JPH0229558A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH0229558A
JPH0229558A JP17960588A JP17960588A JPH0229558A JP H0229558 A JPH0229558 A JP H0229558A JP 17960588 A JP17960588 A JP 17960588A JP 17960588 A JP17960588 A JP 17960588A JP H0229558 A JPH0229558 A JP H0229558A
Authority
JP
Japan
Prior art keywords
sensor
heat exchanger
compressor
expansion valve
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17960588A
Other languages
Japanese (ja)
Other versions
JP2664421B2 (en
Inventor
Kunimori Sekigami
邦衛 関上
Koji Nagae
公二 永江
Yoji Sasaki
洋二 佐々木
Junichi Saito
順一 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP17960588A priority Critical patent/JP2664421B2/en
Publication of JPH0229558A publication Critical patent/JPH0229558A/en
Application granted granted Critical
Publication of JP2664421B2 publication Critical patent/JP2664421B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the compressor from being damaged by proving a first sensor to the suction line, a second sensor to a bypass at its outlet, and a third sensor to each of a plurality of indoor heat exchangers in a setup, when the difference between the temperatures detected by the first sensor and the second sensor exceeds a set point, to control the opening of the relevant electrical expansion valve in preference to signals detected by the third sensors. CONSTITUTION:During the cooling, when the difference between the temperatures detected by a first sensor T1 and a second sensor T2 does not exceed a set point 15 deg.C, a control means 14a controls the opening of a relevant electrical expansion valve 12a on the basis of the temperature detected by a third sensor T3a-1; when the difference between the temperatures detected by the first sensor T1 and the second sensor T2 exceeds the set point 15 deg.C, the control means 14a acts on the signals detected by the first sensor T1 and the second sensor T2 in preference to the signals detected by the third sensor T3a-1 and opens the electrical expansion valve 12a a little wider so as to increase the quantity of the refrigerant returning through an outdoor heat exchanger 4 to a compressor 2, causing the temperature of the refrigerant sucked into the compressor 2 to be lowered. Therefore, there is no fear of the compressor 2 being damaged due to increase of the temperature of the refrigerant sucked therein.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は室外ユニットに複数台の室内ユニットを分岐接
続した多室型の空気調和装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to a multi-room air conditioner in which a plurality of indoor units are branch-connected to an outdoor unit.

(ロ)従来の技術 室外ユニットに複数台の室内ユニットを分岐接続すると
共にこの分岐した液管に熱電形膨張弁や電気式膨張弁等
の電気式膨張弁を設け、この膨張弁の開度を室内ユニッ
トの空調負荷に応じて制御する多室型の空気調和装置が
特公昭60−11788号公報で提示きれている。
(b) Conventional technology Multiple indoor units are branched and connected to the outdoor unit, and an electric expansion valve such as a thermoelectric expansion valve or an electric expansion valve is installed in this branched liquid pipe, and the opening degree of this expansion valve is controlled. A multi-room air conditioner that is controlled according to the air conditioning load of an indoor unit has been proposed in Japanese Patent Publication No. 11788/1988.

(ハ)発明が解決しようとする課題 室外ユニットと複数台の室内ユニットとを接続するユニ
ット間配管の配管長が長くなると、冷房運転時に各室内
熱交換器の温度に応じて各電気式膨張弁の開度を制御す
ることにより各室内熱交換器の冷媒過熱度を適正にして
もユニット間配管を流れる際にフラッシュガスが発生し
て圧縮機の冷媒吸込温度が上昇してしまい、圧縮機が破
損する虞れがあった。
(c) Problem to be solved by the invention When the length of the inter-unit piping connecting an outdoor unit and multiple indoor units becomes long, each electric expansion valve Even if the degree of superheating of the refrigerant in each indoor heat exchanger is set to an appropriate level by controlling the opening degree of the There was a risk of damage.

本発明はかかる課題を解決した空気調和装置を提供する
ものである。
The present invention provides an air conditioner that solves these problems.

(ニ)課題を解決するための手段 本発明は、圧縮機と室外熱交換器とを有する室外ユニッ
トに室内熱交換器を有する複数台の室内ユニットを分岐
接続すると共に、この分岐した液管に電気式膨張弁を設
けた空気調和装置において、圧縮機の吐出冷媒の一部を
圧縮機の吸込管路へ導くバイパス管路に補助熱交換器を
設け、前記吸込管路に第1センサを、バイパス管路の出
口側に第2センサを夫々設けると共に、各室内熱交換器
に第3センサを設け、第1センサと第2センサとの検出
温度差が設定値を超えた時に第3センサからの検出信号
よりも優先して各電気式膨張弁の開度を制御する制御手
段を設けるようにしたものである。
(d) Means for Solving the Problems The present invention connects a plurality of indoor units each having an indoor heat exchanger to an outdoor unit having a compressor and an outdoor heat exchanger, and connects the branched liquid pipes to the outdoor unit having an indoor heat exchanger. In an air conditioner equipped with an electric expansion valve, an auxiliary heat exchanger is provided in a bypass line that guides a part of the refrigerant discharged from the compressor to a suction line of the compressor, and a first sensor is provided in the suction line, A second sensor is provided on the outlet side of the bypass pipe, and a third sensor is provided in each indoor heat exchanger, and when the detected temperature difference between the first sensor and the second sensor exceeds a set value, the third sensor A control means is provided for controlling the opening degree of each electric expansion valve with priority over the detection signal.

併せて、室外ユニットと複数台の室内ユニットとを接続
するユニット間配管を、圧縮機の吐出管路と分岐接続さ
れた高圧ガス管と、圧縮機の吸込管路と分岐接続された
低圧ガス管と、室外熱交換器と接続された液管とで構成
すると好ましい。
In addition, the inter-unit piping that connects the outdoor unit and multiple indoor units is connected to a high-pressure gas pipe that is branch-connected to the compressor's discharge pipe, and a low-pressure gas pipe that is branch-connected to the compressor's suction pipe. and a liquid pipe connected to an outdoor heat exchanger.

又、補助熱交換器を圧縮機の吸込管路、もしくは室外熱
交換器と熱交換関係に設けると好ましい。
Further, it is preferable that the auxiliary heat exchanger is provided in a heat exchange relationship with the suction pipe of the compressor or the outdoor heat exchanger.

(*)作用 冷房時、第1センサと第2センサとの検出温度差が設定
値15°Cを超えない時は第3センサの検出温度に応じ
制御手段で各電気式膨張弁の開度が制御されるが、第1
センサと第2センサとの検出温度差が設定値15°Cを
超えると、制御手段が第3センサからの検出信号よりも
優先して第1センサと第2センサとからの検出信号を入
力して電気式膨張弁を開き気味とすることにより室内熱
交換器から圧縮機へ戻る冷媒量が増えて圧縮機の冷媒吸
込温度が低下するようになる。
(*) During active cooling, when the detected temperature difference between the first sensor and the second sensor does not exceed the set value of 15°C, the opening degree of each electric expansion valve is adjusted by the control means according to the detected temperature of the third sensor. controlled, but the first
When the detected temperature difference between the sensor and the second sensor exceeds a set value of 15°C, the control means inputs the detection signal from the first sensor and the second sensor with priority over the detection signal from the third sensor. By slightly opening the electric expansion valve, the amount of refrigerant returning from the indoor heat exchanger to the compressor increases, and the refrigerant suction temperature of the compressor decreases.

(へ)実施例 本発明の第1実施例を第1図に基づいて説明すると、(
1)は圧縮機(2)と、四方弁(3)と、室外熱交換器
(4)と、補助熱交換器(5)及び毛細管(6)を有し
圧縮機(2)の吐出冷媒の一部を圧縮機(4)の吸込管
路(7)に設けた気液分離器(8)へ導くバイパス管路
(9)とを有する室外ユニット、(10a)(10b)
(10C)は熱交換容量が異なる室内熱交換器(lla
)(llb)(lie)と電気式膨張弁(12a)(1
2b)(12c)とを有する室内ユニットで、これら機
器はユニット間配管(13a)(13b)を介して図示
の如く接続されている。
(f) Example The first example of the present invention will be explained based on FIG.
1) has a compressor (2), a four-way valve (3), an outdoor heat exchanger (4), an auxiliary heat exchanger (5), and a capillary tube (6), and the refrigerant discharged from the compressor (2) is An outdoor unit (10a) (10b) having a bypass pipe (9) that partially leads to a gas-liquid separator (8) provided in the suction pipe (7) of the compressor (4).
(10C) is an indoor heat exchanger (lla) with different heat exchange capacities.
) (llb) (lie) and electric expansion valve (12a) (1
2b) and (12c), and these devices are connected as shown in the figure via inter-unit piping (13a) and (13b).

そして、吸込管路(7)には第1センサ(T8)が、且
つバイパス管路(9)の出口側には第2センサ(Tりが
設けられ、各室内熱交換器(11a011b)(lie
)の中間及び両端には第3センサ(丁m、−r )(T
mm−*)(rm、−s> −(Tab−+>(Tab
−t)(Tab−s) 、 (Tm、−+)(Ts−*
)(T□−1)が設けられている。
A first sensor (T8) is provided on the suction pipe line (7), and a second sensor (T8) is provided on the outlet side of the bypass pipe line (9), and each indoor heat exchanger (11a011b) (lie
) A third sensor (Tm, -r) (T
mm-*)(rm,-s>-(Tab-+>(Tab
-t)(Tab-s), (Tm,-+)(Ts-*
)(T□-1) is provided.

(14a)(14b)(14c)は第1センサ(TI)
と検出温度(t、)と第2センサ(Tりとの検出温度(
t、)との温度差が設定値15°Cを超えると第3セン
サ(ram−+)(Ts−−tバTm−m) 、 (T
rTh−+)(Tub−t)(Tab−m) 、 (1
’s−+)(Tm、−*)(’r□−1)からの検出信
号よりも優先して各電気式膨張弁(12a)(12b)
(12c)の開度を制御する制御手段である。尚、各電
気式膨張弁(12a)(12b ) (12c )はス
テッピングモータによって駆動される電動式の膨張弁で
あり、ステップ数に比例して弁開度の大きさが変わるも
のである。
(14a) (14b) (14c) are the first sensor (TI)
and the detected temperature (t,) and the detected temperature (t,) of the second sensor (T,)
t, ) exceeds the set value of 15°C, the third sensor (ram-+) (Ts--t, Tm-m), (T
rTh-+)(Tub-t)(Tab-m), (1
's-+) (Tm, -*) ('r□-1) Each electric expansion valve (12a) (12b)
(12c) is a control means for controlling the opening degree. Each of the electric expansion valves (12a, 12b, 12c) is an electric expansion valve driven by a stepping motor, and the degree of opening of the valve changes in proportion to the number of steps.

次に冷房運転を第2図のフローチャートに従って説明す
る。冷房運転時は四方弁(3)を実線状態に設定すると
共に運転開始時には各電気式膨張弁(12a)(12b
)(12c)が100ステップ開かれており、圧縮機(
2)から吐出された冷媒が四方弁(3)−室外熱交換器
(4)−ユニット間配管(13a)−電気式%式%)(
11 液分離器(8)を経て圧縮機(2)に帰還すると共に、
圧縮機(2)の吐出冷媒の一部がバイパス管路(9〉の
補助熱交換器(5)と毛細管(6)を経て気液分離器(
8〉へ流れ、蒸発器として作用する室内熱交換器(ll
a)(llb)(llc)で各室が冷房開始される。
Next, the cooling operation will be explained according to the flowchart shown in FIG. During cooling operation, the four-way valve (3) is set to the solid line state, and at the start of operation, each electric expansion valve (12a) (12b
) (12c) is opened 100 steps and the compressor (
2) The refrigerant discharged from the four-way valve (3) - outdoor heat exchanger (4) - inter-unit piping (13a) - electric type % type %) (
11 Returns to the compressor (2) via the liquid separator (8), and
A part of the refrigerant discharged from the compressor (2) passes through the auxiliary heat exchanger (5) in the bypass pipe (9) and the capillary tube (6), and then passes through the gas-liquid separator (
8> and an indoor heat exchanger (ll) which acts as an evaporator.
a) Cooling of each room is started in (llb) (llc).

かかる運転開始から3分経過した後、吸込管路(7〉を
流れる低圧冷媒温度(t、)を第1センサ(T、)で、
且つ補助熱交換器(5)で凝縮して毛細管〈6〉で減圧
された低圧液冷媒の飽和温度(t、)を第2センサ(T
ハで夫々検出してこの温度差(tl  ts)が設定値
15℃を超えた場合は制御手段(14a>(14b)(
14C)の出力信号により各電気式膨張弁(12a)(
12b)(12c)を更に10ステツプ開いて室内熱交
換器(lla)(11b011c)を流れる冷媒量を増
やすことにより低圧冷媒温度(t、)を下げて温度差(
tl  ts)が設定値15℃以下に下がるように制御
する。次に温度差(1111)が下限の設定値3°C以
下に下がってしまうと制御手段(14a)(14b)(
14c)(7)出力信号により逆に各電気式膨張弁(1
2g)(12b)(12c)を5ステツプ閉じて低圧冷
媒温度(七りを上げて下限の設定値3℃以上に上がるよ
うに制御する。このようにして温度差(tx  ts>
が15℃以下で且つ3°C以上ある適正な過熱度状態に
落ち着くと、一方の第3センサ(T8.−〇(Tub−
ハ(rm。−2)により室内熱交換器(lla)(11
b011c)の出口冷媒温度(t、)を検出してこのう
ち最も高い検出温度(1,)との温度差(1,−1、)
が設定値3°Cを超えている場合は、超えていない他の
例えば室内熱交換器mb)mc)の電気式膨張弁(12
b)(12c)を制御手段(14b)(14c)の出力
信号により5ステツプ閉じて室内熱交換器(11b01
1c)を流れる冷媒量を減少させることにより、超えて
いる室内熱交換器(lla)の冷媒流量を増やして温度
差(ty  ts)を設定値3℃以下に抑える分流制御
が行なわれる。そして他方の第3センサ(Tm、−t)
D’mb−+)(r□−1)により検出した室内熱交換
器(11a)(llb>(llc)の中間温度(T4)
と、一方の第3センサ(Tl−1)(rl&−〇(T□
−3)に検出した室内熱交換器(lla)(llb)(
lie)の出口冷媒温度(t、)との温度差が設定値2
℃を超えるとこの超えた例えば室内熱交換器(ila)
の電気制御弁(12a)を制御手段(14a)の出力信
号により2ステツプ開いてこの室内熱交換器(lla)
の冷媒流量を増やして冷媒過熱度を一定番で保つように
する。
After 3 minutes have passed from the start of the operation, the temperature (t,) of the low-pressure refrigerant flowing through the suction pipe (7) is measured by the first sensor (T,).
In addition, the second sensor (T
If the temperature difference (tl ts) exceeds the set value of 15°C, the control means (14a>(14b)
Each electric expansion valve (12a) (
12b) (12c) is further opened by 10 steps to increase the amount of refrigerant flowing through the indoor heat exchanger (lla) (11b011c), thereby lowering the low pressure refrigerant temperature (t,) and increasing the temperature difference (
tl ts) is controlled so that it falls below the set value of 15°C. Next, when the temperature difference (1111) falls below the lower limit set value of 3°C, the control means (14a) (14b) (
14c) (7) Each electric expansion valve (1
2g) (12b) (12c) are closed in 5 steps to control the low-pressure refrigerant temperature (7 degrees) so that it rises to the lower limit set value of 3°C or more.In this way, the temperature difference (tx ts>
When the temperature reaches an appropriate superheat state of 15°C or lower and 3°C or higher, one of the third sensors (T8.-〇(Tub-
Indoor heat exchanger (lla) (11
Detect the outlet refrigerant temperature (t,) of b011c) and find the temperature difference (1, -1,) from the highest detected temperature (1,).
exceeds the set value of 3°C, the electric expansion valve (12
b) (12c) is closed 5 steps by the output signals of the control means (14b) (14c) and the indoor heat exchanger
By reducing the amount of refrigerant flowing through 1c), the flow rate of the refrigerant in the indoor heat exchanger (lla) that exceeds the limit is increased, thereby controlling the temperature difference (ty ts) to a set value of 3° C. or less. and the other third sensor (Tm, -t)
Intermediate temperature (T4) of indoor heat exchanger (11a) (llb>(llc) detected by D'mb-+) (r□-1)
and one third sensor (Tl-1) (rl&-〇(T□
-3) detected indoor heat exchanger (lla) (llb) (
The temperature difference between the outlet refrigerant temperature (t, ) of
If the temperature exceeds this temperature, e.g. an indoor heat exchanger (ILA)
The electric control valve (12a) of the indoor heat exchanger (lla) is opened in two steps according to the output signal of the control means (14a).
Increase the refrigerant flow rate to maintain the refrigerant superheat degree at a constant level.

一方、暖房運転時は四方弁(3)を破線状態に切り換え
ることにより、圧縮機(2)−四方弁(3)−ユニット
間配管(13b)−室内熱交換器(lla)(llb)
(11C)−電気式膨張弁(12a)(12b)(12
c) −:L −1−ブト間配管(13a)−室外熱交
換器(4)−四方弁(3)−気液分離器(8)を経て圧
縮機(2)に帰還すると共に、圧縮機(2)の吐出冷媒
の一部がバイパス管路(9)の補助熱交換器(5)と毛
細管(6)を経て気液分離器(8)へ流れ、凝縮器とし
て作用する室内熱交換器(11a)(11b011c)
で各室が暖房される。
On the other hand, during heating operation, by switching the four-way valve (3) to the broken line state, the compressor (2) - four-way valve (3) - inter-unit piping (13b) - indoor heat exchanger (lla) (llb)
(11C) - Electric expansion valve (12a) (12b) (12
c) -:L returns to the compressor (2) via the -1-button piping (13a) - outdoor heat exchanger (4) - four-way valve (3) - gas-liquid separator (8), and also returns to the compressor (2). A part of the refrigerant discharged from (2) flows through the auxiliary heat exchanger (5) and the capillary tube (6) in the bypass pipe (9) to the gas-liquid separator (8), and the indoor heat exchanger acts as a condenser. (11a) (11b011c)
Each room is heated.

かかる暖房運転時、一方の第3センサ(r、、−m)(
Tub−i)(Ts、−s)で室内熱交換器(lla)
(1lb(1ie)の冷媒出口温度を検出し制御手段(
14a)(14b)(14c)の出力信号により電気式
膨張弁(12g)(12b)(12c)の開度を調整し
て冷房時と同様に分流制御すると共に、この一方の第3
センサ(1’m5−s)(Tab−s)(Isa−8)
で検出した室内熱交換器(lla)(llb)(lie
)の冷媒出口温度と他方の第3センサ(T1.−1 >
(Tab−t )(T1@−1)で検出した室内熱交換
器(lla)(llb)(lie)の中間温度との温度
差が一定になるように過冷却制御される。
During such heating operation, one of the third sensors (r, , -m) (
Tub-i) (Ts, -s) and indoor heat exchanger (lla)
(1 lb (1 ie) refrigerant outlet temperature is detected and the control means (
The opening degrees of the electric expansion valves (12g), (12b), and (12c) are adjusted by the output signals of 14a), 14b, and 14c, and the flow is divided and controlled in the same manner as during cooling.
Sensor (1'm5-s) (Tab-s) (Isa-8)
Indoor heat exchanger (lla) (llb) (lie
) and the other third sensor (T1.-1 >
(Tab-t) Supercooling control is performed so that the temperature difference from the intermediate temperature of the indoor heat exchanger (lla) (llb) (lie) detected at (T1@-1) is constant.

第3図は本発明の第2実施例を示すもので、第1実施例
と異なるのは補助熱交換器(5)を吸込管路(7)と熱
交換させることにより吸込管路(7)を流れる低圧冷媒
を高温吐出冷媒で加熱して吸込管路(7)から気液分離
器(8)に戻る液冷媒量を減らして液圧縮を防止すると
共に、この熱交換前の吸込管路(7)の箇所に第1セン
サ(T1)を設けるようにした点であり、冷暖房時の冷
媒流れと電気式膨張弁(12a)(12b)(12c)
の開度制御は第1実施例と同様につき同一符号を付して
説明は省略する。
FIG. 3 shows a second embodiment of the present invention, which differs from the first embodiment in that the auxiliary heat exchanger (5) exchanges heat with the suction pipe (7). The low-pressure refrigerant flowing through the suction pipe (7) is heated by the high-temperature discharge refrigerant to reduce the amount of liquid refrigerant returning from the suction pipe (7) to the gas-liquid separator (8) to prevent liquid compression. The point is that the first sensor (T1) is provided at the location 7), and the refrigerant flow during cooling and heating and the electric expansion valves (12a) (12b) (12c)
Since the opening degree control is the same as in the first embodiment, the same reference numerals are given and the explanation thereof will be omitted.

第4図は本発明の第3実施例を示すもので、第1実施例
と異なるのは補助熱交換器(5〉を室外熱交換器(4)
の下部に一体もしくは別体に設けることにより、高温吐
出冷媒で室外熱交換器(4)の下部を加熱して暖房時に
室外熱交換器(4)の下部に結氷しないようにした点で
あり、冷暖房時の冷媒流れと電気式膨張弁(12a>(
12bX 12c)(F)開度制御は第1実施例と同様
につき同一符号を付して説明は省略する。
FIG. 4 shows a third embodiment of the present invention, which differs from the first embodiment in that the auxiliary heat exchanger (5) is replaced with an outdoor heat exchanger (4).
By providing it integrally or separately at the lower part of the outdoor heat exchanger (4), the lower part of the outdoor heat exchanger (4) is heated with high temperature discharge refrigerant to prevent ice from forming at the lower part of the outdoor heat exchanger (4) during heating. Refrigerant flow during heating and cooling and electric expansion valve (12a>(
12 b

第5図は本発明の第4実施例を示すもので、圧縮機(2
)と室外熱交換器(4)と補助電気式膨張弁(15)と
気液分離器(8)とを有する室外ユニット(1)と、熱
交換容量が同じかもしくは異なる室内熱交換器(lla
)(11b011c)と電気式膨張弁(12a)(12
b)(12c )とを有する室内ユニット(10a)(
10b)(10c)とを接続するユニット間配管(13
)を、圧縮機(2)の吐出管路(16)と分岐接続され
た高圧ガス管(17)と、圧縮機(2)の吸込管路(7
)と分岐接続された低圧ガス管(18)と、室外熱交換
器(4)に補助電気式膨張弁(15)を介して接続され
た液管(19)とで構成すると共に室外熱交換器(4)
及び室内熱交換器(11a)(llb)(llc)に切
換弁(20a)(20b) 、 (21a)(22a)
 。
FIG. 5 shows a fourth embodiment of the present invention, in which a compressor (2
), an outdoor heat exchanger (4), an auxiliary electric expansion valve (15), a gas-liquid separator (8), and an indoor heat exchanger (lla) with the same or different heat exchange capacity.
) (11b011c) and electric expansion valve (12a) (12
b) (12c) and an indoor unit (10a) (
10b) (10c) and the inter-unit piping (13
), a high pressure gas pipe (17) branch-connected to the discharge pipe (16) of the compressor (2), and a suction pipe (7) of the compressor (2).
), a low-pressure gas pipe (18) branch-connected to the outdoor heat exchanger (4), and a liquid pipe (19) connected to the outdoor heat exchanger (4) via an auxiliary electric expansion valve (15). (4)
And indoor heat exchangers (11a) (llb) (llc) with switching valves (20a) (20b), (21a) (22a)
.

(21b)(22b) 、 (21c)(22c)を設
け、且つ吐出管路(16)より気液分離器(8)に至る
バイパス管路(9)に第2実施例と同様に吸込管路(7
)と熱交換する補助熱交換器(5)と毛細管(6)とを
設ける一方、吸込管路(9)に第1センサ(TI)を、
バイパス管路(9)に第2センサ(I’意)を、室内熱
交換器(lla)(11b01ic)の中間及び両端に
第3センサ(Tmm−t)(rsa、t)(Tea−m
) 、 (Tab−t)(Tab−*)(’fsb−m
) 、 (Ta、−+>(Ts、−*)(TAg−1)
を設け、こられセンサからの出力信号を入力して電気式
膨張弁(12a)(12b)(12c>と補助電気式膨
張弁(15)の開度を制御する制御手段(14a)(1
4b)(14c)と補助制御手段(23)とを設けるよ
うにしたものである。尚、(23)は高圧ガス管(17
)から低圧ガス管(18)へ冷媒を導いて高圧ガス管(
17)に冷媒が溜まり込むのを防止するバイパス用毛細
管である。
(21b), (22b), (21c) and (22c), and a suction pipe is provided in the bypass pipe (9) leading from the discharge pipe (16) to the gas-liquid separator (8) as in the second embodiment. (7
) is provided with an auxiliary heat exchanger (5) and a capillary tube (6) for heat exchange, while a first sensor (TI) is provided in the suction pipe line (9),
A second sensor (I') is installed in the bypass pipe (9), and a third sensor (Tmm-t) (rsa, t) (Tea-m) is installed in the middle and both ends of the indoor heat exchanger (lla) (11b01ic).
) , (Tab-t) (Tab-*) ('fsb-m
) , (Ta,-+>(Ts,-*)(TAg-1)
control means (14a) (14a) (14a) for inputting output signals from these sensors to control the opening degrees of the electric expansion valves (12a) (12b) (12c>) and the auxiliary electric expansion valve (15);
4b) (14c) and an auxiliary control means (23). In addition, (23) is a high pressure gas pipe (17
) from the high pressure gas pipe (
17) is a bypass capillary tube that prevents refrigerant from accumulating in the refrigerant.

次に冷房運転動作を説明すると、全室を同時に冷房する
場合は室外熱交換器(4)の一方の切換弁(20a)を
開くと共に他方の切換弁(20b)を閉じ、且つ室内熱
交換器(lla)(llb)(llc)の一方の切換弁
(21a)(21b)(21c)を開くと共に他方の切
換弁(22a)(22b)(22c)を閉じることによ
り、圧縮機(2)から吐出された冷媒は吐出管路(16
)−切換弁(20a) −室外熱交換器(4)−補助電
気式膨張弁(15)−液管(18)−電気式膨張弁(1
2a)(12b)(12c)−室内熱交換器(lla)
(1lb) (lie)−切換弁(fla)(21b)
(21c)−低圧ガス管(19)−吸込管路(7)−気
液分離器(8)を経て圧縮機(2)番こ帰還すると共に
、圧縮機(2)の吐出冷媒の一部がバイパス管路(9)
の補助熱交換器(5)と毛細管(6)を経て気液分離器
(8)へ流れ、蒸発器として作用する室内熱交換器ma
)(llb)(11C)で各室が冷房される。
Next, to explain the cooling operation, when cooling all rooms at the same time, one switching valve (20a) of the outdoor heat exchanger (4) is opened, the other switching valve (20b) is closed, and the indoor heat exchanger (4) is closed. (lla) (llb) (llc) by opening one switching valve (21a) (21b) (21c) and closing the other switching valve (22a) (22b) (22c). The discharged refrigerant flows through the discharge pipe (16
) - Switching valve (20a) - Outdoor heat exchanger (4) - Auxiliary electric expansion valve (15) - Liquid pipe (18) - Electric expansion valve (1
2a) (12b) (12c) - Indoor heat exchanger (lla)
(1lb) (lie)-Switching valve (fla) (21b)
(21c) - Low pressure gas pipe (19) - Suction pipe (7) - Returns to the compressor (2) via the gas-liquid separator (8), and a part of the refrigerant discharged from the compressor (2) Bypass pipeline (9)
The air flows through the auxiliary heat exchanger (5) and the capillary tube (6) to the gas-liquid separator (8), and the indoor heat exchanger ma acts as an evaporator.
) (llb) (11C) to cool each room.

かかる冷房運転時、補助電気式膨張弁(15)は全開し
ており、電気式膨張弁(12a)(12b)(12c)
(7)開度制御は第1実施例で説明した第2図のフロー
チャートに基づいて行なわれるため、制御動作の説明は
省略する。
During such cooling operation, the auxiliary electric expansion valve (15) is fully open, and the electric expansion valves (12a) (12b) (12c)
(7) Since the opening degree control is performed based on the flowchart of FIG. 2 described in the first embodiment, a description of the control operation will be omitted.

一方、全室を同時に暖房する場合は室外熱交換器(4)
の一方の切換弁(20a)を閉じると共に他方の切換弁
(20b)を開き、且つ室内熱交換器(lla)(11
b)(lie)の一方の切換弁(21a) (21b>
(21c)を閉じると共に他方の切換弁(22a)(2
2b)(22c)を開くことにより、圧縮機(2)から
吐出された冷媒は吐出管路(16)−高圧ガス管(17
)−切換弁(22a)(22b)(22C)−室内熱交
換器(lla)(11b011c)−電気式膨張弁(1
2a)(12b)(12c)−液管(18)−補助電気
式膨張弁(15)−室外熱交換器(4)−切換弁(20
b)−吸込管路(7)−気液分離器(8)を経て圧縮機
(2)に帰還されると共に、圧縮機(2)の吐出冷媒の
一部がバイパス管路(9)の補助熱交換器(5)と毛細
管(6)を経て気液分離器(8)へ流れ、凝縮器として
作用する室内熱交換器(lla)(llb)(llc)
で各室が暖房される。
On the other hand, if you want to heat all rooms at the same time, use the outdoor heat exchanger (4)
One switching valve (20a) is closed and the other switching valve (20b) is opened, and the indoor heat exchanger (lla) (11
b) One switching valve (21a) (21b> of (lie)
(21c) and closes the other switching valve (22a) (2
2b) By opening (22c), the refrigerant discharged from the compressor (2) flows from the discharge pipe (16) to the high pressure gas pipe (17).
) - Switching valve (22a) (22b) (22C) - Indoor heat exchanger (lla) (11b011c) - Electric expansion valve (1
2a) (12b) (12c) - Liquid pipe (18) - Auxiliary electric expansion valve (15) - Outdoor heat exchanger (4) - Switching valve (20
b) - Suction pipe (7) - Returned to the compressor (2) via the gas-liquid separator (8), and a part of the refrigerant discharged from the compressor (2) is auxiliary to the bypass pipe (9) The indoor heat exchanger (lla) (llb) (llc) flows through the heat exchanger (5) and the capillary tube (6) to the gas-liquid separator (8) and acts as a condenser.
Each room is heated.

かかる暖房運転時、第1実施例と同様に第3センサ(工
sa−t)(Tma−意)(Tsa−m) 、 (τa
h−t)(Tab−t)(Tab−s) 、 (Ia−
−+)(Tm−一〇(ts、−m)からの検出温度に応
じて制御手段(14a)(14b)(14c)が電気式
膨張弁(12a)(12bバ12c)の開度を調整して
分流制御と過冷却制御とが行なわれると共に、第1セン
サ(T、)で検出した低圧冷媒温度(tl)と第2セン
サ(T、)で検出した飽和温度(tl)との温度差(t
l−tm)に応じて補助制御手段(23)が補助電気式
膨張弁(15)の開度を調整して、温度差(tl−tl
)が設定値15℃と3℃との間の許容範囲内におさまる
ように過熱度制御される。
During such heating operation, the third sensor (sa-t) (Tma-y) (Tsa-m), (τa
h-t) (Tab-t) (Tab-s), (Ia-
-+) (Tm-10 (ts, -m) The control means (14a) (14b) (14c) adjusts the opening degree of the electric expansion valve (12a) (12b bar 12c) according to the detected temperature from (ts, -m) At the same time, the temperature difference between the low-pressure refrigerant temperature (tl) detected by the first sensor (T, ) and the saturation temperature (tl) detected by the second sensor (T, ) is performed. (t
The auxiliary control means (23) adjusts the opening degree of the auxiliary electric expansion valve (15) according to the temperature difference (tl-tl).
) is within the allowable range between the set value of 15°C and 3°C.

尚、かかる冷暖房運転時、補助熱交換器(5)で吸込管
路(7)の低圧冷媒が加熱きれるため第2実施例と同様
に液圧縮するのが防止されるが、この第4実施例の場合
も補助熱交換器(5)を第1実施例及び第3実施例と同
様に設けても良い。
In addition, during such cooling/heating operation, the low-pressure refrigerant in the suction pipe (7) is completely heated by the auxiliary heat exchanger (5), so liquid compression is prevented as in the second embodiment, but this fourth embodiment Also in this case, an auxiliary heat exchanger (5) may be provided in the same manner as in the first and third embodiments.

又、第4実施例においては任意の二基を冷房し、他の一
室を暖房する同時冷暖房運転が可能であり、例えば室内
ユニット(10a)(10b)で冷房し室内ユニット(
10c)で暖房する場合は一方の切換弁(20a)(2
1g)(21b>(22c)を開き、他方の切換弁(2
0b)(22a)(22b)(21c)を閉じることに
より圧縮機(2)から吐出された冷媒が分流きれて一方
の冷媒が切換弁(20a)−室外熱交換器(4)−補助
電気式膨張弁(15)を経て液管(18)へ流れると同
時に他方の冷媒が高圧ガス管(17)−切換弁(22c
)−室内熱交換器(lie)−電気式膨張弁(12c)
を経て液管(18)へ流れてこの両方の冷媒が液管(1
8)で合流した後、電気式膨張弁(12a)(12b)
−室内熱交換器−(lla)(llb) −切換弁(2
1a)(21b)−低圧ガス管(19)−吸込管路(7
)−気液分離器(8)を経て圧縮機(2)に帰還され、
且つ、圧縮機(2)の吐出冷媒の一部がバイパス管路(
9)を流れ、室外熱交換器(4)と室内熱交換器(li
e)とが凝縮器として作用して一室が暖房きれると共に
、蒸発器として作用する室内熱交換器(lla)(ll
b)で二基が冷房され、且つ室内熱交換器(lie)と
室内熱交換器(11a011b)とで互いに熱回収され
て冷凍効率が向上する。
Furthermore, in the fourth embodiment, it is possible to perform simultaneous cooling/heating operation in which two arbitrary units are cooled and another room is heated.
10c), use one switching valve (20a) (2
1g) (21b>(22c), and open the other switching valve (22c).
0b) By closing (22a), (22b), and (21c), the refrigerant discharged from the compressor (2) is separated and one refrigerant is connected to the switching valve (20a) - outdoor heat exchanger (4) - auxiliary electric type. At the same time, the other refrigerant flows from the high pressure gas pipe (17) to the switching valve (22c) through the expansion valve (15) and into the liquid pipe (18).
) - Indoor heat exchanger (lie) - Electric expansion valve (12c)
The refrigerant flows through the liquid pipe (18) and both refrigerants flow into the liquid pipe (18).
After merging at 8), electric expansion valves (12a) (12b)
- Indoor heat exchanger - (lla) (llb) - Switching valve (2
1a) (21b) - Low pressure gas pipe (19) - Suction pipe (7
) - returned to the compressor (2) via the gas-liquid separator (8),
In addition, a portion of the refrigerant discharged from the compressor (2) flows through the bypass pipe (
9), the outdoor heat exchanger (4) and the indoor heat exchanger (li
e) acts as a condenser to heat a room, and indoor heat exchangers (lla) and (ll) act as evaporators.
In b), the two units are cooled, and the indoor heat exchanger (lie) and the indoor heat exchanger (11a011b) recover heat from each other, improving refrigeration efficiency.

かかる冷暖房同時運転時、冷房している室内ユニット(
10a>(10b)の電気式膨張弁(12a)(12b
)の開度制御は第2図のフローチャートに基づいて行な
われ、暖房している室内ユニット(10c)の電気式膨
張弁(12c)及び補助電気式膨張弁(15)の開度制
御は上述した暖房運転と同様に行なわれる。
During such simultaneous heating and cooling operation, the indoor unit (
Electric expansion valve (12a) (12b) with 10a>(10b)
) is performed based on the flowchart in Figure 2, and the opening control of the electric expansion valve (12c) and auxiliary electric expansion valve (15) of the heating indoor unit (10c) is as described above. It is performed in the same way as heating operation.

又、任意の例えば室内ユニット(lla)で−室を冷房
し、室内ユニット(11b011c)で二基を暖房する
場合は一方の切換弁(20b)(21a)(22b)(
22c)を開き、他方の切換弁(20a)(22a)(
21b)(21c)を閉じることにより圧縮機(2)か
ら吐出された冷媒が高圧ガス管(17)−切換弁(22
b)(22c)−室内熱交換器(11b>(1lc)−
電気式膨張弁(12b)(12c)−液管(18)と流
れた後、この液管・(18)で分配されて一方の冷媒は
電気式膨張弁(12a)−室内熱交換器(lla)−低
圧ガス管(19)へ、他方の冷媒は補助電気式膨張弁(
15)−室外熱交換器(4〉−切換弁(20b)−低圧
ガス管(19)へと流れた後、吸込管路(7)、気液分
離器(8)を経て圧縮機(2〉に帰還され、且つ圧縮機
(2)の吐出冷媒の一部がバイパス管路(9〉を流れ、
室外熱交換器(4)と室内熱交換器(lla)が蒸発器
として作用して一室が冷房きれると共に凝縮器として作
用する室内熱交換器(llb)(lie)で二基が暖房
され、且つ熱回収運転により冷凍効率が向上する。
Also, if an arbitrary indoor unit (lla) is used to cool a room and an indoor unit (11b011c) is used to heat two units, one of the switching valves (20b) (21a) (22b) (
22c) and open the other switching valve (20a) (22a) (
21b) and (21c), the refrigerant discharged from the compressor (2) is transferred between the high pressure gas pipe (17) and the switching valve (22).
b) (22c) - Indoor heat exchanger (11b>(1lc) -
After flowing from the electric expansion valves (12b) (12c) to the liquid pipe (18), the refrigerant is distributed by the liquid pipe (18) and one refrigerant flows from the electric expansion valve (12a) to the indoor heat exchanger (lla). ) - to the low-pressure gas pipe (19), the other refrigerant is passed through the auxiliary electric expansion valve (
15) - Outdoor heat exchanger (4>) - Switching valve (20b) - After flowing to the low pressure gas pipe (19), it passes through the suction pipe (7), the gas-liquid separator (8), and then the compressor (2) A part of the refrigerant discharged from the compressor (2) flows through the bypass pipe (9),
The outdoor heat exchanger (4) and the indoor heat exchanger (lla) act as an evaporator to cool one room, while the indoor heat exchangers (llb and lie) act as condensers to heat the two rooms. In addition, the heat recovery operation improves refrigeration efficiency.

かかる冷暖房同時運転時においても、冷房している室内
ユニット(10a)の電気式膨張弁(12a)の開度制
御は第2図のフローチャートに基づいて行なわれ、暖房
している室内ユニット(10b)(10c)の電気式膨
張弁(12bX12c)の開度制御は上述した暖房運転
と同様に行なわれる。
Even during such simultaneous heating and cooling operation, the opening degree of the electric expansion valve (12a) of the indoor unit (10a) that is being cooled is performed based on the flowchart in FIG. 2, and the opening degree of the indoor unit (10b) that is being heated is The opening degree control of the electric expansion valve (12bX12c) (10c) is performed in the same manner as the heating operation described above.

尚、上記各実施例において、第3センサ(’r、、−+
)(L、−zバTa、−s) 、 (Tab−t)(T
sb−t)(T、b−m) 、 (Ts、−+)(’r
m、−t)(Tm、−m)を各室内ユニット(10a)
(10b)(10c)ごとに夫々3個設けて冷暖房時の
分流制御、過熱度もしくは過冷却制御を行なうようにし
たが、これら制御全てを行なわないものであれば、第3
センサの何れか1個を各室内ユニット(10a)(10
b)(10c)に夫々設けても良い。
In addition, in each of the above embodiments, the third sensor ('r,, -+
)(L, -zBaTa, -s) , (Tab-t)(T
sb-t)(T,b-m), (Ts,-+)('r
m, -t) (Tm, -m) to each indoor unit (10a)
(10b) and (10c) are provided to perform branch flow control during cooling and heating, superheating degree or supercooling control, but if all of these controls are not performed, the third
One of the sensors is attached to each indoor unit (10a) (10
b) (10c) may be provided respectively.

(ト)発明の効果 本発明によれば、圧縮機の吐出冷媒の一部を圧縮機の吸
込管路へ導くバイパス管路に補助熱交換器を設けると共
に、吸込管路に第1センサを、バイパス管路の出口側に
第2センサを、複数の各室内熱交換器に第3センサを夫
々設け、第1センサと第2センサとの検出温度差が設定
値を超えた時に第3センサからの検出信号よりも優先し
て各電気式膨張弁の開度を制御するようにしたので、室
内ユニットと複数台の室内ユニットとを接続するユニッ
ト間配管の配管長が長くなっても圧縮機の吸込冷媒の温
度を許容範囲内におさめることができ、圧縮機が破損す
るのを防止することができる。
(G) Effects of the Invention According to the present invention, an auxiliary heat exchanger is provided in the bypass line that guides a portion of the refrigerant discharged from the compressor to the suction line of the compressor, and a first sensor is provided in the suction line. A second sensor is provided on the outlet side of the bypass pipe, and a third sensor is provided in each of the plurality of indoor heat exchangers, and when the detected temperature difference between the first sensor and the second sensor exceeds a set value, the third sensor Since the opening degree of each electric expansion valve is controlled with priority over the detection signal of The temperature of the suction refrigerant can be kept within an allowable range, and damage to the compressor can be prevented.

しかも、室外ユニットと複数台の室内ユニットとを接続
するユニット間配管を、高圧ガス管と低圧ガス管と液管
とで構成することにより、複数台の任意の室内ユニット
を同時冷暖房できると共に熱回収運転により冷凍効率を
向上させることができる。
Moreover, by configuring the inter-unit piping that connects the outdoor unit and multiple indoor units with high-pressure gas pipes, low-pressure gas pipes, and liquid pipes, it is possible to simultaneously cool and heat multiple arbitrary indoor units and recover heat. Refrigeration efficiency can be improved through operation.

併せて、補助熱交換器を圧縮機の吸込管路と熱交換関係
に設けることにより液圧縮を防止でき、又、補助熱交換
器を室外熱交換器と熱交換関係に設けることにより暖房
時に室外熱交換器が結氷するのを防止することができる
In addition, liquid compression can be prevented by providing an auxiliary heat exchanger in a heat exchange relationship with the suction pipe of the compressor, and by providing an auxiliary heat exchanger in a heat exchange relationship with an outdoor heat exchanger, it is possible to prevent outdoor heat exchange during heating. It is possible to prevent the heat exchanger from freezing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例を示す空気調和装置の冷媒
回路図、第2図は第1実施例における冷房運転動作を−
示すフローチャート、第3図は本発明の第2実施例を示
す空気調和装置の冷媒回路図、第4図は本発明の第3実
施例を示す空気調和装置の冷媒回路図、第5図は本発明
の第4実施例を示す空気調和装置の冷媒回路図である。 (1)・・・室外ユニット、 (2)・・・圧縮機、 
(4)・・・室外熱交換器、 (5)・・・補助熱交換
器、 (7)・・・吸込管路、 (9)−・・バイパス
管路、 (10a)(10b)(10c)−・・室内ユ
ニット、 (lla)(1lb(1ie)−室内熱交換
器、 (12a)(12b(12c)=電気式膨張弁、
 (13)・・・ユニット間配管、 (14a)(14
b(14c)・・・制御手段、 (16)・・・吐出管
路、 (17)・・・高圧ガス管、(18)・・・液管
、 (19)・・・低圧ガス管、 (T、)・・・第1
センサ、 (To・・・第2センサ、 (τm、−t)
(Ts、−t)(Tm、−s) 、 (Tab−+)(
Tm−m)(Tab−m) 、 (Ts−+)(Tm、
−*)(Tm。−1)・・・第3センサ。
Fig. 1 is a refrigerant circuit diagram of an air conditioner showing a first embodiment of the present invention, and Fig. 2 shows a cooling operation in the first embodiment.
3 is a refrigerant circuit diagram of an air conditioner showing a second embodiment of the present invention, FIG. 4 is a refrigerant circuit diagram of an air conditioner showing a third embodiment of the present invention, and FIG. 5 is a refrigerant circuit diagram of an air conditioner showing a third embodiment of the present invention. FIG. 7 is a refrigerant circuit diagram of an air conditioner showing a fourth embodiment of the invention. (1)...Outdoor unit, (2)...Compressor,
(4)...Outdoor heat exchanger, (5)...Auxiliary heat exchanger, (7)...Suction pipe line, (9)...Bypass pipe line, (10a) (10b) (10c ) - Indoor unit, (lla) (1lb (1ie) - indoor heat exchanger, (12a) (12b (12c) = electric expansion valve,
(13) ... Inter-unit piping, (14a) (14
b(14c)...control means, (16)...discharge pipe line, (17)...high pressure gas pipe, (18)...liquid pipe, (19)...low pressure gas pipe, ( T, )... 1st
Sensor, (To...second sensor, (τm, -t)
(Ts, -t) (Tm, -s) , (Tab-+) (
Tm-m) (Tab-m), (Ts-+)(Tm,
-*) (Tm.-1)...Third sensor.

Claims (4)

【特許請求の範囲】[Claims] (1)圧縮機と室外熱交換器とを有する室外ユニットに
室内熱交換器を有する複数台の室内ユニットを分岐接続
すると共に、この分岐した液管に電気式膨張弁を設けた
空気調和装置において、圧縮機の吐出冷媒の一部を圧縮
機の吸込管路へ導くバイパス管路に補助熱交換器を設け
、前記吸込管路に第1センサを、バイパス管路の出口側
に第2センサを夫々設けると共に、各室内熱交換器に第
3センサを設け、第1センサと第2センサとの検出温度
差が設定値を超えた時に第3センサからの検出信号より
も優先して各電気式膨張弁の開度を制御する制御手段を
設けたことを特徴とする空気調和装置。
(1) In an air conditioner in which multiple indoor units each having an indoor heat exchanger are branch-connected to an outdoor unit having a compressor and an outdoor heat exchanger, and an electric expansion valve is provided in the branched liquid pipe. , an auxiliary heat exchanger is provided in a bypass line that guides a part of the refrigerant discharged from the compressor to a suction line of the compressor, a first sensor is provided in the suction line, and a second sensor is provided on the outlet side of the bypass line. In addition, a third sensor is provided in each indoor heat exchanger, and when the detected temperature difference between the first sensor and the second sensor exceeds the set value, each electric type is given priority over the detection signal from the third sensor. An air conditioner comprising a control means for controlling the opening degree of an expansion valve.
(2)室外ユニットと複数台の室内ユニットとを接続す
るユニット間配管を、圧縮機の吐出管路と分岐接続され
た高圧ガス管と、圧縮機の吸込管路と分岐接続された低
圧ガス管と、室外熱交換器と接続された液管とで構成し
た請求項(1)記載の空気調和装置。
(2) The inter-unit piping that connects the outdoor unit and multiple indoor units includes a high-pressure gas pipe that is branch-connected to the compressor's discharge pipe, and a low-pressure gas pipe that is branch-connected to the compressor's suction pipe. The air conditioner according to claim 1, comprising: and a liquid pipe connected to an outdoor heat exchanger.
(3)補助熱交換器を圧縮機の吸込管路と熱交換関係に
設けた請求項(1)記載の空気調和装置。
(3) The air conditioner according to claim (1), wherein the auxiliary heat exchanger is provided in a heat exchange relationship with the suction pipe of the compressor.
(4)補助熱交換器を室外熱交換器と熱交換関係に設け
た請求項(1)記載の空気調和装置。
(4) The air conditioner according to claim (1), wherein the auxiliary heat exchanger is provided in a heat exchange relationship with the outdoor heat exchanger.
JP17960588A 1988-07-19 1988-07-19 Air conditioner Expired - Fee Related JP2664421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17960588A JP2664421B2 (en) 1988-07-19 1988-07-19 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17960588A JP2664421B2 (en) 1988-07-19 1988-07-19 Air conditioner

Publications (2)

Publication Number Publication Date
JPH0229558A true JPH0229558A (en) 1990-01-31
JP2664421B2 JP2664421B2 (en) 1997-10-15

Family

ID=16068670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17960588A Expired - Fee Related JP2664421B2 (en) 1988-07-19 1988-07-19 Air conditioner

Country Status (1)

Country Link
JP (1) JP2664421B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5161739A (en) * 1989-12-08 1992-11-10 Kabushiki Kaisha Toshiba Multi-type air heating apparatus utilizing phase variation of heating medium
JP2009109082A (en) * 2007-10-30 2009-05-21 Fuji Electric Retail Systems Co Ltd Refrigerant flow controller
EP3073205A1 (en) * 2015-03-27 2016-09-28 Honeywell Technologies Sarl Method for operating a hydronic heating and/or cooling system, control valve and hydronic heating and/or cooling system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4601392B2 (en) * 2004-10-29 2010-12-22 三洋電機株式会社 Refrigeration equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5161739A (en) * 1989-12-08 1992-11-10 Kabushiki Kaisha Toshiba Multi-type air heating apparatus utilizing phase variation of heating medium
JP2009109082A (en) * 2007-10-30 2009-05-21 Fuji Electric Retail Systems Co Ltd Refrigerant flow controller
EP3073205A1 (en) * 2015-03-27 2016-09-28 Honeywell Technologies Sarl Method for operating a hydronic heating and/or cooling system, control valve and hydronic heating and/or cooling system

Also Published As

Publication number Publication date
JP2664421B2 (en) 1997-10-15

Similar Documents

Publication Publication Date Title
US20190162454A1 (en) Air-conditioning apparatus
US20110174005A1 (en) Refrigerating apparatus
CN112119273B (en) Refrigeration cycle device
JP6880204B2 (en) Air conditioner
JP2007057220A (en) Refrigeration device
JP2023509017A (en) air conditioner
JP2023503192A (en) air conditioner
WO2021001869A1 (en) Air conditioning device
JP6508394B2 (en) Refrigeration system
US20150168037A1 (en) Air-conditioning apparatus
WO2017010007A1 (en) Air conditioner
US11788759B2 (en) Refrigeration system and heat source unit
JPH0229558A (en) Air conditioner
WO2019065856A1 (en) Refrigeration device
WO2021065156A1 (en) Heat source unit and refrigeration device
JP2877552B2 (en) Air conditioner
JP4023386B2 (en) Refrigeration equipment
KR102288427B1 (en) Method for Defrosting of Air Conditioner for Both Cooling and Heating
JP2508347B2 (en) Heat pump system
JP2765970B2 (en) Air conditioner
JP6787465B1 (en) Heat source unit and refrigeration equipment
JP2001099512A (en) Heat source unit for heat pump type air conditioner
JP2800362B2 (en) Multi-room air conditioner
JP2021032441A (en) Refrigeration unit and intermediate unit
JPH02157568A (en) Refrigerant residence suppressing device for air conditioning device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees