻止されて塑性変形を
受(j、平板状にされて連続して排出され、加工穴J、
り一定邑突出したときに遠心)〕にJ:り折断され、ま
た深穴の場合は排出溝の終端部(上端部)て・外方に折
曲げられることにより破断される。そして抽出溝中では
切屑は連続しでいるために深穴加工においても溝中で詰
ることはなく、スムース′に排出される。
As explained above, according to the present invention, chips are prevented from being curled by the walls of the chip discharge groove, undergo plastic deformation (j), are made into a flat plate shape and are continuously discharged, and are
When the hole protrudes a certain distance, it is broken by centrifugation), and in the case of a deep hole, it is broken by being bent outward at the terminal end (upper end) of the discharge groove. Since chips are continuous in the extraction groove, they do not become clogged in the groove even during deep hole drilling and are smoothly discharged.

J: /j切屑排出溝の溝深さは浅くなるため、シャン
クの剛性が向上し、このためとくに深穴加工も高能率で
高精度に行なうことができ、高送り加工も容易である。
J: /j Since the groove depth of the chip discharge groove is shallow, the rigidity of the shank is improved, and therefore deep hole machining can be performed with high efficiency and precision, and high feed machining is also easy.

さらに外部からオ゛イルを切屑排出溝を通して供給する
ことができ、したがってトリ1/I ルにAイル供給口を形成しなくてもよいという利点があ
る、。
A further advantage is that oil can be supplied from the outside through the chip discharge groove, and therefore there is no need to form an A oil supply port in the trough 1/I.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示Jドリルの部分切欠き側
面図、第2図のその底面図、第3図は第1図の■−■線
断面図、第4図〜第10図はそれぞれこの発明の別の実
施例を示す第3図相当図、第11図は上記ドリルにより
生成される切屑の斜視図である。 0・・・ドリルの回転中心、2・・・切刃、3・・・切
眉υ1出潜、4・・・切屑、31.3261へ・66.
71〜77・・・切屑排出溝の壁、 33・・突起、71.0・・・切屑の平板部、41・・
・切屑のカール部。 特許出願人     細 川 俊 明 代 理 人     弁理士 小谷悦司同      
 弁理士 長口1 正 向       弁理士 伊藤孝夫 第 図 第 図 30414(/、) 第 図 第 図 第 図 ’7’l   0
Fig. 1 shows an embodiment of the present invention, a partially cutaway side view of a J drill, Fig. 2 a bottom view thereof, Fig. 3 a sectional view taken along the line ■-■ in Fig. 1, and Figs. 4 to 10. 3 is a view corresponding to FIG. 3 showing another embodiment of the present invention, and FIG. 11 is a perspective view of chips generated by the drill. 0... Center of rotation of the drill, 2... Cutting blade, 3... Cut eyebrow υ1 exit, 4... Chips, 31. To 3261/66.
71-77... Wall of chip discharge groove, 33... Protrusion, 71.0... Flat plate part of chips, 41...
・Curled part of chips. Patent applicant Toshi Hosokawa Akiyo Attorney Patent attorney Etsushi Kotani
Patent Attorney Nagaguchi 1 Masayuki Patent Attorney Takao Ito Figure 30414 (/,) Figure Figure '7'l 0

Claims (1)

