JPH02299168A - Cylindrical solid electrolyte fuel cell - Google Patents

Cylindrical solid electrolyte fuel cell

Info

Publication number
JPH02299168A
JPH02299168A JP1119987A JP11998789A JPH02299168A JP H02299168 A JPH02299168 A JP H02299168A JP 1119987 A JP1119987 A JP 1119987A JP 11998789 A JP11998789 A JP 11998789A JP H02299168 A JPH02299168 A JP H02299168A
Authority
JP
Japan
Prior art keywords
power generating
current collector
generating elements
internal current
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1119987A
Other languages
Japanese (ja)
Other versions
JP2769629B2 (en
Inventor
Shoichi Hasegawa
正一 長谷川
Ryuichi Okiayu
置鮎 隆一
Shotaro Yoshida
昭太郎 吉田
Masayuki Tan
丹 正之
Hiroshi Yamanouchi
山之内 宏
Masakatsu Nagata
雅克 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP1119987A priority Critical patent/JP2769629B2/en
Publication of JPH02299168A publication Critical patent/JPH02299168A/en
Application granted granted Critical
Publication of JP2769629B2 publication Critical patent/JP2769629B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/243Grouping of unit cells of tubular or cylindrical configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To ensure the connection between unit cells and stacks or between them and current collectors and to improve the power generating efficiency by binding power generating elements with a conducting tape wound on the outside. CONSTITUTION:Power generating elements are arranged around inner current collectors 2 and bound by a conducting tape 22 under this condition, thus the power generating elements are surely stuck to the inner current collectors 2 by the tensile force of the conducting tape 22 when it is wound, and they are also closely stuck to the conducting tape 22. As a result, the contact state of the power generating elements with the inner current collectors and the conducting tape serving as an outer current collector is improved, the resistance at these connection portions is reduced, and the power generating efficiency is improved. When a conducting felt 21 is inserted either between the outer peripheries of the inner current collectors and the power generating elements or between the inner periphery of the conducting tape and the power generating elements, wide contact areas are secured even if outer faces of the inner current collectors and power generating elements have irregularities, and the electric contact state is improved.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は複数の単電池を内部集電子の周囲に配置して
スタックを構成し、あるいは複数のスタックを内部集電
子の周囲に配置してモジュールを構成した円筒型の固体
電解質燃料電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for forming a stack by arranging a plurality of single cells around an internal current collector, or by arranging a plurality of stacks around an internal current collector to form a module. The present invention relates to the constructed cylindrical solid electrolyte fuel cell.

従来の技術 周知のように固体電解質燃料電池は、イツトリア安定化
ジルコニア(YSZ)などのM素イオン透過性のある固
体電解質を挟んで、ベロアスカイト型複合酸化物などか
らなる酸素電極とNiやNi−2r02サーメツトなど
からなる燃料電極とを設けて単電池を構成し、その単電
池を複数個直列もしくは並列に接続してスタックを構成
し、さらにそのスタックを複数個果合させてモジュール
化しており、このように多数の単電池を接続することに
より必要とする出力を得ている。従来、この種の単電池
あるいはスタックとして円筒型のものと平板状のモノリ
シック型とが知られているが、空気などの酸化性ガスと
水素ガスなどの燃料ガスとのシールの容易性や製造の容
易性などの点では円筒型のものが優れている。
As is well known in the art, a solid electrolyte fuel cell consists of an oxygen electrode made of a velorskite composite oxide, etc., and a Ni or A fuel electrode made of Ni-2r02 cermet or the like is provided to form a single cell, a plurality of these single cells are connected in series or parallel to form a stack, and multiple stacks are combined to form a module. The required output is obtained by connecting a large number of single cells in this way. Hitherto, cylindrical and flat monolithic cells or stacks have been known as this type of unit cell or stack, but they are difficult to manufacture due to ease of sealing between oxidizing gas such as air and fuel gas such as hydrogen gas. A cylindrical type is superior in terms of ease of use.

第4図は円筒型燃料電池を構成するスタックの一例を示
す断面図であり、また第5図はその単電池の一つを示す
断面図であって、スタック1はNiなどの導電性材料か
らなる筒状の内部集電子2の外周に複数個(図では6個
)の単電池3を配置し、さらにその外周をNiなどの導
電性材料からなる筒状の外部集電子4で被った構造とな
っている。ここで単電池3は第5図に示すように、アル
ミナ(^i!203)などで多孔構造に形成したセラミ
ック製支持管5の外周にM素電極6を形成し、この酸素
電極6に導通したインターコネクタ7を半径方向に突出
させて設けるとともに酸素電極6の外周に固体電解質8
を設け、さらにインターコネクタ7に非導通状態の燃料
電極9を固体電解質8の外周に設けて構成されている。
FIG. 4 is a cross-sectional view showing an example of a stack constituting a cylindrical fuel cell, and FIG. A structure in which a plurality of cells 3 (six in the figure) are arranged around the outer periphery of a cylindrical internal current collector 2, and the outer periphery is further covered with a cylindrical external current collector 4 made of a conductive material such as Ni. It becomes. Here, as shown in FIG. 5, the cell 3 has an M elementary electrode 6 formed on the outer periphery of a ceramic support tube 5 made of alumina (^i!203) or the like with a porous structure, and is electrically connected to the oxygen electrode 6. A solid electrolyte 8 is provided on the outer periphery of the oxygen electrode 6.
The interconnector 7 is further provided with a non-conducting fuel electrode 9 on the outer periphery of the solid electrolyte 8.

この単電池3はインターコネクタ7の先端にNiフェル
トなどの導電性フェルト10を介在させて内部集電子2
に導通しており、また各単電池3の燃料電池9は導電性
フェルト11を介して外部集電子4に導通している。な
お、導電性フェルトio、1iを介在させている理由は
、各集電子2,4およびインターコネク7が弾性のない
剛体であり、また各構成部材の熱膨張率が同一でないの
で、導通状態を確実にすると同時に熱膨張を吸収する必
要があるためである。
This unit cell 3 has an internal current collector 2 by interposing a conductive felt 10 such as Ni felt at the tip of an interconnector 7.
The fuel cell 9 of each unit cell 3 is electrically connected to the external current collector 4 via a conductive felt 11. The reason why the conductive felts io and 1i are interposed is that the current collectors 2, 4 and the interconnect 7 are rigid bodies with no elasticity, and the thermal expansion coefficients of the respective constituent members are not the same. This is because it is necessary to absorb thermal expansion while ensuring reliability.

発明が解決しようとする課題 ところで上述した単電池3で得られる電圧は1ボルト以
下であり、また電流密度は100〜30QmA程度であ
り、したがって必要な電力を得るには多数の1$電池3
を直並列に接続しなければならず、それに伴って接続箇
所での抵抗、あるいは接続の良否が発電能力に大きく影
響することになる。
Problems to be Solved by the Invention By the way, the voltage obtained with the above-mentioned unit cell 3 is 1 volt or less, and the current density is about 100 to 30 QmA, so it is necessary to use a large number of 1$ batteries 3 to obtain the necessary power.
must be connected in series and parallel, and the resistance at the connection point or the quality of the connection will greatly affect the power generation capacity.

しかるに前記の構成の燃料電池では、内部集電子2と外
部集電子4とが実質的に剛体であるために導電性フェル
ト10.11のクッション性によって各単電池3と各集
電子2,4との間の導通状態の確保を図っているが、導
電性フェルト10,11の充填量や充填の仕方は設計上
予め定めた量や方法に依らざるを得ないから、単電池3
の配列の偏りや単電池3もしくは各集電子2,4に寸法
誤差があった場合には、導電性フェルト10.11を介
した接触状態が不均一になり、あるいは部分的に不充分
となる。そのため前述した燃料電池の構造では単電池3
と集電子2,4との接続部分、あるいは単電池3を直列
接続した場合には単電池3同士の接続部分での抵抗が大
きくなって充分な発電効率を得られないおそれが多分に
あった。
However, in the fuel cell configured as described above, since the internal current collector 2 and the external current collector 4 are substantially rigid bodies, each unit cell 3 and each current collector 2, 4 are separated by the cushioning properties of the conductive felt 10. However, since the amount and method of filling the conductive felts 10 and 11 must be determined in advance by the design,
If there is a deviation in the arrangement or a dimensional error in the cell 3 or each current collector 2, 4, the contact state through the conductive felt 10.11 will become uneven or partially insufficient. . Therefore, in the structure of the fuel cell described above, the single cell 3
When connecting the battery and the collectors 2 and 4, or when the cells 3 were connected in series, there was a possibility that the resistance at the connection between the cells 3 would increase and sufficient power generation efficiency could not be obtained. .

