JPH02294491A - Microwave plasma treating device - Google Patents

Microwave plasma treating device

Info

Publication number
JPH02294491A
JPH02294491A JP11510089A JP11510089A JPH02294491A JP H02294491 A JPH02294491 A JP H02294491A JP 11510089 A JP11510089 A JP 11510089A JP 11510089 A JP11510089 A JP 11510089A JP H02294491 A JPH02294491 A JP H02294491A
Authority
JP
Japan
Prior art keywords
microwave
plasma processing
microwave plasma
discharge
comb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11510089A
Other languages
Japanese (ja)
Inventor
Kunihiko Watanabe
邦彦 渡邊
Masahiro Tanaka
政博 田中
Satoru Todoroki
轟 悟
Mitsuo Nakatani
中谷 光雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11510089A priority Critical patent/JPH02294491A/en
Publication of JPH02294491A publication Critical patent/JPH02294491A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To generate a wide and uniform discharge and to uniformly treat a large area in the microwave plasma treating device by providing plural microwave introducing means and using a planar radiator in a part of the means. CONSTITUTION:The microwave plasma treating device is provided with a vacuum chamber 1, a substrate holder 2 for holding a sample 3, a gaseous reactant introducing pipe 4, a discharge gas introducing pipe 5, a magnetic field generating means consisting of a main coil 6, a control coil 7, comb-shaped antennae 8a and 8b as the planar radiator, microwave power sources 9a and 9b, a gas supply system 10, high evacuating systems 12-14 and a deposition preventing plate 11. The antennae 8a and 8b are connected to discrete power sources 9a and 9b respectively through coaxial lines 19a and 19b to charge potentials opposite to each other to adjacent antenna rods 21, and the sum of the lengths of the left and right rods 21 is limited to conform to the wavelength of the microwave. Consequently, a microwave is radiated over a large area, and a large-area substrate is uniformly treated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は,電子サイクロトロン共鳴を利用して材料表面
をエッチングするか、あるいは基板上に薄膜を堆積させ
るに用いるマイクロ波プラズマ処理装置にかかわり、特
に.大面積均一処理に好適なマイクロ波プラズマ処理装
置に関する.〔従来の技術〕 従来のこの種のマイクロ波プラズマ処理装置としては、
特開昭59−3018号公報に記載されたものが知られ
ている.この装置では、真空室には放電管が設けられ、
これにコイルを取り付けて磁場を印加し、さらに導波管
を介して電子サイクロトロン周波数と同一周波数のマイ
クロ波を導入して放電を起こすことによって,真空室内
に導入された反応ガスを分解し、これによって,真空室
内に設置された試料である基板上材料をエッチングした
り、あるいは基板上に化学蒸着が行われるようになって
いる。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a microwave plasma processing apparatus used for etching the surface of a material or depositing a thin film on a substrate using electron cyclotron resonance. especially. This article relates to a microwave plasma processing device suitable for uniform processing of large areas. [Prior art] This type of conventional microwave plasma processing equipment includes:
The one described in Japanese Unexamined Patent Publication No. 59-3018 is known. In this device, a discharge tube is installed in the vacuum chamber,
By attaching a coil to this and applying a magnetic field, and then introducing microwaves with the same frequency as the electron cyclotron frequency through a waveguide to cause a discharge, the reactant gas introduced into the vacuum chamber is decomposed. Depending on the method, material on a substrate, which is a sample placed in a vacuum chamber, is etched, or chemical vapor deposition is performed on the substrate.

しかし、上記の装置では,導波管によりマイクロ波を導
入するので、導波管の大きさにより放電を起こす部分の
大きさが制約を受け、大面積基板の処理は困難となる。
However, in the above-mentioned apparatus, since microwaves are introduced through a waveguide, the size of the portion where discharge occurs is restricted by the size of the waveguide, making it difficult to process large-area substrates.