【特許請求の範囲】 1、切屑排出溝がシャンクに螺旋状または直線状に形成
されるとともに、シャンクの先端部に一対の切刃が回転
中心から外周部まで連続して形成されてなるドリルにお
いて、外周側の切刃により形成される切屑の平板部が圧
着されるドリルの回転方向後側の壁とこの切屑の側端部
が当接することにより切屑がカールするのが阻止される
回転方向前側の壁とによって各切屑排出溝が形成されて
いることを特徴とするドリル。 2、切屑排出溝がシャンクに螺旋状または直線状に形成
されるとともに、シャンクの先端部に一対の切刃が回転
中心から外周部まで連続して形成されてなるドリルにお
いて、各切屑排出溝はその横断面形状がほぼL字形に形
成され、この切屑排出溝の回転方向前側の壁と後側の壁
とのなす角が70°〜120°の範囲内に設定されてい
ることを特徴とするドリル。 3、上記切屑排出溝の溝深さがドリルの直径の0.25
〜0.40倍の範囲内に設定されていることを特徴とす
る請求項1または2記載のドリル。 4、上記切屑排出溝は、その外周側が回転方向前側に広
げられるように前側の壁が後退して形成されていること
を特徴とする請求項1または2記載のドリル。
[Claims] 1. A drill in which a chip discharge groove is formed in a spiral or linear shape on the shank, and a pair of cutting edges are continuously formed at the tip of the shank from the center of rotation to the outer periphery. , the front side in the rotational direction where the flat plate part of the chips formed by the cutting edge on the outer circumferential side comes into contact with the rear wall in the rotational direction of the drill, and the side edges of the chips are prevented from curling. A drill characterized in that each chip discharge groove is formed by a wall of the drill. 2. In a drill in which a chip discharge groove is formed in a spiral or linear shape on the shank, and a pair of cutting edges are continuously formed at the tip of the shank from the center of rotation to the outer periphery, each chip discharge groove is Its cross-sectional shape is approximately L-shaped, and the angle between the front wall and the rear wall in the direction of rotation of the chip discharge groove is set within the range of 70° to 120°. Drill. 3. The groove depth of the chip discharge groove mentioned above is 0.25 of the diameter of the drill.
3. The drill according to claim 1, wherein the drill is set within a range of 0.40 times. 4. The drill according to claim 1 or 2, wherein the chip discharge groove is formed with a front wall receding so that the outer circumferential side of the groove is widened forward in the rotational direction.
JP63089568A 1988-03-11 1988-04-12 Drill Expired - Lifetime JP2603993B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP63089568A JP2603993B2 (en) 1988-03-11 1988-04-12 Drill
US07/319,582 US5004384A (en) 1988-03-11 1989-03-06 Drill
KR1019890002836A KR950006363B1 (en) 1988-03-11 1989-03-08 Drill
CA000593121A CA1308579C (en) 1988-03-11 1989-03-08 Drill
EP89302336A EP0332437B1 (en) 1988-03-11 1989-03-09 Drill
DE68925049T DE68925049T2 (en) 1988-03-11 1989-03-09 drill
US07/497,178 US4975003A (en) 1988-03-11 1990-03-21 Drill

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5897488 1988-03-11
JP63-58974 1988-03-11
JP63089568A JP2603993B2 (en) 1988-03-11 1988-04-12 Drill

Publications (2)

Publication Number Publication Date
JPH0230414A true JPH0230414A (en) 1990-01-31
JP2603993B2 JP2603993B2 (en) 1997-04-23

Family

ID=26399989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63089568A Expired - Lifetime JP2603993B2 (en) 1988-03-11 1988-04-12 Drill

Country Status (6)

Country Link
US (2) US5004384A (en)
EP (1) EP0332437B1 (en)
JP (1) JP2603993B2 (en)
KR (1) KR950006363B1 (en)
CA (1) CA1308579C (en)
DE (1) DE68925049T2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010527806A (en) * 2007-05-29 2010-08-19 サンドビック インテレクチュアル プロパティー アクティエボラーグ Drill body for chip removal processing

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5323823A (en) * 1992-12-11 1994-06-28 Roto Zip Tool Corporation Wood router bit
US5609447A (en) * 1993-11-15 1997-03-11 Rogers Tool Works, Inc. Surface decarburization of a drill bit
US5628837A (en) * 1993-11-15 1997-05-13 Rogers Tool Works, Inc. Surface decarburization of a drill bit having a refined primary cutting edge
DK0883455T3 (en) * 1996-02-29 2002-02-25 Komet Stahlhalter Werkzeug Drilling tools for machine tools and methods for making them
EP2366478B1 (en) * 2001-07-10 2020-04-15 Mitsubishi Materials Corporation Drill
JP2005186247A (en) * 2003-12-26 2005-07-14 Dijet Ind Co Ltd Twist drill
EP1992437A4 (en) * 2006-02-23 2011-07-06 Univ Tokyo Agriculture & Technology Tlo Co Ltd Nonaxisymmetrical blade drill
US7546786B2 (en) * 2006-04-04 2009-06-16 Kennametal Inc. Toolholder with chip ejection segment thereupon
CA2817079C (en) * 2010-11-26 2019-01-08 Cpl Holdings Pty Ltd Orthopaedic drill bit
WO2013035166A1 (en) 2011-09-06 2013-03-14 オーエスジー株式会社 Drill
WO2013065201A1 (en) 2011-11-04 2013-05-10 オーエスジー株式会社 Drill
DE102012012479A1 (en) * 2012-03-26 2013-09-26 MAPAL Fabrik für Präzisionswerkzeuge Dr. Kress KG drill
US9232952B2 (en) 2012-04-16 2016-01-12 Medtronic Ps Medical, Inc. Surgical bur with non-paired flutes
US9883873B2 (en) 2013-07-17 2018-02-06 Medtronic Ps Medical, Inc. Surgical burs with geometries having non-drifting and soft tissue protective characteristics
US10335166B2 (en) 2014-04-16 2019-07-02 Medtronics Ps Medical, Inc. Surgical burs with decoupled rake surfaces and corresponding axial and radial rake angles
US9955981B2 (en) * 2015-03-31 2018-05-01 Medtronic Xomed, Inc Surgical burs with localized auxiliary flutes
US10265082B2 (en) 2015-08-31 2019-04-23 Medtronic Ps Medical, Inc. Surgical burs
US11872641B2 (en) * 2017-05-29 2024-01-16 Kyocera Corporation Drill and method for manufacturing machined product
WO2019244106A1 (en) 2018-06-22 2019-12-26 Maestro Logistics, Llc A drill bit and method for making a drill bit
WO2022179709A1 (en) 2021-02-26 2022-09-01 Gripp-X B.V. Drill bit

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US750537A (en) * 1904-01-26 Drilling-tool
US465392A (en) * 1891-12-15 Island
DE159437C (en) *
US1069930A (en) * 1912-04-23 1913-08-12 William R Down Drill.
BE524021A (en) * 1951-10-12
US2936658A (en) * 1956-08-08 1960-05-17 Oscar L Riley Twist drill
US2966081A (en) * 1959-03-18 1960-12-27 United Greenfield Corp Drill
DE2043316A1 (en) * 1970-08-25 1972-03-02 Stock Ag R Liquid-cooled twist drill
US4222690A (en) * 1977-12-03 1980-09-16 Ryosuke Hosoi Drill having cutting edges with the greatest curvature at the central portion thereof
DE3131794C2 (en) * 1980-08-29 1986-08-07 Toshiaki Osaka Hosoi drill
JPS58177214A (en) * 1982-04-08 1983-10-17 Fuji Seikou Kk Drill
US4605347A (en) * 1982-12-27 1986-08-12 Lockheed Missiles & Space Company, Inc. High speed drill reamer
JPS59219108A (en) * 1983-05-25 1984-12-10 Sumitomo Electric Ind Ltd Drill
JPS60177807A (en) * 1984-02-20 1985-09-11 Toshiaki Hosoi Drill
JPS61178110A (en) * 1985-02-01 1986-08-09 Toshiaki Hosoi Drill
JPS634211U (en) * 1986-06-23 1988-01-12

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010527806A (en) * 2007-05-29 2010-08-19 サンドビック インテレクチュアル プロパティー アクティエボラーグ Drill body for chip removal processing

Also Published As

Publication number Publication date
JP2603993B2 (en) 1997-04-23
EP0332437A2 (en) 1989-09-13
KR890014195A (en) 1989-10-23
EP0332437B1 (en) 1995-12-13
KR950006363B1 (en) 1995-06-14
US5004384A (en) 1991-04-02
US4975003A (en) 1990-12-04
CA1308579C (en) 1992-10-13
EP0332437A3 (en) 1990-08-08
DE68925049T2 (en) 1996-07-04
DE68925049D1 (en) 1996-01-25

Similar Documents

Publication Publication Date Title
JPH0230414A (en) Drill
KR101255715B1 (en) Drill
US6582164B1 (en) Roller twist drill
US7997834B2 (en) Radius end mill and cutting method
JP2000508589A (en) Drilling tool for machine tool and method of manufacturing this drilling tool
KR970006958B1 (en) Annular cutter having radial clearance
US5401125A (en) Increasing taper plug cutter
US6273652B1 (en) Plug cutter with radial relief and plug ejecting portion
JPS62188616A (en) Rotary cutting tool
US5240357A (en) Annular hole cutter
JPH08142039A (en) Diamond core bit
JP2006000985A (en) Cutting tool
JP3988659B2 (en) Drill
JP4380285B2 (en) Stepped end mill and manufacturing method thereof
JPH07237017A (en) Drill
CS241107B2 (en) Ring cutter
JPS6141681B2 (en)
JPH0771770B2 (en) Rolling tool
JPS6137453Y2 (en)
JPH0632253Y2 (en) Burnishing drill
JPH06218611A (en) Ball end mill
JP2006110704A (en) Three-shaped clearance groove drill
JPS5929366B2 (en) drilling tool
JP3335401B2 (en) End mill
JPS634568Y2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 12