JPH0229385B2 - - Google Patents

Info

Publication number
JPH0229385B2
JPH0229385B2 JP58012300A JP1230083A JPH0229385B2 JP H0229385 B2 JPH0229385 B2 JP H0229385B2 JP 58012300 A JP58012300 A JP 58012300A JP 1230083 A JP1230083 A JP 1230083A JP H0229385 B2 JPH0229385 B2 JP H0229385B2
Authority
JP
Japan
Prior art keywords
inner cylinder
magnetic
cylinder
separated
magnetic core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58012300A
Other languages
Japanese (ja)
Other versions
JPS59139953A (en
Inventor
Kyoshi Matsuda
Norishige Kono
Juzo Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JUTOKU SANGYO KK
Original Assignee
JUTOKU SANGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JUTOKU SANGYO KK filed Critical JUTOKU SANGYO KK
Priority to JP58012300A priority Critical patent/JPS59139953A/en
Publication of JPS59139953A publication Critical patent/JPS59139953A/en
Publication of JPH0229385B2 publication Critical patent/JPH0229385B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Centrifugal Separators (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、乾式、湿式のいずれかを問わず、
分離効率がさわめて高く、保全が容易であること
を目的とする竪型磁気分離機に関するものであ
る。 従来、電磁石もしくは永久磁石を使用した磁気
分離機(磁気選別機、磁力選鉱機、磁選機などと
呼ぶこともある)は各方面で採用されており、こ
れらは磁性を異にすること2種以上の粒子の混合
物を磁場に入れると、これら粒子には異なつた大
きさの磁力が作用し、その磁力とある角度をなす
方向に補助的な分離力が作用するようにしておく
と、この両作用の結果から、粒子が相互に分離さ
れるという原理に基づくものであつて、ベルトコ
ンベアの終端ドラマ内の特定位置に磁石を設置し
たもの、グレンダル磁選機のように回転ドラム内
の全周もしくは特定部分に磁石を設置したもの、
ロツシユ磁選機もしくはクロケツト磁選機のよう
に傾斜面または湾曲面に配列固定された磁気層に
沿つてベルトコンベアを移動させるもの、その他
クロスベルト型磁選機、誘導ロール型磁選機(フ
ンボルト式)など数多くの型式のものが実用化さ
れている。しかし、これら従来の磁気分離機の大
半は、横(水平)方向に配列した型式のものであ
つて、設置面積は広くなり、特に液状(溶液状、
乳液状、懸濁液状、泥状等水分のかなり多い状
態)のものを取り扱うときの被分離物の脱水(水
切り)が不充分で濾過装置もしくは脱水装置等の
併設が必要となり、また、水容性が劣つて回転部
の摩耗や腐食等が起こりやすく、装置の維持保全
上数多くの問題がある。 この発明は、このような現状に注目してなされ
たものであり、中空もしくは中実の円柱状の非磁
性体の表面に複数個の永久磁石片を左右が互に吸
着方向にある状態でらせん状に配列した固定され
た磁芯と、内面がこの磁芯外面に近接して回転す
る非磁性体内筒と、この筒の外面との間隙に被分
離物を含有する流体を流通させるための流入口お
よび流出口さらに内筒の回転を妨げることなくし
かも被分離物を落下させるようなすき間を生じな
いように内筒の最上端付近に密に接し内筒表面を
吸着上昇して来る被分離物を掻き集めるために設
けられた掻き取り板に繋がつた取り出し口を有す
る外筒とからなることを特徴とする竪型磁気分離
機を提供するものである。以下、実施例を示す図
面を用いて、この発明の詳細を述べる。 この発明の竪型磁気分離機は磁芯A、内筒Bお
よび外筒Cの三つの主要部分からなり、これら主
要部分はそれぞれ以下に示すような構造のもので
ある。 まず、磁芯Aは、中空もしくは中実の円柱状の
非磁性体1(たとえば、ステンレス鋼、真鍮等の
合金、セラミツクス、または、強化プラスチツク
等の複合材など)の表面に、複数個の永久磁石片
2を第1図に示すように一定の間隔をおきらせん
状に配列したもので、シヤフト3によつて上部支
持部4に固定されている。ここで、配置される永
久磁石片2は左右は互に吸着方向(N極とS極と
が交互に対応する関係)であり、上下は必らずし
も吸着方向でなく反発方向で隣接してもよく、ま
た、らせんは円柱の径の大小によつて1本もしく
は2本以上の複数本であつても支障はない。 つぎに、内筒Bは、第2図に示すように、非磁
性体(たとえば、ステレス鋼のような合金で耐食
性、耐摩耗性の優れた材質のものが好ましい)の
円筒5からなり、上板6および底板6′のそれぞ
れ中心部分に設けられたベアリング7および7′
によつて前記磁芯Aのシヤフト3に取り付けられ
て、さらに、たとえば歯車8および8′を経てモ
ータ9に連動されて、内面が前記磁芯Aの外面に
近接しながら磁芯Aの周囲を回転するようになつ
ている。 さらに、外筒Cは、第3図から明らかなよう
に、磁芯Aを内蔵する内筒Bを収容する一種の容
器であり、内筒Bと外筒Cとの間隙に被分離物を
含有する流体を流すための流入口10および流出
口11が設けられているが、これら流入口10お
よび流出口11の向きを任意の方向に変更しやす
くするために、外筒Cを二つ以上の部分たとえば
C1,C2,C3に分割し、これらを組み立ててもよ
い。ここで、流入口10は外筒Cの底に近く、流
出口11はそれよりも高い位置に設けておけば、
内筒Bの表面に吸着された被分離物の移動方向と
流体の流れ方向とが一致するので、被分離物が掻
き落されるようなことが防止できて好ましい。し
たがつて、いま被分離物を含有する流体が、流入
口10から外筒C内に入ると、磁芯Aの永久磁石
片2の磁力によつて吸引され、被分離物は内筒B
の表面に吸着するが、この吸着した被分離物は、
内筒Bが回転(磁芯は不動)しているため、つぎ
の瞬間に、隣接する永久磁石片(らせん状に配列
されているため上位に位置している)によつて吸
引されるため、内筒Bの表面を上方に移動するこ
とになる。このような現象は内部に磁芯Aが存在
する内筒Bの全表面上で起こり、被分離物は次第
に上昇して、内筒Bの最上端付近に到達するの
で、この付近に、第4図に示すような掻き取り板
12を設け、上昇してきた被分離物を掻き集めて
外筒Cの外へ取り出す。ここで、掻き取り板12
は、外筒Cに取り出し口として固定され、内筒B
には密に接して、内筒Bの回転を妨げることなく
しかも被分離物は落下しないように配慮すべきで
あることは言うまでもない。また、掻き取り板1
2と流出口11との間に適当な距離を設けておけ
ば、流体が特に水分の多い状態のものであるとき
は、かなりの脱水(水切り)効果を期待すること
ができるので、前記したように外筒Cを分割した
C2の部分に流出口11を設け、さらにC3の部分
に掻き取り板12(取り出し口)を取り付けるよ
うにすれば、取り出し口の向きをも任意に変更で
きることになるので、この発明の分離機を設置す
る際の場所の選定がきわめて容易となり好都合で
ある。 以上でこの発明の竪型磁気分離機の主要部分を
明らかにしたが、第5図のように、たとえば外筒
Cに邪魔板13を適宜挿入して、隘略を形成すれ
ば、流体がその隘路を通過するとき、被分離物が
内筒Bの表面に近付いて吸着されやすくなり、ま
た、内筒Bの底板に攬拌羽根14を取り付けると
沈降物の滞留を容易に抑止することができるの
で、随時このように部分品を組み入れて、分離効
果を高めるとよい。 この発明の竪型磁気分離機は、複数基を第6図
のように直列に連結して使用すれば、より高度の
分離効果が得られ、また第7図のように、並列に
連結すれば処理能(量)を高めることができる。
さらに、この発明の竪型磁気分離機を貯槽と直結
するか、または、第8図に例示するように貯槽1
5内に直立(この際外筒CのC1およびC2の部分
を取り外し、別の支持脚16を用いた開放型とし
てもよい)させれば、配管の節約とともに、設置
面積の縮小をも図ることができる。 以上述べたこの発明の竪型磁気分離機は、第2
図および第3図からも明らかなように、内筒bの
回転部分(ベアリング7および7′)は、内筒B
の内部に完全に隠されているので、上板6、特に
底板6′と内筒Bとが密封状態にあれば、流体と
は全く接触せず、従来の横型分離機には見られな
い耐久性を発揮することができるほか、内筒Bの
回転速度の変更で処理能力を容易に変化できるこ
と、狭隘な場所への設置が容易であること、分離
効率または処理能力の変更に伴う配置転換がきわ
めて容易であること、特に水分の多い流体(たと
えば懸濁液)を処理するような場合は、磁芯Aに
用いられているすべての永久磁石片2の磁力を満
遍に活用して、磁気分離のみならず脱水(水切
り)処理までも行なえることなど、数多くの特徴
を有するものであるから、この発明の意義はきわ
めて大きいと言うことができる。 以下に実施例を示す。 実施例 1 外径76mm、長さ400mmのアルミニウム製円柱の
全面に、1500ガウスの永久磁石片130個をらせん
状に配列した磁芯に、内径108mm、外径110mm、長
さ430mmのステンレス鋼製の円筒を内筒として重
ね、これをさらに内径160mm、外径165mm、長さ
530mmの鋼製の外筒内に納め、内筒を毎分18回転
の速度で、永久磁石片が配列されているらせんの
上昇する方向と一致する方向に回転させながら、
外筒の底部からクーラント液(研摩、切削等の際
に使用した冷却液の廃液)を送り込んで、懸濁す
る固形物の分離を試みた。このような処理の前後
のクーラント液をそれぞれ20リツトルずつ採取
し、それぞれに含まれている固形物を分析用濾紙
で分別し、乾燥後秤量して、両者の重量比から分
離能(%)を求め、その結果を第1表にまとめ
た。第1表から明らかなように、この発明の分離
能はきわめて優れたものであつた。
This invention applies to both dry and wet methods.
This invention relates to a vertical magnetic separator that has extremely high separation efficiency and is easy to maintain. Conventionally, magnetic separators (sometimes referred to as magnetic separators, magnetic separators, magnetic separators, etc.) that use electromagnets or permanent magnets have been used in various fields, and these machines separate two or more types with different magnetic properties. When a mixture of particles is placed in a magnetic field, magnetic forces of different magnitudes act on the particles, and if an auxiliary separating force is applied in a direction that makes an angle with the magnetic force, both effects can be reduced. Based on the results of A magnet is installed in the part,
There are many types such as rotisserie magnetic separators and Crockett magnetic separators that move a belt conveyor along magnetic layers arranged and fixed on an inclined or curved surface, cross-belt magnetic separators, induction roll magnetic separators (Humboldt type), etc. The model is in practical use. However, most of these conventional magnetic separators are of the horizontally arranged type, requiring a large installation area, and especially for liquid (solution-like) separators.
When handling materials with a high water content (emulsion, suspension, slurry, etc.), the dehydration (draining) of the material to be separated is insufficient, requiring the installation of a filtration device or dehydration device, and the water capacity Due to the poor performance, wear and corrosion of the rotating parts are likely to occur, and there are many problems in terms of maintenance and maintenance of the equipment. This invention was made in view of the current situation, and consists of spirally attaching a plurality of permanent magnet pieces to the surface of a hollow or solid cylindrical non-magnetic material with the left and right sides in the attracting direction. A flow for circulating a fluid containing a substance to be separated through a gap between fixed magnetic cores arranged in a shape, a rotating non-magnetic cylinder whose inner surface is close to the outer surface of the magnetic core, and the outer surface of the cylinder. The inlet and outlet are in close contact with the top end of the inner cylinder, without interfering with the rotation of the inner cylinder and without creating any gaps that would cause the objects to be separated to fall. The present invention provides a vertical magnetic separator characterized by comprising an outer cylinder having an outlet connected to a scraping plate provided for scraping up the magnetic separator. Hereinafter, details of the present invention will be described using drawings showing embodiments. The vertical magnetic separator of the present invention consists of three main parts: a magnetic core A, an inner cylinder B, and an outer cylinder C, and each of these main parts has the structure shown below. First, the magnetic core A is made of a plurality of permanent magnets on the surface of a hollow or solid cylindrical non-magnetic material 1 (for example, stainless steel, an alloy such as brass, ceramics, or a composite material such as reinforced plastic). As shown in FIG. 1, magnet pieces 2 are arranged in a spiral shape at regular intervals, and are fixed to an upper support part 4 by a shaft 3. Here, the left and right sides of the permanent magnet pieces 2 arranged are in an attractive direction (N pole and S pole alternately correspond), and the upper and lower sides are not necessarily adjacent in an attractive direction but in a repulsive direction. Also, depending on the size of the diameter of the cylinder, the number of spirals may be one or two or more without any problem. Next, the inner cylinder B, as shown in FIG. Bearings 7 and 7' provided in the central portions of the plate 6 and the bottom plate 6', respectively.
is attached to the shaft 3 of the magnetic core A, and is further interlocked with a motor 9 via gears 8 and 8', for example, so as to move around the magnetic core A while the inner surface approaches the outer surface of the magnetic core A. It's supposed to rotate. Furthermore, as is clear from FIG. 3, the outer cylinder C is a type of container that houses the inner cylinder B that contains the magnetic core A, and the material to be separated is contained in the gap between the inner cylinder B and the outer cylinder C. An inlet 10 and an outlet 11 are provided for flowing the fluid, but in order to easily change the direction of the inlet 10 and outlet 11 in any direction, the outer cylinder C is arranged in two or more directions. Partial example
It may be divided into C 1 , C 2 , and C 3 and assembled. Here, if the inlet 10 is provided near the bottom of the outer cylinder C and the outlet 11 is provided at a higher position,
Since the moving direction of the object to be separated adsorbed on the surface of the inner cylinder B coincides with the flow direction of the fluid, it is possible to prevent the object to be separated from being scraped off, which is preferable. Therefore, when the fluid containing the substances to be separated enters the outer cylinder C from the inlet 10, it is attracted by the magnetic force of the permanent magnet piece 2 of the magnetic core A, and the substances to be separated enter the inner cylinder B.
This adsorbed substance to be separated is
Since the inner cylinder B is rotating (the magnetic core is stationary), at the next moment it will be attracted by the adjacent permanent magnet piece (which is located above because it is arranged in a spiral shape). The surface of the inner cylinder B will be moved upward. Such a phenomenon occurs on the entire surface of the inner cylinder B in which the magnetic core A exists, and the material to be separated gradually rises and reaches the vicinity of the top end of the inner cylinder B. A scraping plate 12 as shown in the figure is provided to scrape up the material to be separated that has risen and take it out of the outer cylinder C. Here, the scraping plate 12
is fixed to the outer cylinder C as an outlet, and the inner cylinder B
Needless to say, care should be taken to ensure that the material to be separated is in close contact with the inner cylinder B so as not to impede the rotation of the inner cylinder B, and also to prevent the object to be separated from falling. Also, scraping board 1
If an appropriate distance is provided between 2 and the outlet 11, a considerable dehydration (drainage) effect can be expected when the fluid has a particularly high moisture content. The outer cylinder C was divided into
If the outlet 11 is provided in the C 2 part and the scraping plate 12 (take-out port) is attached to the C 3 part, the direction of the take-out port can be changed as desired. This is convenient because it makes it extremely easy to select a location for installing the machine. The main parts of the vertical magnetic separator of the present invention have been clarified above, but as shown in FIG. When passing through the bottleneck, the substances to be separated approach the surface of the inner cylinder B and are easily adsorbed, and if a stirring blade 14 is attached to the bottom plate of the inner cylinder B, it is possible to easily prevent sediment from accumulating. Therefore, it is a good idea to incorporate parts in this way from time to time to enhance the separation effect. If the vertical magnetic separator of this invention is used by connecting multiple units in series as shown in Figure 6, a higher separation effect can be obtained, and if they are connected in parallel as shown in Figure 7, a higher separation effect can be obtained. Processing capacity (amount) can be increased.
Furthermore, the vertical magnetic separator of the present invention may be directly connected to a storage tank, or the storage tank 1 may be connected directly to a storage tank as illustrated in FIG.
5 (at this time, parts C 1 and C 2 of the outer cylinder C may be removed and another support leg 16 may be used to create an open type), saving piping and reducing the installation area. can be achieved. The vertical magnetic separator of the present invention described above has a second
As is clear from the figures and FIG. 3, the rotating parts (bearings 7 and 7') of the inner cylinder b are
Since it is completely hidden inside the separator, if the top plate 6, especially the bottom plate 6', and the inner cylinder B are in a sealed state, they will not come into contact with the fluid at all, providing durability not found in conventional horizontal separators. In addition to being able to easily change the processing capacity by changing the rotational speed of the inner cylinder B, it is easy to install in a narrow space, and it is easy to change the layout due to changes in separation efficiency or processing capacity. It is extremely easy to use, especially when processing fluids containing a lot of water (such as suspensions), by fully utilizing the magnetic force of all the permanent magnet pieces 2 used in the magnetic core A. It can be said that the significance of this invention is extremely great because it has many features such as being able to perform not only separation but also dehydration (draining) treatment. Examples are shown below. Example 1 A stainless steel cylinder with an inner diameter of 108 mm, an outer diameter of 110 mm, and a length of 430 mm has a magnetic core with 130 1500 Gauss permanent magnet pieces arranged in a spiral on the entire surface of an aluminum cylinder with an outer diameter of 76 mm and a length of 400 mm. This cylinder is stacked as an inner cylinder, and then the inner diameter is 160mm, the outer diameter is 165mm, and the length is
It is housed in a 530 mm steel outer cylinder, and while rotating the inner cylinder at a speed of 18 revolutions per minute in a direction that matches the upward direction of the spiral in which the permanent magnet pieces are arranged,
An attempt was made to separate suspended solids by pumping coolant liquid (waste liquid coolant used during polishing, cutting, etc.) from the bottom of the outer cylinder. Collect 20 liters of the coolant liquid before and after such treatment, separate the solids contained in each using analytical filter paper, dry and weigh, and calculate the separation power (%) from the weight ratio of the two. The results are summarized in Table 1. As is clear from Table 1, the separation power of this invention was extremely excellent.

【表】 実施例 2 この発明に基づく装置として、実施例1で用い
たと同じ分離機を使用し、一方、従来広く用いら
れている横型分離機として、1500ガウスの永久磁
石片100個を内面に千鳥状に固定した外径200mm、
長さ200mmのステンレス鋼製円筒が、その表面積
のほぼ1/3が液面下に没入するように平に支持さ
れ、円筒が回転するにつれて液中で吸着分離され
た固形物を順次液面上に運び出し、これを逆の方
向から掻き取り板で集める形式のものを選び、同
一のクーラント液を用いて両者の分離能の比較を
試みた。分離能は実施例1と全く同様にして求
め、結果は第2表にまとめた。
[Table] Example 2 As a device based on this invention, the same separator used in Example 1 was used, and on the other hand, as a horizontal separator that has been widely used in the past, 100 permanent magnet pieces of 1500 Gauss were attached to the inner surface. Outer diameter 200mm fixed in a staggered manner,
A stainless steel cylinder with a length of 200 mm is supported flat so that approximately 1/3 of its surface area is submerged below the liquid surface, and as the cylinder rotates, the solids adsorbed and separated in the liquid are successively brought up to the liquid surface. We selected a type in which the coolant was transported to the wafer and collected from the opposite direction using a scraping plate, and we attempted to compare the separation abilities of the two using the same coolant liquid. The separation power was determined in exactly the same manner as in Example 1, and the results are summarized in Table 2.

【表】 第2表から明らかなように、この発明に基づく
装置は従来品に比べきわめて高い分離能を示し
た。なお、この発明の分離能の設置面積が0.03m2
であつたのに対し、従来品のそれは少なくともそ
の3倍を必要とし、しかも、従来品の分離した固
形物の脱水が不充分であるため、別に脱水するた
めの処理が必要であつた。もし、従来の横型分離
機でこの発明の竪型分離機と同等の分離能力を得
ようとすれば、およそ4倍の設置面積が必要とな
ることがわかつた。
[Table] As is clear from Table 2, the device based on the present invention exhibited extremely high separation performance compared to conventional products. Note that the installation area of the separation power of this invention is 0.03 m 2
On the other hand, the conventional product required at least three times that amount, and furthermore, the separated solid matter of the conventional product was insufficiently dehydrated, so a separate treatment for dehydration was required. It has been found that if a conventional horizontal separator were to obtain the same separation capacity as the vertical separator of the present invention, the installation area would be approximately four times larger.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は磁芯の構造を模式的に示す図、第2図
は磁芯と内筒との構造を模式的に示す図、第3図
は外筒の構造を模式的に示す図、第4図は掻き取
り板の要部構造を模式的に示す図、第5図は邪魔
板および撹拌羽根の取り付けを例示するための
図、第6図および第7図はそれぞれ直列および並
列にこの発明の分離機を2基連結したときの例を
示す平面図、第8図はこの発明の分離機を貯槽内
に直立して設置した例を模式的に示す側面図であ
る。 A……磁芯、B……内筒、C……外筒、1……
非磁性体、2……永久磁石片、3……シヤフト、
4……上部支持部、5……円筒、6……上板、
6′……底板、7,7′……ベアリング、8,8′
……歯車、9……モータ、10……流入口、11
……流出口、12……掻き取り板、13……邪魔
板、14……撹拌羽根、15……貯槽、16……
支持脚。
Figure 1 is a diagram schematically showing the structure of the magnetic core, Figure 2 is a diagram schematically showing the structure of the magnetic core and inner cylinder, Figure 3 is a diagram schematically showing the structure of the outer cylinder, and Figure 3 is a diagram schematically showing the structure of the outer cylinder. Figure 4 is a diagram schematically showing the main structure of the scraping plate, Figure 5 is a diagram illustrating the attachment of the baffle plate and stirring blade, and Figures 6 and 7 are diagrams showing the present invention in series and in parallel, respectively. FIG. 8 is a plan view showing an example in which two separators of the present invention are connected, and FIG. 8 is a side view schematically showing an example in which the separator of the present invention is installed upright in a storage tank. A...Magnetic core, B...Inner cylinder, C...Outer cylinder, 1...
Non-magnetic material, 2...Permanent magnet piece, 3...Shaft,
4... Upper support part, 5... Cylinder, 6... Upper plate,
6'...Bottom plate, 7,7'...Bearing, 8,8'
... Gear, 9 ... Motor, 10 ... Inflow port, 11
... Outlet, 12 ... Scraping plate, 13 ... Baffle plate, 14 ... Stirring blade, 15 ... Storage tank, 16 ...
supporting legs.

Claims (1)

【特許請求の範囲】[Claims] 1 中空もしくは中実の円柱状の非磁性体の表面
に複数個の永久磁石片を左右が互に吸着方向にあ
る状態で一定の間隔をおきらせん状に配列した固
定された磁芯と、内面がこの磁芯外面に近接して
回転する非磁性体内筒と、この内筒の外面との間
隙に被分離物を含有する流体を流通させるための
流入口および流出口さらに内筒の回転を妨げるこ
となくしかも被分離物を落下させるようなすき間
を生じないように内筒の最上端付近に密に接し内
筒表面を吸着上昇して来る被分離物を掻き集める
ために設けられた掻き取り板に繋がつた取出し口
を有する外筒とからなることを特徴とする竪型磁
気分離機。
1. A fixed magnetic core in which a plurality of permanent magnet pieces are arranged in a spiral shape at regular intervals on the surface of a hollow or solid cylindrical non-magnetic material with the left and right sides facing each other in the attracting direction, and an inner surface. A non-magnetic inner cylinder that rotates close to the outer surface of the magnetic core, and an inlet and an outlet for flowing the fluid containing the substance to be separated in the gap between the outer surface of the inner cylinder and further prevent rotation of the inner cylinder. A scraping plate is provided in close contact with the top end of the inner cylinder to scrape up the material to be separated that has risen by suction on the surface of the inner cylinder, without creating any gaps that would cause the material to fall. A vertical magnetic separator characterized by comprising an outer cylinder having an outlet connected to the outer cylinder.
JP58012300A 1983-01-27 1983-01-27 Vertical type magnetic separator Granted JPS59139953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58012300A JPS59139953A (en) 1983-01-27 1983-01-27 Vertical type magnetic separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58012300A JPS59139953A (en) 1983-01-27 1983-01-27 Vertical type magnetic separator

Publications (2)

Publication Number Publication Date
JPS59139953A JPS59139953A (en) 1984-08-11
JPH0229385B2 true JPH0229385B2 (en) 1990-06-29

Family

ID=11801469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58012300A Granted JPS59139953A (en) 1983-01-27 1983-01-27 Vertical type magnetic separator

Country Status (1)

Country Link
JP (1) JPS59139953A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131519A1 (en) 2019-12-27 2021-07-01 株式会社クリエイティブテクノロジー Electrostatic precipitator

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3009970B2 (en) * 1992-08-10 2000-02-14 株式会社ユタニ Screw tightening device
JP2006110433A (en) * 2004-10-13 2006-04-27 Kansai Electric Power Co Inc:The Magnetic separation/recovery apparatus
JP2006334717A (en) * 2005-06-02 2006-12-14 F Syst Co Ltd Device for recovering and cleaning sludge and oil such as chips and chip powder mixed in used coolant liquid
JP7148191B1 (en) * 2022-04-19 2022-10-05 株式会社ブンリ magnetic screw conveyor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131519A1 (en) 2019-12-27 2021-07-01 株式会社クリエイティブテクノロジー Electrostatic precipitator

Also Published As

Publication number Publication date
JPS59139953A (en) 1984-08-11

Similar Documents

Publication Publication Date Title
JPS6346124Y2 (en)
US5045046A (en) Apparatus for oil separation and recovery
CN107433494B (en) Spiral mixing rotary magnetic force pressure vessel inner wall mobile polishing machine
US3737032A (en) Coal preparation process and magnetite reclaimer for use therein
JP2015037770A (en) Surface floating matter recovery device
JPH0229385B2 (en)
US3980562A (en) Magnetic disk separator with scraper means
US7357260B2 (en) Solid material separator
US3959145A (en) Magnetic separator with scraper means
JP4753386B2 (en) Filtration device
JPS5990606A (en) Separation apparatus
US4784759A (en) Magnetic separation machine
US3351434A (en) Liquid-liquid two-phase contactor
CN110987698A (en) Be used for sediment stuff pump to flow through wear-resisting test disc device of part material
US2771995A (en) Magnetic separator
CN2446126Y (en) Synchronous treater for sewage and sludge
CA1255072A (en) High capacity reciprocating plate extractor
CN204529367U (en) Shallow air-floatation device
CN201337961Y (en) Strong magnetic spin centrifugal separator
JPS62502109A (en) Organic gas generation treatment equipment
CN206027161U (en) Ripple coalescence oil water separator
JPH0336583B2 (en)
RU2211732C1 (en) Magnetic separator
JPS588560A (en) Apparatus for separating magnetic material and non-magnetic material
JPH05111689A (en) Sewage treating equipment