この大面積基板の処理を可能にするため、例えば特開昭
62 − 200730号公報あるいは特開昭62−2
98 1 06号公報に示されているように、放電管や
キャビティを複数個並べることが提案されている.この
方法では、一つ一つの放電管の大きさは変化させずに放
電面積が実効的に増加している.〔発明が解決しようと
する課題〕 上記従来技術は,放電面積の増加については考慮されて
いるが、各々の放電管の内部や放電が重なる部分におけ
る処理の均一性については配慮が不十分であり、また、
マイクロ波導入手段が放電管に限られているため、基板
面に垂直方向にマイクロ波導入手段を設置することがで
きず、処理の不均一さを他のマイクロ波導入手段で補う
という装置構成が不可能であった. 本発明の目的は、大面積にわたってマイクロ波を導入し
て,広く均一に放電を起こすことによって,大面積処理
の可能なマイクロ波プラズマ処理装置を提供することに
ある. 〔課題を解決するための手段〕 上記目的を達成するため、本発明は、マイクロ波導入手
段を複数個設けるとともに、その少なくとも一つには平
面放射器を用いることを主な特徴としたものである.以
下にその理由と構成を説明する. マイクロ波導入手段を複数個設置して放電面積を増加さ
せることは、大面積処理に対して有効であるが,放電の
均一性をより良くするためには、放電管と電子サイクロ
トロン共鳴点との間に別のマイクロ波導入手段の設置が
必要となる.この場合、マイクロ波導入手段として放電
管形状のものを用いると、それより上のマイクロ波導入
手段から供給されたマイクロ波は透過せず、電子サイク
ロトロン共鳴点には達しない。従って、有効なマイクロ
波導入手段は最下部の一つのみとなり、このため,基板
面に対して垂直方向に複数個設置することが不可能とな
り、当初の目的を達しないことになる. そこで、このマイクロ波導入手段には、櫛型の平面放射
器を用いる.櫛型の平面放射器は,わずかな櫛の部分以
外はマイクロ波を透過させるので、本目的には最も適し
ている. また、放電管形状のマイクロ波導入手段は必ずしも必要
ではなく、マイクロ波導入手段として平面放射器のみを
用いてもよい。平面放射器は,放電管と異なり一つで広
い面積に放電を起こさせることが可能である.また、前
記のような理由で、最上部のマイクロ波導入手段に限り
、マイクロ波の透過を必要条件としないので、これには
、スロット型アンテナ,ビーム型アンテナなどの平面放
射器が使用可能である。さらに、この場合,装置上部の
開放の必要がないため,磁場形成手段として,電磁石の
みならず永久磁石が使用可能となる。
In order to enable processing of this large area substrate, for example, Japanese Patent Laid-Open No. 62-200730 or Japanese Patent Laid-Open No. 62-2
As shown in 98-1-06, it has been proposed to arrange a plurality of discharge tubes or cavities. This method effectively increases the discharge area without changing the size of each discharge tube. [Problems to be Solved by the Invention] Although the above-mentioned conventional technology takes into consideration the increase in the discharge area, insufficient consideration is given to the uniformity of processing inside each discharge tube and in the areas where discharges overlap. ,Also,
Since the microwave introduction means is limited to the discharge tube, it is not possible to install the microwave introduction means perpendicular to the substrate surface, and the device configuration is such that non-uniformity in processing is compensated for by other microwave introduction means. It was impossible. An object of the present invention is to provide a microwave plasma processing apparatus capable of processing a large area by introducing microwaves over a large area and causing discharge widely and uniformly. [Means for Solving the Problems] In order to achieve the above object, the present invention is mainly characterized by providing a plurality of microwave introduction means and using a flat radiator for at least one of them. be. The reason and structure are explained below. Increasing the discharge area by installing multiple microwave introducing means is effective for large area processing, but in order to improve the uniformity of the discharge, it is necessary to increase the discharge area between the discharge tube and the electron cyclotron resonance point. In between, it is necessary to install another means of introducing microwaves. In this case, if a discharge tube-shaped microwave introduction means is used, the microwaves supplied from the microwave introduction means above the microwave introduction means will not pass through and will not reach the electron cyclotron resonance point. Therefore, the only effective means of introducing microwaves is the one at the bottom, which makes it impossible to install multiple microwaves perpendicular to the substrate surface, and the original purpose cannot be achieved. Therefore, a comb-shaped flat radiator is used as the microwave introducing means. A comb-shaped planar radiator is most suitable for this purpose because it transmits microwaves except for a small part of the comb. Further, the discharge tube-shaped microwave introduction means is not necessarily necessary, and only a flat radiator may be used as the microwave introduction means. Unlike a discharge tube, a single flat radiator can generate a discharge over a wide area. Furthermore, for the above-mentioned reason, microwave transmission is not a necessary condition for the microwave introducing means at the top, so a flat radiator such as a slot-type antenna or a beam-type antenna can be used for this purpose. be. Furthermore, in this case, there is no need to open the upper part of the device, so that not only electromagnets but also permanent magnets can be used as the magnetic field forming means.

ところで、本発明の目的が、マイクロ波の強度分布の影
響を少なくして均一なプラズマ処理を行うことであるか
ら、いずれの場合も、相互に放電の不均一を補うように
平面放射器を配置する必要がある.このため、同一平面
上の配置はもちろん、垂直方向の配置も工夫しなければ
ならない.具体的には,櫛型アンテナをずらして配置し
たり、直交するように配置したり、あるいは、ある角度
をもって配置したりすればよい.また、マイクロ波導入
手段の数は少ないほど経済的であるから、最上部のマイ
クロ波導入手段には,できるだけ均一性のよい放電が大
面積にわたって行えるものを選択することが望ましい. マイクロ波電源としては、周波数2.45GIlzのも
のが安価に入手できる。この周波数2.45GHzに対
する電子サイクロトロン共鳴磁場強度は0.0875T
であり、電磁石(コイル)のみならず永久磁石でも十分
な磁場強度を得ることができる.平面放射器は,マイク
ロ波放射用のアンテナであるから、良導体からなるもの
であればよく,銅、アルミニウム等で作ればよい.スロ
ット型アンテナの場合のスロット形状は、長穴を平行に
並べたもの、放射状に並べたもの,同心円状に穴を開け
たもの等、一般にアンテナとして使えるものであればよ
い。ビーム型アンテナの場合も,一般に用いられている
ものでよい.なお、前記平面放射器は真空室外に設けて
もよいが、その場合は,真空室に、石英等からなるマイ
クロ波を透過する窓が必要となる. 平面放射器の場合,マイクロ波の供給方法としては、同
軸線路を用いればよい. 成膜あるいはエッチングに必要なガスの導入は、最下部
のマイクロ波導入手段と試料との間で行えばよく、放電
ガスと反応ガスとを別々に導入する場合は,最下部のマ
イクロ波導入手段の近くにて放電ガスを導入し、試料の
近くにて反応ガスを導入すればよい。
By the way, since the purpose of the present invention is to perform uniform plasma processing by reducing the influence of the microwave intensity distribution, in any case, the planar radiators are arranged so as to mutually compensate for the non-uniformity of the discharge. There is a need to. For this reason, it is necessary not only to arrange them on the same plane, but also to arrange them vertically. Specifically, the comb-shaped antennas may be arranged at different angles, orthogonally, or at a certain angle. Furthermore, since it is more economical to have fewer microwave introducing means, it is desirable to select the topmost microwave introducing means that can produce as uniform a discharge over a large area as possible. As a microwave power source, one with a frequency of 2.45 GIlz is available at low cost. The electron cyclotron resonance magnetic field strength for this frequency of 2.45 GHz is 0.0875T.
Therefore, sufficient magnetic field strength can be obtained not only with electromagnets (coils) but also with permanent magnets. Since the plane radiator is an antenna for microwave radiation, it can be made of a good conductor such as copper or aluminum. In the case of a slot-type antenna, the slot shape may be any shape that can be used as an antenna in general, such as one in which elongated holes are arranged in parallel, one in which holes are arranged in a radial pattern, or one in which holes are formed in concentric circles. In the case of a beam-type antenna, any commonly used antenna may be used. Note that the plane radiator may be installed outside the vacuum chamber, but in that case, a window made of quartz or the like that transmits microwaves is required in the vacuum chamber. In the case of a flat radiator, a coaxial line can be used to supply microwaves. The gas necessary for film formation or etching can be introduced between the microwave introduction means at the bottom and the sample. If the discharge gas and the reaction gas are introduced separately, the gas necessary for film formation or etching can be introduced between the microwave introduction means at the bottom. The discharge gas may be introduced near the sample, and the reaction gas may be introduced near the sample.

試料は,ヒータ内蔵の試料保持手段に取り付け,放電管
あるいは平面放射器と対向させて配置する。
The sample is attached to a sample holding means with a built-in heater and placed facing the discharge tube or flat radiator.

真空室内の排気は,ターボ分子ポンプで行い、成膜時の
圧力はlO−1〜io”Paとすればよい.〔作用〕 上記構成において、導波管はその前方に、平面放射器は
その平面の前後方向に、マイクロ波を放射する.その電
場の方向は、平面に平行となる.これらのマイクロ波導
入手段の付近に、試料面に対し垂直方向に磁場を形成す
るように磁石を設置すると,電子は磁場に捕捉され,次
式(1)の条件を満足する点で電子サイクロトロン共鳴
を起こし、加速される. ただし、f:回転周波数 B:磁束密度 q:電子の電荷 m:電子の質量 である。
The vacuum chamber is evacuated by a turbo-molecular pump, and the pressure during film formation is 1O-1 to io'Pa. [Function] In the above configuration, the waveguide is in front of it, and the plane radiator is in front of it. Microwaves are emitted in the front and back direction of the plane.The direction of the electric field is parallel to the plane.Magnets are installed near these microwave introducing means to form a magnetic field perpendicular to the sample surface. Then, the electron is captured by the magnetic field, causes electron cyclotron resonance at a point that satisfies the condition of the following equation (1), and is accelerated. Where, f: rotation frequency B: magnetic flux density q: charge of the electron m: charge of the electron It is mass.

放射されたマイクロ波のエネルギーは、電子の運動エネ
ルギーとして吸収される. 加速された電子は、真空室内の放電ガスに衝突し、ガス
から電子をはじき出して放電を持続させるとともに、反
応ガスを分解し,成膜活性種あるいはエッチング活性種
を生じる.成膜活性種は試料表面に拡散し、薄膜を形成
する.また、エッチング活性種は試料材料と化学反応ま
たは物理的衝突を起こして、試料をエッチングする.そ
して、本発明では、平面放射器を含む複数のマイクロ波
導入手段によってマイクロ波を導入しているので、大面
積にわたり均一性よくマイクロ波を放射することができ
、従って、試料の大面積均一処理が可能となる. 〔実施例〕 以下、本発明の実施例を第1図〜第10図により説明す
る。
The radiated microwave energy is absorbed as kinetic energy of electrons. The accelerated electrons collide with the discharge gas in the vacuum chamber, expelling electrons from the gas and sustaining the discharge, while also decomposing the reactive gas and generating active species for film formation or etching. Film-forming active species diffuse onto the sample surface and form a thin film. In addition, the etching active species causes a chemical reaction or physical collision with the sample material, etching the sample. In the present invention, since microwaves are introduced by a plurality of microwave introduction means including a plane radiator, microwaves can be emitted uniformly over a large area, and therefore, a large area of a sample can be uniformly processed. becomes possible. [Example] Hereinafter, an example of the present invention will be described with reference to FIGS. 1 to 10.

実施例1: 第1図は本発明の第1の実施例であるマイクロ波プラズ
マ処理装置の縦断面図である.本装置では、真空室1と
、試料保持手段としての基板台2と、反応ガス導入手段
としての反応ガス導入管4と,放電ガス導入手段として
の放電ガス導入管5と、磁場形成手段としての主コイル
6と,制御コイル7と、平面放射器としての櫛型アンテ
ナ8a.8bと、マイクロ波電源9a、9bと、ガス供
給系10と、高真空排気系(符号12〜16)と、防着
板11を備えて構成されている. 前記真空室1内は、高真空排気系により高真空に排気さ
れるようになっている.この高真空排気系は、第1図に
示すように、ターボ分子ポンプ12と、ロータリーボン
プl3と、ゲートバルブl4と,補助バルブl5と、粗
引バルブ16とを有している。
Embodiment 1: FIG. 1 is a longitudinal sectional view of a microwave plasma processing apparatus which is a first embodiment of the present invention. This apparatus includes a vacuum chamber 1, a substrate stand 2 as a sample holding means, a reaction gas introduction tube 4 as a reaction gas introduction means, a discharge gas introduction tube 5 as a discharge gas introduction means, and a magnetic field forming means. A main coil 6, a control coil 7, a comb-shaped antenna 8a as a planar radiator. 8b, microwave power sources 9a and 9b, a gas supply system 10, a high vacuum exhaust system (numerals 12 to 16), and an adhesion prevention plate 11. The inside of the vacuum chamber 1 is evacuated to a high vacuum by a high vacuum exhaust system. As shown in FIG. 1, this high vacuum evacuation system includes a turbo molecular pump 12, a rotary pump l3, a gate valve l4, an auxiliary valve l5, and a roughing valve 16.

前記基板台2は、第1図に示すように、真空室1内にH
llされており、この基板台2の上面には、試料として
の基板3が載置されている。また、基板台2の内部には
、基板3を加熱するためのヒータ17が内蔵されている
。このヒータ17は、ヒータ電源l8により通電される
ようになっている.前記反応ガス導入管4と放電ガス導
入管5とは、真空室1内に設置され、かつ真空室1外の
ガス供給系lOにそれぞれ接続されている。本例のよう
に反応ガスと放電ガスを別々に導入する場合は、第1図
に示すように、反応ガスを基板台2側に噴射し、放電ガ
スを櫛型アンテナ8側に噴射するように、反応ガス導入
管4と放電ガス導入管5とが配置される. 前記主コイル6は、真空室l内の防着板l1と基板3と
の間の任意の場所に,電子サイクロトロン共鳴点を形成
できるようになっている.前記制御コイル7は、真空室
1の外側に配置され、主コイル6による磁力線の形を制
御するようになっている. 前記櫛型アンテナ8は、図では真空室1の内部に設置さ
れているが、電子サイクロトロン共鳴点が真空室1内に
あればよいので,櫛型アンテナ8の存在するところは必
ずしも真空室1内である必要はない.この櫛型アンテナ
8は、良導電体である銅またはアルミニウム等で形成さ
れている.また,櫛型アンテナ8の形状は、第2図に示
すように、隣り合うアンテナロッド2lに逆の電位がか
かるようにする必要がある.アンテナロッド21の長さ
は1本61mm+で、左右合わせてマイクロ波の波長に
一致させてある。このため、一つの櫛型アンテナ8では
大面積にわたって放電を起こすことは不可能であるが、
必要に応じて素子数を増加したり、同一平面上に複数の
櫛型アンテナ8を設置することで対応できる。前記櫛型
アンテナ8a、8bは,それぞれ同軸線路19a. 1
9bを介して別々のマイクロ波電源9a、9bに接続さ
れており、前記櫛型アンテナ8とマイクロ波電源9とで
マイクロ波電力供給手段を構成している.なお、マイク
ロ波電源9は、均一性が十分であれば必ずしもマイクロ
波導入手段と同一個数必要ではないので、従って,マイ
クロ波導入手段の数以上は必要ない。
As shown in FIG.
A substrate 3 as a sample is placed on the upper surface of the substrate stand 2. Furthermore, a heater 17 for heating the substrate 3 is built inside the substrate stand 2 . This heater 17 is energized by a heater power supply l8. The reaction gas introduction tube 4 and the discharge gas introduction tube 5 are installed inside the vacuum chamber 1 and are connected to a gas supply system IO outside the vacuum chamber 1, respectively. When introducing the reactive gas and the discharge gas separately as in this example, the reactive gas is injected toward the substrate table 2 side, and the discharge gas is injected toward the comb-shaped antenna 8 side, as shown in Fig. 1. , a reaction gas introduction tube 4 and a discharge gas introduction tube 5 are arranged. The main coil 6 is capable of forming an electron cyclotron resonance point at any location between the adhesion prevention plate l1 and the substrate 3 within the vacuum chamber l. The control coil 7 is arranged outside the vacuum chamber 1 and is adapted to control the shape of the magnetic field lines produced by the main coil 6. The comb-shaped antenna 8 is installed inside the vacuum chamber 1 in the figure, but since the electron cyclotron resonance point only needs to be inside the vacuum chamber 1, the location where the comb-shaped antenna 8 exists is not necessarily inside the vacuum chamber 1. It doesn't have to be. This comb-shaped antenna 8 is made of copper, aluminum, or the like, which is a good conductor. Furthermore, the shape of the comb-shaped antenna 8 must be such that opposite potentials are applied to adjacent antenna rods 2l, as shown in FIG. The length of each antenna rod 21 is 61 mm+, and the left and right sides are made to match the wavelength of the microwave. For this reason, it is impossible to cause discharge over a large area with one comb-shaped antenna 8;
This can be handled by increasing the number of elements or installing a plurality of comb-shaped antennas 8 on the same plane as necessary. The comb-shaped antennas 8a and 8b each have a coaxial line 19a. 1
The comb-shaped antenna 8 and the microwave power supply 9 constitute microwave power supply means. It should be noted that the number of microwave power sources 9 is not necessarily the same as the number of microwave introducing means as long as the uniformity is sufficient.

前記防着板1lは、石英等で形成されており,反応ガス
の分解物が作る膜や粉が櫛型アンテナ8に付着したり、
櫛型アンテナ8がスバッタされて,その成分が基板3上
の膜に取り込まれるのを防ぐためのものである. 次に、前記装置を用いたプラズマ処理の具体例について
説明する。
The adhesion prevention plate 1l is made of quartz or the like, and prevents the film or powder produced by the decomposition products of the reaction gas from adhering to the comb-shaped antenna 8.
This is to prevent the comb-shaped antenna 8 from being spattered and its components being taken into the film on the substrate 3. Next, a specific example of plasma processing using the above-mentioned apparatus will be explained.

櫛型アンテナ8としては、第3図に示すように、2素子
のものと3素子のものとを用いた.アンテナロッド21
の長さは,いずれも1本61mmである.櫛型アンテナ
8の場合は、アンテナロンド21間で電場が強く、アン
テナロッド21直下で電場が弱いため,第3図(a)の
ように、櫛型アンテナ8a、8bをずらして配置した.
放電の均一化を図る配置には、このほかに、第3図(b
)に示すように90度あるいは任意の回転角度をもって
複数個重ねる方法もある。
As the comb-shaped antenna 8, as shown in Fig. 3, a two-element antenna and a three-element antenna were used. antenna rod 21
The length of each piece is 61mm. In the case of the comb-shaped antenna 8, the electric field is strong between the antenna rods 21 and weak directly below the antenna rod 21, so the comb-shaped antennas 8a and 8b are arranged offset as shown in FIG. 3(a).
In addition to this arrangement, the arrangement shown in Figure 3 (b) is used to ensure uniform discharge.
), there is also a method of stacking multiple pieces at 90 degrees or any arbitrary rotation angle.

基板3として100mst X 100mmのガラス基
板を用い、このガラス基板上にシリコンナイトライド膜
を化学気相蒸着法で形成する場合について、その具体的
手順を述べる. (i)ガラスの基板3を基板台2に取り付けた状態で、
真空室1内を10−’Paの高真空に排気した. (it)放電ガスとして窒素ガスを8secm(標準状
態換算で毎分8cm’)程度を放電ガス導入管5から、
反応ガスとして10secmのモノシランガスを反応ガ
ス導入管4から,それぞれ真空室1内に導入し,真空室
1内の圧力を0.133Paに保った. (迅)基板台3に内蔵されたヒータ17にヒータ電源1
8から通電し,基板3を150℃に加熱した。
A 100 mst x 100 mm glass substrate is used as the substrate 3, and the specific procedure for forming a silicon nitride film on this glass substrate by chemical vapor deposition will be described. (i) With the glass substrate 3 attached to the substrate stand 2,
The inside of vacuum chamber 1 was evacuated to a high vacuum of 10-'Pa. (it) Inject nitrogen gas as a discharge gas at a rate of about 8 seconds (8 cm per minute in standard conditions) from the discharge gas introduction tube 5.
10 sec of monosilane gas as a reaction gas was introduced into each vacuum chamber 1 from the reaction gas introduction tube 4, and the pressure inside the vacuum chamber 1 was maintained at 0.133 Pa. (Quick) Heater power supply 1 is connected to the heater 17 built in the board stand 3.
8 and heated the substrate 3 to 150°C.

(神)基板3の温度が安定したところで、主コイル6に
約1OAの電流を流し、制御コイル7に約5Aの・電流
を流した. (V)マイクロ波電源9a,9bから同軸線路19a、
19bを通じて櫛型アンテナ8a,8bに、それぞれ2
.45GHz、50Wのマイクロ波を印加し、放電を開
始させた. その結果、10分間で膜厚が約500nmのシリコンナ
イトライド膜が,前記100mm X 100+amの
ガラス基板上に、ほぼ均一に形成された.第4図に、櫛
型アンテナ8a.8b単独の場合の膜厚分布(投入電力
toow、その他の条件は本実施例と同じ)と、両者を
用いた本実施例の場合の膜厚分布を示す。
(God) When the temperature of the board 3 became stable, a current of about 1 OA was passed through the main coil 6, and a current of about 5 A was passed through the control coil 7. (V) Coaxial line 19a from microwave power supplies 9a and 9b,
19b to the comb-shaped antennas 8a and 8b, respectively.
.. A 45 GHz, 50 W microwave was applied to start the discharge. As a result, a silicon nitride film with a thickness of about 500 nm was formed almost uniformly on the 100 mm x 100+ am glass substrate in 10 minutes. In FIG. 4, a comb-shaped antenna 8a. The film thickness distribution in the case of 8b alone (the input power too and other conditions are the same as in this example) and the film thickness distribution in the case of this example using both are shown.

このように、複数の櫛型アンテナ8を用いることによっ
て、均一性が向上する.なお、ここで,本実施例の膜厚
が、それぞれ単独のアンテナを用いた場合の和になって
いないのは,成膜速度はモノシランの流量に依存してい
るためである.本実施例では、櫛型アンテナ8a、8b
は真空室1の内部に配置したので、モノシランの分解物
が作る粉や膜が櫛型アンテナ8a、8bに付着したり、
該櫛型アンテナ8a.8bがスパッタされてその成分が
ガラスの基板3上の膜に取り込まれるのを防ぐため,櫛
型アンテナ8a.8bの前面に、石英製の防着板11を
設けた.また、上記櫛型アンテナ8a、8bを4組、同
一平面に配置して、200+a重×200+amのガラ
ス基板上に成膜した場合も、同様に均一性の良好な結果
を得た. 実施例2: 第2の実施例は、平面放射器として、第5図に示す形状
の櫛型アンテナ8を2個,ガラス基板に垂直方向に重ね
たものを用いたものである。他の装置横成および成膜条
件は、第1の実施例の場合と同じである。この形状の平
面放射器は、マイクロ波の波長に関係なく放電面積を大
きくできる利点がある。本実施例の場合、1セットに5
素子のものを5個,3素子と27Il子のものを各々1
個用い、有効放電面積を約250m+m X 250+
i+mとした。
In this way, by using a plurality of comb-shaped antennas 8, uniformity is improved. It should be noted that the reason why the film thickness in this example is not the sum of the values obtained when each individual antenna is used is because the film formation rate depends on the flow rate of monosilane. In this embodiment, comb-shaped antennas 8a, 8b
are placed inside the vacuum chamber 1, so that the powder or film produced by the decomposition product of monosilane may adhere to the comb-shaped antennas 8a and 8b.
The comb antenna 8a. 8b is sputtered and its components are taken into the film on the glass substrate 3, the comb-shaped antennas 8a. A quartz anti-adhesion plate 11 was provided on the front surface of 8b. Furthermore, when four sets of the above-mentioned comb-shaped antennas 8a and 8b were arranged on the same plane and a film was formed on a glass substrate of 200+a weight x 200+am, similarly good results of uniformity were obtained. Embodiment 2: In the second embodiment, two comb-shaped antennas 8 having the shape shown in FIG. 5 are stacked vertically on a glass substrate as a planar radiator. Other equipment deposition and film deposition conditions are the same as in the first embodiment. A planar radiator with this shape has the advantage that the discharge area can be increased regardless of the wavelength of the microwave. In the case of this example, one set has 5
5 elements, 1 each of 3 elements and 27I elements.
Individual use, effective discharge area approximately 250m+m x 250+
It was set as i+m.

本実施例の装置を用い、第1の実施例同一の条件で. 
200a+m X 200mmのガラス基板にシリコン
ナイトライドを成膜したところ、30分間で膜厚が約4
00n■のほぼ均一な膜が形成された.実施例3: 第3の実施例は、第6図に示すような構成の装置である
.本実施例は、最上部の平面放射器に、第7図または第
8図に示すようなスロット板25を用いたものである.
なお,第6図中、第1図と同一機能部分は同一符号を付
してある. 前述のように,最上部のマイクロ波導入手段に限り,マ
イクロ波の透過が必要条件ではないため、上記のような
形状のスロット板25が使用可能である。具体的な実験
には、第7図のものを用いた.このスロット板25の直
径は200mm、スロット26の長さは1本61鳳謙で
、左右合わせてマイクロ波の波長に一致させてある.な
お、スロット26の幅は5Ilmとした. 本実施例の装置を用いて、第2の実施例の場合と同様の
成膜を行ったところ、本実施例の場合も100wmX 
100■■の基板内で均一性の良好な結果が得られた. 実施例4: 第4の実施例は,第9図に示すような構成の装置である
.本実施例は、磁場形成手段として,永久磁石30と補
助コイル31とを用いたものである.なお、第9図中,
第1図と同一機能部分は同一符号を付してある. 上記永久磁石30は強力なものである必要がある。
Using the apparatus of this example, under the same conditions as the first example.
When silicon nitride was formed into a film on a 200a+m x 200mm glass substrate, the film thickness increased to about 4 cm in 30 minutes.
A nearly uniform film of 00n■ was formed. Embodiment 3: The third embodiment is an apparatus having a configuration as shown in FIG. In this embodiment, a slot plate 25 as shown in FIG. 7 or 8 is used in the top plane radiator.
In Fig. 6, the same functional parts as in Fig. 1 are given the same reference numerals. As mentioned above, since microwave transmission is not a necessary condition only for the uppermost microwave introducing means, the slot plate 25 having the above shape can be used. For the specific experiment, the one shown in Figure 7 was used. The diameter of this slot plate 25 is 200 mm, the length of each slot 26 is 61 mm, and the left and right sides are made to match the wavelength of the microwave. Note that the width of the slot 26 was 5 Ilm. When a film was formed using the apparatus of this example in the same manner as in the second example, it was found that 100 wmX
Good uniformity was obtained within the 100mm substrate. Embodiment 4: The fourth embodiment is an apparatus having a configuration as shown in FIG. 9. In this embodiment, a permanent magnet 30 and an auxiliary coil 31 are used as magnetic field forming means. In addition, in Figure 9,
Parts with the same functions as those in Figure 1 are given the same reference numerals. The permanent magnet 30 needs to be strong.

具体的には、SmCo,等の希土類コバルト磁石、バリ
ウムフエライト(Ba0・6FezOW等の酸化物磁石
、アルニコ等の合金磁石が挙げられる。
Specific examples include rare earth cobalt magnets such as SmCo, oxide magnets such as barium ferrite (Ba0.6FezOW), and alloy magnets such as alnico.

これらの材料による永久磁石30は、表面で磁場強度が
0.2T以上確保でき,磁場が0.0875Tまで弱ま
るまでの間に平面放射器を設けることは十分可能である
.大面積処理可能な装置を得るためには,大面積の永久
磁石30が必要となるが、このためには、安価なバリウ
ムフェライトや、鋳造可能なアルニコが実用的である.
また、補助コイル3lは、永久磁石30を増強したり、
電子サイクロトロン共鳴点の位置調整のために用いる.
なお、永久磁石30の位置は,電子サイクロトロン共鳴
点が最下部の平面放射器の下方でかつ真空室1の内部に
あるような位置であれば,真空室1の内部でも外部でも
よい. 本実施例の場合、電子サイクロトロン共鳴を起こすのに
必要かつ十分な磁場が,永久磁石30を使用することで
、経済的に得られるという利点がある. 実施例5: 第5の実施例は、第10図に示すように、マイクロ波導
入手段として、放電管35と5素子の櫛型アンテナ8を
併用したものである.なお,36は導波管であり,第1
0図中第1図と同一機能部分は同一符号を付してある. 放電管35でマイクロ波を導入した場合,中心部の限ら
れた場所しか均一性が得られないが,このように榔型ア
ンテナ8と組み合わせることで、大面積処理が可能とな
る.また、複数の放電管35と複数の櫛型アンテナ8を
用いてもよい.実施例6: 第6の実施例は、第1図に示した第1の実施例と同じ構
成のマイクロ波プラズマ処理装置を用い,ドライエッチ
ングを行ったものである.試料としては、100mm 
X 100mmのガラス基板上に通常の高周波CVD法
で作成したポリシリコン膜を用いた.膜厚は約200n
mである.この試料を基板台2上に取り付け、第1の実
施例の場合と同様の高真空排気を行った。
The permanent magnet 30 made of these materials can secure a magnetic field strength of 0.2T or more on the surface, and it is quite possible to provide a flat radiator until the magnetic field weakens to 0.0875T. In order to obtain a device capable of processing a large area, a large-area permanent magnet 30 is required, and for this purpose, inexpensive barium ferrite or castable alnico are practical.
In addition, the auxiliary coil 3l strengthens the permanent magnet 30,
Used to adjust the position of the electron cyclotron resonance point.
The permanent magnet 30 may be located either inside or outside the vacuum chamber 1 as long as the electron cyclotron resonance point is below the bottom plane radiator and inside the vacuum chamber 1. In the case of this embodiment, there is an advantage that a magnetic field necessary and sufficient to cause electron cyclotron resonance can be obtained economically by using the permanent magnet 30. Embodiment 5: In the fifth embodiment, as shown in FIG. 10, a discharge tube 35 and a 5-element comb-shaped antenna 8 are used together as microwave introduction means. Note that 36 is a waveguide, and the first
In Figure 0, the same functional parts as in Figure 1 are given the same reference numerals. When microwaves are introduced by the discharge tube 35, uniformity can only be obtained in a limited area in the center, but by combining it with the slat-shaped antenna 8 in this way, it becomes possible to treat a large area. Further, a plurality of discharge tubes 35 and a plurality of comb-shaped antennas 8 may be used. Example 6: In the sixth example, dry etching was performed using a microwave plasma processing apparatus having the same configuration as the first example shown in FIG. As a sample, 100mm
A polysilicon film prepared by conventional high-frequency CVD method was used on a glass substrate with a size of 100 mm. Film thickness is approximately 200n
It is m. This sample was mounted on the substrate stand 2, and high vacuum evacuation was performed in the same manner as in the first example.

?いで、反応ガス導入管4からフロン115を27sc
cI1、6フッ化イオウガスを3 sec+*流し、真
空室1内の圧力を1.33Paに保った. さらに,櫛型アンテナ8a、8bにそれぞれ2.45G
Hz、300Wのマイクロ波を印加し、放電を開始した
. その結果. 30秒間で、約1■00nmのポリシリコ
ン膜が前記100!III X loom■の面積にわ
たって均一にエッチングできた. 【発明の効果〕 本発明によれば、マイクロ波プラズマ処理装置において
、平面放射器を含む複数のマイクロ波導入手段により,
マイクロ波を真空室内に導入するようにしているので,
大面積にわたりマイクロ波放射が可能であり、大面積基
板の処理が可能となる. また、複数個のマイクロ波電力供給手段を使用したり、
マイクロ波導入手段の配置を工夫したりして、均一性の
よい放電ができるような装置構成となっているため、大
面積にわたって均一性のよいプラズマ処理が可能となる
? Then, add 27 sc of Freon 115 from the reaction gas introduction pipe 4.
cI1, sulfur hexafluoride gas was flowed for 3 sec+*, and the pressure inside the vacuum chamber 1 was maintained at 1.33 Pa. Furthermore, 2.45G is applied to each of the comb-shaped antennas 8a and 8b.
A microwave of 300 W at Hz was applied to start the discharge. the result. In 30 seconds, a polysilicon film of approximately 100 nm thick was deposited on the 100! Etching could be done uniformly over the area of III x room■. [Effects of the Invention] According to the present invention, in a microwave plasma processing apparatus, a plurality of microwave introducing means including a plane radiator can
Since microwaves are introduced into the vacuum chamber,
Microwave radiation can be applied over a large area, making it possible to process large-area substrates. Also, using multiple microwave power supply means,
By carefully arranging the microwave introduction means, the device is configured to produce a discharge with good uniformity, making it possible to perform plasma treatment with good uniformity over a large area.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例のマイクロ波プラズマ処
理装置を示す縦断面図,第2図は平面放射器としての櫛
型アンテナの例を示す平面図,第3図は前記櫛型アンテ
ナの配列の例を示す斜視図、第4図は櫛型アンテナの放
電によるシリコンナイトライド成膜時の膜厚分布測定結
果を示す図,第5図は本発明の第2の実施例における平
面放射器としての櫛型アンテナを示す平面図、第6図は
本発明の第3の実施例の櫛型アンテナとスロットアンテ
ナとを備えた装置を示す縦断面図,第7図および第8図
はそれぞれ平面放射器としてのスロット板の例を示す平
面図、第9図は本発明の第4の実施例の磁場形成手段と
して永久磁石と補助コイルとを備えた装置を示す縦断面
図、第10図は本発明の第5の実施例のマイクロ波導入
手段として放電管と櫛型アンテナとを備えた装置を示す
縦断面図である. 符号の説明 1・・・真空室 3・・・基板 5・・・放電ガス導入管 7・・・制御コイル 9・・・マイクロ波電源 l1・・・防着板 l8・・・ヒータ電源 2l・・・アンテナロッド 26・・・スロット 31・・・補助コイル 36・・・導波管
FIG. 1 is a longitudinal sectional view showing a microwave plasma processing apparatus according to a first embodiment of the present invention, FIG. 2 is a plan view showing an example of a comb-shaped antenna as a plane radiator, and FIG. FIG. 4 is a perspective view showing an example of an antenna arrangement, FIG. 4 is a view showing the measurement results of film thickness distribution during silicon nitride film formation by discharge of a comb-shaped antenna, and FIG. 5 is a plan view of a second embodiment of the present invention. FIG. 6 is a plan view showing a comb-shaped antenna as a radiator, FIG. 6 is a longitudinal sectional view showing a device equipped with a comb-shaped antenna and a slot antenna according to a third embodiment of the present invention, and FIGS. 7 and 8 are FIG. 9 is a plan view showing an example of a slot plate as a flat radiator, FIG. 9 is a longitudinal cross-sectional view showing a device equipped with a permanent magnet and an auxiliary coil as a magnetic field forming means according to a fourth embodiment of the present invention, and FIG. The figure is a longitudinal sectional view showing a device equipped with a discharge tube and a comb-shaped antenna as a microwave introducing means according to a fifth embodiment of the present invention. Explanation of symbols 1... Vacuum chamber 3... Substrate 5... Discharge gas introduction tube 7... Control coil 9... Microwave power source l1... Anti-adhesive plate l8... Heater power source 2l. ...Antenna rod 26...Slot 31...Auxiliary coil 36...Waveguide

Claims (1)

【特許請求の範囲】 1、真空室に、試料保持手段と、反応ガスおよび放電ガ
ス導入手段と、電子サイクロトロン共鳴を起こすための
磁場形成手段およびマイクロ波電力供給手段とを備えた
マイクロ波プラズマ処理装置であって、前記マイクロ波
供給手段におけるマイクロ波導入手段を複数個設けると
ともに、該マイクロ波導入手段のうちの少なくとも一つ
に平面放射器を用いたことを特徴とするマイクロ波プラ
ズマ処理装置。 2、請求項1記載のマイクロ波プラズマ処理装置におい
て、マイクロ波導入手段のうちの少なくとも一つを、試
料保持手段上の試料基板と平行な同一平面上以外の位置
に設置したことを特徴とするマイクロ波プラズマ処理装
置。 3、請求項1記載のマイクロ波プラズマ処理装置におい
て、複数個のマイクロ波導入手段に対して、複数個のマ
イクロ波電力供給手段を用いたことを特徴とするマイク
ロ波プラズマ処理装置。 4、請求項1記載のマイクロ波プラズマ処理装置におい
て、マイクロ波導入手段として用いた平面放射器と、電
子サイクロトロン共鳴点との間に、反応ガスおよび放電
ガスに対しては非透過でかつマイクロ波は透過しうる材
質からなる分離手段を設置したことを特徴とするマイク
ロ波プラズマ処理装置。
[Claims] 1. Microwave plasma processing in which a vacuum chamber is provided with a sample holding means, a reaction gas and discharge gas introduction means, a magnetic field forming means for causing electron cyclotron resonance, and a microwave power supply means. 1. A microwave plasma processing apparatus, characterized in that the microwave supply means includes a plurality of microwave introduction means, and at least one of the microwave introduction means uses a flat radiator. 2. The microwave plasma processing apparatus according to claim 1, wherein at least one of the microwave introducing means is installed at a position other than on the same plane parallel to the sample substrate on the sample holding means. Microwave plasma processing equipment. 3. The microwave plasma processing apparatus according to claim 1, wherein a plurality of microwave power supply means are used for the plurality of microwave introduction means. 4. In the microwave plasma processing apparatus according to claim 1, there is provided a microwave plasma processing apparatus between the plane radiator used as the microwave introducing means and the electron cyclotron resonance point, which is impermeable to the reaction gas and the discharge gas and is not transparent to the reaction gas and the discharge gas. A microwave plasma processing apparatus characterized in that a separation means made of a transparent material is installed.
JP11510089A 1989-05-10 1989-05-10 Microwave plasma treating device Pending JPH02294491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11510089A JPH02294491A (en) 1989-05-10 1989-05-10 Microwave plasma treating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11510089A JPH02294491A (en) 1989-05-10 1989-05-10 Microwave plasma treating device

Publications (1)

Publication Number Publication Date
JPH02294491A true JPH02294491A (en) 1990-12-05

Family

ID=14654220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11510089A Pending JPH02294491A (en) 1989-05-10 1989-05-10 Microwave plasma treating device

Country Status (1)

Country Link
JP (1) JPH02294491A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5180948A (en) * 1991-03-01 1993-01-19 Roehm Gmbh Chemische Fabrik Plasma generator with secondary radiator
JPH05160073A (en) * 1991-12-03 1993-06-25 Tokyo Ohka Kogyo Co Ltd Plasma treatment device and method
JPH07111248A (en) * 1993-08-16 1995-04-25 Canon Sales Co Inc Film forming apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58104633A (en) * 1981-12-04 1983-06-22 ポリプラズマ インコーポレイテッド Microwave plasma generating apparatus for treating base material
JPS62281424A (en) * 1986-05-30 1987-12-07 Fujitsu Ltd Plasma treatment device
JPS6338585A (en) * 1986-08-01 1988-02-19 Hitachi Ltd Plasma device
JPS6417869A (en) * 1987-07-13 1989-01-20 Hitachi Ltd Microwave plasma chemical vapor deposition device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58104633A (en) * 1981-12-04 1983-06-22 ポリプラズマ インコーポレイテッド Microwave plasma generating apparatus for treating base material
JPS62281424A (en) * 1986-05-30 1987-12-07 Fujitsu Ltd Plasma treatment device
JPS6338585A (en) * 1986-08-01 1988-02-19 Hitachi Ltd Plasma device
JPS6417869A (en) * 1987-07-13 1989-01-20 Hitachi Ltd Microwave plasma chemical vapor deposition device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5180948A (en) * 1991-03-01 1993-01-19 Roehm Gmbh Chemische Fabrik Plasma generator with secondary radiator
JPH05160073A (en) * 1991-12-03 1993-06-25 Tokyo Ohka Kogyo Co Ltd Plasma treatment device and method
JPH07111248A (en) * 1993-08-16 1995-04-25 Canon Sales Co Inc Film forming apparatus

Similar Documents

Publication Publication Date Title
CN101978095B (en) Coaxial microwave assisted deposition and etch systems
EP3711078B1 (en) Linearized energetic radio-frequency plasma ion source
JP5567005B2 (en) Microwave-assisted PVD with a rotatable target
US8333166B2 (en) Plasma treatment systems and methods for uniformly distributing radiofrequency power between multiple electrodes
US20110076420A1 (en) High efficiency low energy microwave ion/electron source
KR940000874B1 (en) Film forming apparatus
EP0914496B1 (en) Microwave applicator for an electron cyclotron resonance plasma source
TW201021629A (en) Microwave plasma containment shield shaping
JPH0368773A (en) Dense plasma vapor deposition and etching device
KR102456063B1 (en) Shaped electrodes for improved plasma exposure from vertical plasma source
JP2022153353A (en) Microwave plasma source for spatial plasma enhanced atomic layer deposition (pe-ald) processing tool
JPS61213377A (en) Method and apparatus for plasma deposition
JPH02294491A (en) Microwave plasma treating device
EP1917843A1 (en) Method and apparatus for creating a plasma
JPH07135093A (en) Plasma processing device and processing method
US5993598A (en) Magnetron
JP2590112B2 (en) Microwave plasma processing equipment
JPH0687440B2 (en) Microwave plasma generation method
JPS63157868A (en) Plasma treatment device
JPH08241797A (en) Plasma treatment device
JPH07211488A (en) Device and method for plasma processing
JPS62143418A (en) Thin film forming device
JPH0650724B2 (en) Low temperature plasma electromagnetic field control mechanism
JPH01205519A (en) Plasma treatment apparatus
JPS63276231A (en) Microwave plasma treating equipment