この発明は上記の事情に鑑みてなされたもので、単電池
やスタック同士もしくはこれらと集電子との接続を確実
にし、もって発電効率の向上を図ることのできる円筒型
固体電解質燃料電池を提供することを目的とするもので
ある。
This invention has been made in view of the above circumstances, and provides a cylindrical solid electrolyte fuel cell that can securely connect single cells or stacks to each other or to a current collector, thereby improving power generation efficiency. The purpose is to

課題を解決するための手段 この発明は、上記の目的を達成するために、酸素イオン
透過性のある筒状の固体電解質の内外周両側での酸素濃
度の差によって起電力を生じる複数の発電要素を内部集
電子の外周側に配置し、かつそれらの発電要素をその外
周側に巻付けた導電性テープによって結束したことを特
徴とするものである。
Means for Solving the Problems In order to achieve the above object, the present invention provides a plurality of power generation elements that generate an electromotive force due to the difference in oxygen concentration between the inner and outer circumferential sides of a cylindrical solid electrolyte that is permeable to oxygen ions. are arranged on the outer periphery of the internal current collector, and the power generating elements are bound together with a conductive tape wrapped around the outer periphery.

またこの発明では導電性フェルトを用いることもでき、
その場合、導電性フェルトは、内部集電子と発電要素と
の間、発電要素と導電性テープとの間の少なくともいず
れか一方に介在させることができる。
In addition, in this invention, conductive felt can also be used,
In that case, the conductive felt can be interposed between the internal current collector and the power generation element, or between the power generation element and the conductive tape.

なおここで、発電要素には、単電池のみならず、支持管
の外周に複数のIIi電池を形成してなるスタック、複
数の単電池を結束してなるスタック、複数のスタックを
結束してなるモジュール等を含む。
Here, the power generation element includes not only single cells but also a stack formed by forming a plurality of IIi cells around the outer periphery of a support tube, a stack formed by bundling a plurality of cell cells, and a stack formed by bundling a plurality of stacks. Including modules etc.

作   用 この発明の燃料電池においては、固体電解質を挟んだ両
側に酸素ガスを含む酸化性ガスと水素ガスなどの燃料ガ
スとを流すことにより、固体電解質の内外両側での酸素
濃度の差によって起電力が生じ、各発電要素における起
電力は内部集電子および外周側の導電性テープから出力
される。その各発電要素は内部集電子の外周に配列され
、その状態で導電性テープによって結束されているので
、導電性テープの巻付は時の張力によって各発電要素は
内部集電子に確実に密着させられ、興時に導電性テープ
にも確実に密着する。その結果、内部集電子および外部
集電子となる11電性テープに対する各発電要素の接触
状態が良好となり、これらの接続部分での抵抗が減じら
れて光電効率が向上する。
Function: In the fuel cell of the present invention, by flowing an oxidizing gas containing oxygen gas and a fuel gas such as hydrogen gas on both sides of the solid electrolyte, it is possible to eliminate the problem caused by the difference in oxygen concentration between the inside and outside of the solid electrolyte. Electric power is generated, and the electromotive force in each power generating element is output from the internal current collector and the conductive tape on the outer circumferential side. Each power generating element is arranged around the outer periphery of the internal current collector and bound together with conductive tape, so that the winding of the conductive tape ensures that each power generating element is firmly attached to the internal current collector due to the tension of the conductive tape. It also adheres reliably to conductive tape when exposed. As a result, the contact state of each power generation element with the 11-conductor tape serving as an internal current collector and an external current collector becomes good, and the resistance at these connection parts is reduced, thereby improving photoelectric efficiency.

また導電性フェルトを介在させた場合には、内部集電子
や発電要素の外面に凹凸があっても広い接触面積を確保
し、電気的な接続状態が良好になる。
Further, when a conductive felt is interposed, a wide contact area is ensured even if the internal current collector or the outer surface of the power generation element is uneven, and a good electrical connection is achieved.

実  施  例 つぎにこの発明の実施例を図面を参照して説明する。Example Next, embodiments of the invention will be described with reference to the drawings.

第1図はこの発明の一実施例を示す断面図であって、こ
こに示す例は6個の単電池3を内部集電子2の外周に等
配してスタック20を構成した燃料電池の例であり、そ
の単電池3は第5図を参照して説明したものと同一の構
成であるので、ここではその説明を省略する。内部fa
電子2はNiやNi合金、Niを含むサーメット等の高
融点でかつ耐水素脆性のある材料によって円筒状に形成
されており、6I!Iの単電池3はそのインターコネク
タ7を内部集電子2に向けて配置され、かつ内部集電子
2の外周に4電性フエルト21を巻付けるなどの手段に
よってインターコネクタ7と内部集電子2どの間に導電
性フェルト21が介在されている。
FIG. 1 is a sectional view showing one embodiment of the present invention, and the example shown here is an example of a fuel cell in which six unit cells 3 are equally distributed around the outer circumference of an internal current collector 2 to form a stack 20. Since the unit cell 3 has the same structure as that explained with reference to FIG. 5, the explanation thereof will be omitted here. internal fa
Electron 2 is formed into a cylindrical shape from a material with a high melting point and hydrogen embrittlement resistance, such as Ni, Ni alloy, or cermet containing Ni, and is 6I! The unit cell 3 of I is arranged with its interconnector 7 facing the internal current collector 2, and is connected between the interconnector 7 and the internal current collector 2 by means such as wrapping a quadrielectric felt 21 around the outer periphery of the internal current collector 2. A conductive felt 21 is interposed between them.

なお導電性フェルト21としては、NiやNi合金製の
ものを使用することができる。そしてこれらの単電池3
の外周側に3#電性テープ22が巻付けられて各単電池
3が内部集電子2を中心に結束されている。この導電性
テープ22は燃料電池の動作温度(900〜1200℃
程度)以上の融点を有し、また単電池3の外周側に燃料
ガスを流す場合には、耐水素脆性に優れたものが使用さ
れ、具体的にはNi NインコネルなどのNi合金等か
らなるテープが使用されている。この導電性テープ22
は、単電池3を圧潰しない程度の張力を付与しつつ第2
図に略示するような螺旋状に巻付けられている。その結
果、各単電池3のインターコネクタ7は4電性フエルト
21を介して内部集電子2に密着し、また当然導電性テ
ープ22にも密着してりる。
Note that the conductive felt 21 may be made of Ni or a Ni alloy. And these batteries 3
A 3# electrical tape 22 is wrapped around the outer periphery of the cell 3, and each cell 3 is bundled around the internal current collector 2. This conductive tape 22 is heated at the operating temperature of the fuel cell (900 to 1200°C).
When flowing fuel gas to the outer periphery of the unit cell 3, a material with excellent hydrogen embrittlement resistance is used; specifically, it is made of a Ni alloy such as NiNinconel, etc. tape is used. This conductive tape 22
is applied to the second cell while applying tension to an extent that does not crush the cell 3.
It is wound in a spiral as shown schematically in the figure. As a result, the interconnector 7 of each cell 3 is in close contact with the internal current collector 2 via the quadrielectric felt 21, and of course also with the conductive tape 22.

各単電池3における固体電解質8は900〜1200℃
程度で優れた酸素イオン透過性を示すので、固体電解質
8をこの程度の温度に加熱昇温した状態で各単電池3の
内周側に酸素ガスを含む酸化性ガスを流し、かつ各単電
池3の外周側に水素ガスなどの燃料ガスを流す。それに
伴い固体電解質8の内外周での酸素濃度の差によって起
電力が生じ、各単電池3では酸素電極6が陽極、燃料電
極9が陰極となる。したがってスタック2oの全体とし
ては内部集電子2が陽極となり、導電性テープ22が陰
極となる。その場合、各単電池3は4電性テープ22に
よって締め付けられて内部集電子2と外部集電子である
導電性テープ22とに密着し、その接触状態は良好であ
るから、その接続部分での抵抗が小さく、その結果、燃
料電池としての内部抵抗が低減されるので、高出力化が
図られる。
The temperature of the solid electrolyte 8 in each cell 3 is 900 to 1200°C
Since the solid electrolyte 8 is heated to a temperature of this level, an oxidizing gas containing oxygen gas is flowed around the inner circumference of each unit cell 3, and each unit cell is heated to a temperature of this level. Fuel gas such as hydrogen gas is flowed around the outer circumferential side of 3. Accordingly, an electromotive force is generated due to the difference in oxygen concentration between the inner and outer peripheries of the solid electrolyte 8, and in each unit cell 3, the oxygen electrode 6 serves as an anode and the fuel electrode 9 serves as a cathode. Therefore, for the stack 2o as a whole, the internal current collector 2 serves as an anode, and the conductive tape 22 serves as a cathode. In that case, each cell 3 is tightened by the 4-conductor tape 22 and comes into close contact with the internal current collector 2 and the external current collector conductive tape 22, and the contact state is good, so that Since the resistance is small, and as a result, the internal resistance of the fuel cell is reduced, high output can be achieved.

また導電性フェルト21は内部集電子2の外周面やイン
ターコネクタ7の先端面の凹凸を埋めて広い接触面積を
確保するので、この点でも接触状態が良好となって燃料
電池の内部抵抗の低減化が図られる。
In addition, the conductive felt 21 fills in the irregularities on the outer circumferential surface of the internal current collector 2 and the tip end surface of the interconnector 7 to ensure a wide contact area, so the contact condition is good in this respect as well, and the internal resistance of the fuel cell is reduced. will be promoted.

スタック20の全体を燃料電池の動作温度まで加熱昇温
すると、内部集電子2や単電池3などが熱膨張し、かつ
その膨張量が相違するが、それに起因する相対変位は導
電性フェルト21の弾性的な変形によって吸収され、単
電池3や内部集電子2の応力が緩和される。また反対に
温度低下による熱収縮が生じた場合、導電性テープ22
による締付は力が作用しているため、内部集電子2およ
び単電池3ならびに導電性テープ22の三者の接触状態
は良好に維持される。
When the entire stack 20 is heated to the operating temperature of the fuel cell, the internal current collector 2 and the single cells 3 undergo thermal expansion, and the amount of expansion is different. It is absorbed by elastic deformation, and the stress in the cell 3 and internal current collector 2 is relaxed. On the other hand, if thermal contraction occurs due to a temperature drop, the conductive tape 22
Since force is applied during the tightening, the state of contact between the internal current collector 2, the cell 3, and the conductive tape 22 is maintained well.

なお、導電性フェルト21は内部集電子2の外周面に設
ける替りに、第3図に示すように導電性テープ22の内
周側に設けてもよく、このような構成であれば、各単電
池3の外面、すなわち燃料電極9の外面の凹凸を導電性
フェルト21が埋めることになるので、導電性フェルト
21が熱膨張量の差を吸収すると同時に単電池3と導電
性テープ22との実質的な接触面積を拡大する。
In addition, instead of providing the conductive felt 21 on the outer peripheral surface of the internal current collector 2, it may be provided on the inner peripheral side of the conductive tape 22 as shown in FIG. Since the conductive felt 21 fills in the irregularities on the outer surface of the battery 3, that is, the outer surface of the fuel electrode 9, the conductive felt 21 absorbs the difference in thermal expansion and at the same time, the substantial difference between the unit cell 3 and the conductive tape 22. Expand the contact area.

また上記の実施例では円筒状の単電池を内部集電子の外
周に配置して結束する例を説明したが、多孔質支持管の
外周面に多数の単電池を相互に直列に接続して形成して
なるスタックも円筒状をなし、かつ並列接続する必要が
あるので、この発明は、このようなスタックを第1図あ
るいは第2図に示すように内部集電子を介して並列接続
する場合にも適用することができる。さらにこの発明は
第1図もしくは第3図に示すスタックを複数個結束して
モジュール化する場合にも適用することができる。
In addition, in the above embodiment, an example was explained in which cylindrical cells were arranged around the outer periphery of the internal current collector and bundled. Stacks made of these materials also have a cylindrical shape and need to be connected in parallel. Therefore, the present invention is applicable to the case where such stacks are connected in parallel via internal current collectors as shown in FIG. 1 or 2. can also be applied. Furthermore, the present invention can be applied to the case where a plurality of stacks shown in FIG. 1 or 3 are combined into a module.

発明の効果 以上の説明から明らかなようにこの発明の燃料電池によ
れば、内部集電子の外周側に配置した複数の発電要素を
、その外周に巻いた導電性テープによって結束するから
、各発電要素が内部集電子に向けて締め付けられ、その
結果、発電要素と内部集電子との接触状態および発電要
素と外部集電子となる導電性テープとの接触状態が良好
に維持され、これらの部分での導通状態が良好になって
燃料電池としての内部抵抗が低減され、ひいては発電効
率が向上し、高出力化を図ることができ゛る。
Effects of the Invention As is clear from the above explanation, according to the fuel cell of the present invention, the plurality of power generation elements arranged on the outer circumference side of the internal current collector are bound by the conductive tape wrapped around the outer circumference, so that each power generation element is The element is tightened toward the internal current collector, and as a result, good contact is maintained between the power generating element and the internal current collector, and between the power generating element and the conductive tape serving as the external current collector, and in these parts. This improves the conduction state of the fuel cell, reduces the internal resistance of the fuel cell, and improves power generation efficiency, making it possible to achieve high output.

またこの発明によれば、複数の発電要素を結束している
導電性テープが外部集電子となるので、内部集電子およ
びその外周に複数配置した発電要素ならびに外部集電子
からなる構成体の製造作業性が向上する。ざらに発電要
素はセラミックが多く使用されるので、導電性フェルト
を接触部分に介在させれば、発電要素の表面の凹凸を埋
めて広い接触面積を確保することができる。
Further, according to the present invention, since the conductive tape that binds a plurality of power generating elements serves as an external current collector, manufacturing work for a structure consisting of an internal current collector, a plurality of power generating elements arranged around the outer periphery of the internal current collector, and an external current collector is performed. Improves sex. Since ceramics are often used for power generation elements, by interposing conductive felt in the contact area, it is possible to fill in the irregularities on the surface of the power generation element and ensure a wide contact area.

【図面の簡単な説明】 第1図はこの発明の一実施例を示す断面図、第2図は導
電性テープの巻付は状態を示す部分側面図、第3図は他
の実施例を示す断面図、第4図は従来のスタックの一例
を示す断面図、第5図は単電池の一例を示す断面図であ
る。 2・・・内部集電子、 3・・・単電池、 6・・・酸
素電極、 7・・・インターコネクタ、 8・・・固体
電解質、9・・・燃料電極、 20・・・スタック、 
21・・・導電性フェルト、 22・・・導電性テープ
[Brief Description of the Drawings] Fig. 1 is a sectional view showing one embodiment of the present invention, Fig. 2 is a partial side view showing the state of winding of the conductive tape, and Fig. 3 shows another embodiment. 4 is a sectional view showing an example of a conventional stack, and FIG. 5 is a sectional view showing an example of a single cell. 2... Internal current collector, 3... Cell, 6... Oxygen electrode, 7... Interconnector, 8... Solid electrolyte, 9... Fuel electrode, 20... Stack,
21... Conductive felt, 22... Conductive tape.

Claims (2)

【特許請求の範囲】[Claims] (1)酸素イオン透過性のある筒状の固体電解質の内外
周両側での酸素濃度の差によつて起電力を生じる複数の
発電要素を内部集電子の外周側に配置し、かつそれらの
発電要素をその外周側に巻付けた導電性テープによつて
結束したことを特徴とする円筒型固体電解質燃料電池。
(1) A plurality of power generation elements that generate electromotive force due to the difference in oxygen concentration between the inner and outer circumferences of a cylindrical solid electrolyte that is permeable to oxygen ions are arranged on the outer circumference side of the internal current collector, and these power generation elements are arranged on the outer circumference side of the internal current collector. A cylindrical solid electrolyte fuel cell characterized in that elements are bound together with conductive tape wrapped around the outer periphery of the elements.
(2)前記内部集電子の外周面と発電要素との間もしく
は前記導電性テープの内周面と発電要素との間のいずれ
か一方に導電性フェルトが介在されていることを特徴と
する請求項1に記載の円筒型固体電解質燃料電池。
(2) A claim characterized in that a conductive felt is interposed either between the outer peripheral surface of the internal current collector and the power generating element or between the inner peripheral surface of the conductive tape and the power generating element. The cylindrical solid electrolyte fuel cell according to item 1.
JP1119987A 1989-05-12 1989-05-12 Cylindrical solid electrolyte fuel cell Expired - Fee Related JP2769629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1119987A JP2769629B2 (en) 1989-05-12 1989-05-12 Cylindrical solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1119987A JP2769629B2 (en) 1989-05-12 1989-05-12 Cylindrical solid electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JPH02299168A true JPH02299168A (en) 1990-12-11
JP2769629B2 JP2769629B2 (en) 1998-06-25

Family

ID=14775104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1119987A Expired - Fee Related JP2769629B2 (en) 1989-05-12 1989-05-12 Cylindrical solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP2769629B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1019397C2 (en) * 2001-11-19 2003-06-13 Willem Jan Oosterkamp Fuel cell stack in a pressure vessel.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1019397C2 (en) * 2001-11-19 2003-06-13 Willem Jan Oosterkamp Fuel cell stack in a pressure vessel.
US7041410B2 (en) 2001-11-19 2006-05-09 Willem Jan Oosterkamp Fuel cell stack in a pressure vessel
EP1313162A3 (en) * 2001-11-19 2006-11-29 Willem Jan Oosterkamp Fuel cell stack in a pressure vessel

Also Published As

Publication number Publication date
JP2769629B2 (en) 1998-06-25

Similar Documents

Publication Publication Date Title
JP2947557B2 (en) High temperature solid electrolyte fuel cell power generator
US4791035A (en) Cell and current collector felt arrangement for solid oxide electrochemical cell combinations
US6416897B1 (en) Tubular screen electrical connection support for solid oxide fuel cells
US20090130511A1 (en) Fuel Cell Module
US5258240A (en) Solid oxide fuel cell generator
US20050186462A1 (en) PEM fuel cell stack with floating current collector plates
JPH0159705B2 (en)
JPH03274672A (en) Solid electrolyte type fuel cell
JPH06251780A (en) Solid high polymer electrolyte type fuel cell
JP3611289B2 (en) Cylindrical solid electrolyte fuel cell
EP0536909B1 (en) Solid oxide fuel cell generator
JPH02299168A (en) Cylindrical solid electrolyte fuel cell
JP2933228B2 (en) Solid oxide fuel cell module
JP2988160B2 (en) Cylindrical solid oxide fuel cell
JPH07235316A (en) Cylindrical solid electrolyte fuel cell
JP2799877B2 (en) Cylindrical solid electrolyte fuel cell
JPH1125999A (en) Solid electrolyte fuel cell
JP2933227B2 (en) Solid oxide fuel cell module
JP2000058101A (en) Cylindrical cell type solid electrolyte fuel cell
JP3297609B2 (en) Method for manufacturing fuel cell stack
JP3572194B2 (en) Cylindrical solid electrolyte fuel cell and method of manufacturing the same
JPS6398964A (en) Fuel cell
JP2843995B2 (en) Structure of solid oxide fuel cell
JPH07201351A (en) Structure for solid electrolyte fuel cell
JP2816471B2 (en) Solid oxide fuel cell module

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees