JPH02293578A - Air liquefying separation method and its apparatus - Google Patents

Air liquefying separation method and its apparatus

Info

Publication number
JPH02293578A
JPH02293578A JP1113279A JP11327989A JPH02293578A JP H02293578 A JPH02293578 A JP H02293578A JP 1113279 A JP1113279 A JP 1113279A JP 11327989 A JP11327989 A JP 11327989A JP H02293578 A JPH02293578 A JP H02293578A
Authority
JP
Japan
Prior art keywords
column
liquefied
rectification
auxiliary
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1113279A
Other languages
Japanese (ja)
Other versions
JP2781984B2 (en
Inventor
Hideyuki Honda
秀幸 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP1113279A priority Critical patent/JP2781984B2/en
Publication of JPH02293578A publication Critical patent/JPH02293578A/en
Application granted granted Critical
Publication of JP2781984B2 publication Critical patent/JP2781984B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04436Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system
    • F25J3/04448Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system in a double column flowsheet with an intermediate pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/32Processes or apparatus using separation by rectification using a side column fed by a stream from the high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/42Nitrogen or special cases, e.g. multiple or low purity N2
    • F25J2215/44Ultra high purity nitrogen, i.e. generally less than 1 ppb impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/42Separating low boiling, i.e. more volatile components from nitrogen, e.g. He, H2, Ne

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

PURPOSE:To reduce the amount of low boiling point components in high purity nitrogen gas by a method wherein liquefied air or impure liquefied nitrogen is derived from the lower tower and introduced into an auxiliary fractionator to fractionate it and exhaust condensed low boiling point components. CONSTITUTION:Feedstock air GA is fractionated in the lower tower 2 of a double fractionator 1 and at the upper part 2a of the tower 2 nitrogen gas GN is separated and at the lower part 2c of the tower 2 liquefied air LA is separated. The liquefied air LA is introduced into a primary auxiliary fractionator 5 and a gas phase part Xa containing a large quantity of low boiling point components is derived through an exhaust valve 14 and a liquid phase part Ya is introduced into the middle part 3c of the upper tower. A part of impure liquefied nitrogen MW flowing down in the middle part 2b of the lower tower is introduced into a secondary auxiliary fractionator 6 an the separation of nitrogen gas Nb and fractionation are carried out and then a gas phase part Xa containing a large quantity of low boiling point components is derived through an exhaust valve 17 and a liquid phase part Yb is introduced into the upper part 3b of the upper tower. The nitrogen gas GN separated at the upper part 2a of the tower 2 is partly extracted through a pipe 18 as product nitrogen gas, etc., and the remainder becomes liquefied nitrogen LN by a condensing vaporizer 4 and is introduced into a tertiary auxiliary fractionator 7 and the separation of high purity nitrogen gas and fractionation are carried out and a gas phase part Xc containing a large quantity of low boiling point components is derived through an exhaust valve 22 and a liquid phase part Yc is introduced into the upper part 3c of the upper tower.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、空気液化分離方法及びその装置に関し、特に
水素,ヘリウム,ネオン等の低沸点成分の含有量の少な
い高純度窒素を採取する方法及びその装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an air liquefaction separation method and an apparatus thereof, and in particular to a method for collecting high-purity nitrogen with a low content of low-boiling point components such as hydrogen, helium, and neon. and its apparatus.

〔従来の技術〕[Conventional technology]

半導体工業等に多く用いられている高純度窒素は、可能
な限り純粋なものが求められており、例えば水素の含有
量も1 ppm以下であることが望まれている。そのた
め、先に、本出願人は、水素等の低沸点成分の含有量の
少ない高純度窒素を得られる空気液化分離方法を開発し
た(特開昭60−142183号公報、同60−142
184号公報参照)。
High-purity nitrogen, which is widely used in the semiconductor industry, is required to be as pure as possible; for example, it is desired that the hydrogen content be 1 ppm or less. Therefore, the applicant has previously developed an air liquefaction separation method that can obtain high-purity nitrogen with a low content of low-boiling components such as hydrogen (Japanese Patent Laid-Open No. 60-142183, No. 60-142).
(See Publication No. 184).

上記空気液化分離方法は、精留塔の精留段を多く設けた
り、主精留塔の他に補助精留塔を配設して、主たる精留
に加えて窒素中に含まれる低沸点成分を除去するための
精留を行い、これにより窒素中に含まれる低沸点成分量
を分離して排出することにより低減している。
The above air liquefaction separation method involves installing a large number of rectification stages in the rectification column, or installing an auxiliary rectification column in addition to the main rectification column, in order to reduce the amount of low-boiling components contained in nitrogen in addition to the main rectification. The amount of low-boiling components contained in the nitrogen is separated and discharged by rectification to remove the nitrogen.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、近年の半導体工業の発展に伴い、より不
純物の少ない窒素が求められるとともに、原料空気成分
の僅かな変動による上記低沸点成分量のごく僅かな増加
も問題となってきている。
However, with the recent development of the semiconductor industry, nitrogen with fewer impurities is required, and a slight increase in the amount of low-boiling components due to slight fluctuations in raw air components has also become a problem.

そこで本発明は、製品高純度窒素中の低沸点成分の含有
量を、さらに低減させ0.1乃至0.01 ppm+程
度とすることのできる空気液化分離方法及びその装置を
提供することを目的としている。
Therefore, the present invention aims to provide an air liquefaction separation method and an apparatus therefor, which can further reduce the content of low-boiling point components in a high-purity nitrogen product to about 0.1 to 0.01 ppm+. There is.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明の空気液化分離方法
の第1の構成は、原料空気を圧縮精製して冷却した後に
複精留塔に導入して液化精留分離を行う空気液化分離方
法において、前記複精留塔に補助精留塔を付設し、該補
助精留塔に複精留塔の下部塔下部に分離する液化空気を
導出して減圧した後に還流液として導入し、補助精留塔
塔頂部に精留分離した気相部を排出し、塔底部の液相部
を前記複精留塔の上部塔中部に導入することを特徴とし
、第2の構成は、前記複精留塔に付設した補助精留塔に
、複精留塔の下部塔中部の不純液化窒素を導出して減圧
した後に還流液として導入し、補助精留塔の上昇ガスと
して導入し、補助精留塔塔頂部に精留分離した気相部を
排出し、塔底部の液相部を前記複精留塔の上部塔中上部
に導入することを特徴としている。
In order to achieve the above object, the first configuration of the air liquefaction separation method of the present invention is an air liquefaction separation method in which raw air is compressed and purified, cooled, and then introduced into a double rectification column to perform liquefaction rectification separation. In this method, an auxiliary rectifying column is attached to the double rectifying column, and the liquefied air separated at the bottom of the lower column of the double rectifying column is led out and depressurized, and then introduced as a reflux liquid. The second configuration is characterized in that the gas phase separated by rectification is discharged to the top of the column, and the liquid phase at the bottom of the column is introduced into the upper middle part of the double rectification column. The impure liquefied nitrogen in the middle of the lower column of the double rectification column is drawn out and depressurized into the auxiliary rectification column attached to the column, and then introduced as a reflux liquid, which is then introduced as the rising gas of the auxiliary rectification column. It is characterized by discharging the rectified gas phase at the top of the column, and introducing the liquid phase at the bottom of the column into the upper middle of the double rectification column.

また、本発明の空気液化分離装置は、原料空気を圧縮し
て、精製,冷却した後に複精留塔に導入して液化精留分
離を行う空気分離装置において、複精留塔の下部塔下部
及び/又は下部塔中部及び/又は下部塔上部より液化ガ
スを導出する経路と、導出した液化ガスを減圧する手段
と、減圧した液化ガスを補助精留する補助精留塔と、該
補助精留塔の塔頂部に精留分離した気相部を排出する経
路と、補助精留塔の塔底部に精留分離した液相部を前記
複精留塔の上部塔中部及び/又は上部塔中段上部及び/
又は上部塔上部にそれぞれ導入する経路とを設けるとと
もに、上部塔上部に高純度窒素を導出する経路を設けた
ことを特徴とするもので、特に前記液化ガスが、酸素富
化液化空気及び/又は窒素富化液化窒素及び/又は液化
窒素であることを特徴としている。
In addition, the air liquefaction separation device of the present invention is an air separation device that compresses feed air, refines and cools it, and then introduces it into a double rectification column to perform liquefaction rectification separation. and/or a route for delivering the liquefied gas from the middle of the lower column and/or the upper part of the lower column, a means for reducing the pressure of the delivered liquefied gas, an auxiliary rectification column for auxiliary rectification of the reduced pressure liquefied gas, and the auxiliary rectification. A route for discharging the rectified gas phase at the top of the column, and a route for discharging the rectified and separated liquid phase at the bottom of the auxiliary rectification column at the middle of the upper column and/or the middle of the upper column of the double rectification column. as well as/
Alternatively, the liquefied gas is characterized by providing a route for introducing the nitrogen into the upper part of the upper column, and a route for deriving high-purity nitrogen at the upper part of the upper column. It is characterized by being nitrogen-enriched liquefied nitrogen and/or liquefied nitrogen.

〔作 用〕[For production]

上記のごとく、下部塔下部に分離する液化空気あるいは
下部塔中部の不純液化窒素を複精留塔に導入し、精留分
離した気相部を排出するとともに、液相部を上部塔のそ
れぞれの所定位置に導入することにより、複精留塔にお
ける精留の際に気相部として製品高純度窒素ガスと共に
上部塔塔頂に分離する水素等の低沸点成分をあらかじめ
系外に排出することができる。
As mentioned above, the liquefied air to be separated at the bottom of the lower column or the impure liquefied nitrogen in the middle of the lower column is introduced into the double rectification column, the gas phase separated by rectification is discharged, and the liquid phase is transferred to each of the upper columns. By introducing it into a designated position, low-boiling components such as hydrogen, which are separated at the top of the upper column as a gas phase part along with the product high-purity nitrogen gas during rectification in the double rectification column, can be discharged out of the system in advance. can.

[実施例〕 以下、本発明を図面に示す実施例に基づいて、さらに詳
細に説明する。
[Example] Hereinafter, the present invention will be described in more detail based on an example shown in the drawings.

まず第1図は本発明の第1実施例を示すもので、主たる
精留を行う複精留塔1に加えて、複精留塔1の下部塔2
から導出して上部塔3に導入する液化ガス、即ち酸素富
化液化空気(以下、単に液化空気という。)LA,不純
液化窒素MN,及び凝縮蒸発器4で凝縮した液化窒素L
Nのそれぞれの補助精留を行う3基の補助精留塔5,6
.7を付設した実施例を示すものである。
First of all, FIG. 1 shows a first embodiment of the present invention, in which in addition to the double rectification column 1 that performs the main rectification, the lower column 2 of the double rectification column 1
Liquefied gases, namely oxygen-enriched liquefied air (hereinafter simply referred to as liquefied air) LA, impure liquefied nitrogen MN, and liquefied nitrogen L condensed in the condensing evaporator 4 are extracted from the liquefied gas and introduced into the upper column 3.
Three auxiliary rectification towers 5 and 6 each perform auxiliary rectification of N.
.. 7 is shown.

原料空気GAは、通常の前処理装置により圧縮,精製さ
れ、液化点付近まで冷却された後に管11から複精留塔
1の下部塔下部2cに導入される。
The feed air GA is compressed and purified by a conventional pretreatment device, cooled to near the liquefaction point, and then introduced into the lower column lower part 2c of the double rectification column 1 through the pipe 11.

この下部塔2内では、約5kg/cdGの圧力で精留操
作が行われ、下部塔上部2aに窒素ガスGNが分離し、
下部塔下部2cに液化空気LAが分離する。
In this lower column 2, a rectification operation is performed at a pressure of about 5 kg/cdG, and nitrogen gas GN is separated in the upper part 2a of the lower column.
Liquefied air LA is separated into the lower part 2c of the lower column.

まず液化空気LAは、下部塔下部2cから管12で導出
され、減圧弁13で上部塔3の操作圧力、例えばO −
  5 kg / cjt Gに減圧された後に第一補
助精留塔5の上部に導入され、第一補助精留塔5の還流
液となる。上記下部塔下部2cは、塔底あるいは塔底よ
り1段乃至数段上の精留段であることを含むものである
。この第一補助精留塔5の下部には、上部塔中部3Cの
不純窒素ガスNaが上昇ガスとして導入されており、該
不純窒素ガスNaと前記液化空気LAとで精留が行われ
、液化空気LA中の低沸点成分、例えば水素等が第一補
助精留塔5の項部に濃縮される。尚、上記第一補助精留
塔5の上昇ガスとしては、上記不純窒素ガスNaの他、
原料空気GA,下部塔2各部のガス,上部塔3の酸素ガ
スGo等でも良い。
First, the liquefied air LA is led out from the lower part 2c of the lower column through a pipe 12, and the pressure reducing valve 13 adjusts the operating pressure of the upper column 3, for example O -
After the pressure is reduced to 5 kg/cjt G, it is introduced into the upper part of the first auxiliary rectifying column 5, and becomes the reflux liquid of the first auxiliary rectifying column 5. The lower column lower part 2c includes the column bottom or a rectification stage one to several stages above the column bottom. Impure nitrogen gas Na from the upper column central portion 3C is introduced into the lower part of the first auxiliary rectifying column 5 as a rising gas, and rectification is performed with the impure nitrogen gas Na and the liquefied air LA, and the liquefied air is liquefied. Low-boiling components in the air LA, such as hydrogen, are concentrated in the upper part of the first auxiliary rectification column 5. In addition, as the rising gas of the first auxiliary rectification column 5, in addition to the impure nitrogen gas Na,
The raw material air GA, the gas in each part of the lower column 2, the oxygen gas Go in the upper column 3, etc. may be used.

第一補助精留塔5の頂部に濃縮された低沸点成分を多く
含む気相部Xaは、排出弁14を経て導出される。この
排出弁14は、排出する気相部Xaの量を調節するとと
もに、第一補助精留塔5内を適当な圧力に保持して液化
空気LAの気化量を制御する機能を果している。従って
、該排出弁14の開度を制御して第一補助精留塔5から
排出する気相部XaO量を調節するとともに、該第一補
助精留塔5内の圧力、即ち減圧度を調節して液化空気L
Aの気化量を制御することが可能である。
The gas phase portion Xa containing a large amount of low boiling point components concentrated at the top of the first auxiliary rectification column 5 is led out via the discharge valve 14. This discharge valve 14 has the function of regulating the amount of the gas phase portion Xa to be discharged, and also maintaining the inside of the first auxiliary rectification column 5 at an appropriate pressure to control the amount of vaporization of the liquefied air LA. Therefore, the opening degree of the discharge valve 14 is controlled to adjust the amount of gas phase XaO discharged from the first auxiliary rectification column 5, and the pressure inside the first auxiliary rectification column 5, that is, the degree of pressure reduction is adjusted. and liquefied air L
It is possible to control the amount of vaporized A.

一方、第一補助精留塔5の下部に分離した液相部Yaは
、その底部から導出されて上部塔中部3Cに導入される
On the other hand, the liquid phase portion Ya separated at the lower part of the first auxiliary rectification column 5 is led out from the bottom and introduced into the upper column middle section 3C.

次に、下部塔中部2bを還流液として流下する不純液化
窒素MNの一部が管15により導出され、減圧弁16で
流量及び圧力を調節され、上部塔3の操作圧力まで降圧
した後に第二補助精留塔6に還流液として導入される。
Next, a part of the impure liquefied nitrogen MN flowing down the lower column middle part 2b as a reflux liquid is led out through the pipe 15, the flow rate and pressure are adjusted by the pressure reducing valve 16, and after the pressure is reduced to the operating pressure of the upper column 3, the second It is introduced into the auxiliary rectification column 6 as a reflux liquid.

この第二補助精留塔6の下部には、上部塔中上部3bの
不純窒素ガスNbが上昇ガスとして導入されており、該
不純窒素ガスNbと前記不純液化窒素MNとで精留が行
われ、不純液化窒素MN中の低沸点成分が第二補助精留
塔6の頂部に濃縮される。尚、第二補助精留塔6の上昇
ガスとしては、上記不純窒素ガスNbの他、原料空気G
A,下部塔2各部のガス.上部塔の酸素ガスGo等でも
良い。
Impure nitrogen gas Nb from the upper part 3b of the upper column is introduced as a rising gas into the lower part of the second auxiliary rectification column 6, and rectification is performed with the impure nitrogen gas Nb and the impure liquefied nitrogen MN. , the low boiling point components in the impure liquefied nitrogen MN are concentrated at the top of the second auxiliary rectification column 6. In addition to the above-mentioned impure nitrogen gas Nb, the rising gas of the second auxiliary rectification column 6 includes raw material air G.
A. Gas in each part of lower column 2. Oxygen gas Go in the upper column may also be used.

前記第一補助精留塔5と同様に、第二補助精留塔6頂部
の低沸点成分を多く含む気相部xbは、排出弁17を経
て導出され、底部の液相部Ybは、その底部から導出さ
れて上部塔中上部3bに導入される。
Similar to the first auxiliary rectifying column 5, the gas phase section xb containing a large amount of low boiling point components at the top of the second auxiliary rectifying column 6 is led out via the discharge valve 17, and the liquid phase section Yb at the bottom is It is led out from the bottom and introduced into the upper part 3b of the upper column.

さらに、前記下部塔上部2aに分離した窒素ガスGNは
、管18を経て一部が製品窒素ガス等として採取される
とともに、残部が上部塔下部3dに配設された凝縮蒸発
器4に導入され、後述の液化酸素LOと熱交換を行い凝
縮液化して液化窒素LNとなり管19から導出される。
Furthermore, part of the nitrogen gas GN separated in the upper part 2a of the lower column is collected as a product nitrogen gas through a pipe 18, and the remainder is introduced into the condenser evaporator 4 disposed in the lower part 3d of the upper column. It exchanges heat with liquefied oxygen LO, which will be described later, and is condensed and liquefied to become liquefied nitrogen LN, which is led out from the pipe 19.

この液化窒素LNは、大部分が下部塔上部2aに戻され
て下部塔2の還流液となり、その一部が管20を経て減
圧弁21で上部塔.3の圧力に降圧して第三補助精留塔
7に還流液として導入される。この第三補助精留塔7の
下部には、上部塔上部3aの高純度窒素ガスPNの一部
が上昇ガスとして導入されており、該高純度窒素ガスP
Nと前記液化窒.素LNとで精留が行われ、液化窒素L
N中の低沸点成分が第三補助精留塔7の頂部に濃縮され
る。この第三補助精留塔7頂部の低沸点成分を多く含む
気相部Xcも、前記第一補助精留塔5と同様に、排出弁
22を経て導出され、底部の液相部Ycは、その底部か
ら導出されて上部塔上部3aに導入される。
Most of this liquefied nitrogen LN is returned to the upper part 2a of the lower column and becomes the reflux liquid of the lower column 2, and a part of it passes through the pipe 20 and passes through the pressure reducing valve 21 to the upper column. 3 and introduced into the third auxiliary rectification column 7 as a reflux liquid. A part of the high-purity nitrogen gas PN in the upper part 3a of the upper column is introduced into the lower part of the third auxiliary rectification column 7 as a rising gas, and the high-purity nitrogen gas P
N and the liquefied nitrogen. Rectification is performed with elementary LN, and liquefied nitrogen L
The low-boiling components in the N are concentrated at the top of the third auxiliary rectification column 7. The gas phase portion Xc at the top of the third auxiliary rectification column 7 containing a large amount of low-boiling point components is also led out through the discharge valve 22 in the same way as the first auxiliary rectification column 5, and the liquid phase portion Yc at the bottom is It is led out from the bottom and introduced into the upper part 3a of the upper column.

尚、上記下部塔上部2aの液化ガスの取出し経路は、上
記の凝縮蒸発器4で凝縮して生成した液化窒素LNを導
出する導出経路、あるいは下部塔2の上部に液溜がある
場合は、この液溜からの導・出経路、そして、下部塔頂
部より複数段下の精留段の液化窒素を導出する経路を含
むものである。
Note that the extraction route for the liquefied gas from the upper part 2a of the lower column is the extraction route for extracting the liquefied nitrogen LN produced by condensation in the condenser evaporator 4, or if there is a liquid reservoir in the upper part of the lower column 2, It includes a route for leading/outgoing from this liquid reservoir, and a route for leading out the liquefied nitrogen from the rectification stages located several stages below the top of the lower column.

上記のごとく、各補助精留塔5,6.7で低沸点成分を
分離した液相部Y a ,Y b ,Y c s即ち液
化空気LAや不純液化窒素MN,液化窒素LN等の液化
ガスは、上部塔3の所定位置にそれぞれ還流液として導
入され、上部塔3内で精留されて下部3dの液化酸素L
Oと上部3aの高純度窒素ガスPNとに分離する。
As mentioned above, the liquid phase parts Y a , Y b , Y c s from which low boiling point components are separated in each auxiliary rectification column 5, 6.7, that is, liquefied gas such as liquefied air LA, impure liquefied nitrogen MN, and liquefied nitrogen LN are each introduced as a reflux liquid into a predetermined position in the upper column 3, and are rectified in the upper column 3 to form liquefied oxygen L in the lower part 3d.
It separates into O and high purity nitrogen gas PN in the upper part 3a.

上部塔下部3dの液化酸素LOは、凝縮蒸発器4で前述
の窒素ガスGNと熱交換を行い、蒸発気化して上部塔3
の上昇ガスになるとともに、一部が酸素ガスGoとして
導出される。また、上部塔中上部3bからは不純窒素ガ
スWNが導出され、上部塔上部3aからは高純度窒素ガ
スPNが導出される。この高純度窒素ガスPNは、前述
のごとく、低沸点成分を分離した後の液化ガスを精留し
て得られるものであるから、水素等の低沸点成分をほと
んど含まない高純度のものが得られる。
The liquefied oxygen LO in the lower part 3d of the upper column exchanges heat with the aforementioned nitrogen gas GN in the condensing evaporator 4, and is evaporated and vaporized to the upper column 3.
As the gas rises, a part of it is derived as oxygen gas Go. Moreover, impure nitrogen gas WN is led out from the upper part 3b of the upper column, and high purity nitrogen gas PN is led out from the upper part 3a of the upper column. As mentioned above, this high-purity nitrogen gas PN is obtained by rectifying the liquefied gas after separating the low-boiling point components, so it can be of high purity and contains almost no low-boiling point components such as hydrogen. It will be done.

このように、下部塔2から導出して上部塔3に導入する
液化ガスの全てを補助精留塔で精留して、低沸点成分を
濃縮したガスを系外に排出することにより、上部塔3内
に導入する液化ガス中の低沸点成分を大幅に低減させる
ことができる。従って、これらの液化ガスを精留して得
られる高純度窒素ガスPN中の低沸点成分を大幅に低減
することができる。例えば、この実施例の場合の製品高
純度窒素ガスPN中の水素ガス濃度をo.oi4ppm
まで低減しうる。
In this way, all of the liquefied gas led out from the lower column 2 and introduced into the upper column 3 is rectified in the auxiliary rectification column, and the gas with concentrated low-boiling components is discharged from the system. The low boiling point components in the liquefied gas introduced into the liquefied gas can be significantly reduced. Therefore, the low boiling point components in the high purity nitrogen gas PN obtained by rectifying these liquefied gases can be significantly reduced. For example, in this example, the hydrogen gas concentration in the product high purity nitrogen gas PN is o. oi4ppm
It can be reduced to

下表に、上記実施例及び第三補助精留塔7を1個のみ設
けた場合の比較例における高純度窒素ガスPN中の低沸
点成分の低減効果を確認するコンピューターシュミレー
ションによる計算を行った結果を示す。尚、計算に際し
ては、低沸点ガスを代表して水素ガスの濃度を測定する
とともに、その低減効果をより明確にするために原料空
気GAの水素量を1 0 1)plllに設定した。ま
た、各ガスあるいは液の流量[Nrrr / h]及び
水素濃度[ppm ]のΔP1定点は、図に示すように
、 A:原料空気GA, B:下部塔下部2cから導出される液化空気LA, C:第一補助精留塔5頂部から排出される気相部Xa, D二上部塔中部3cに導入される液相部Ya,E:下部
塔中部2bから導出される不純液化窒素MN, F:第二補助精留塔6頂部から排出される気相部Xb, G:上部塔中部上部3bに導入される液相部Yb, H:下部塔上部2aから導出される液化窒素LN, I:第三補助精留塔7頂部から排出される気相部Xc, J:上部塔上部3aに導入される液相部Yc,K:上部
塔3上部3aから採取される高純度窒素ガスPN, L:上部塔3中上部3bから導出される不純窒素ガスW
N である。
The table below shows the results of computer simulation calculations to confirm the effect of reducing low boiling point components in high purity nitrogen gas PN in the above example and in the comparative example where only one third auxiliary rectification column 7 is provided. shows. In the calculation, the concentration of hydrogen gas was measured as a representative of low boiling point gas, and the amount of hydrogen in the feed air GA was set to 101) plll in order to make the reduction effect clearer. In addition, the ΔP1 fixed points of the flow rate [Nrrr/h] and hydrogen concentration [ppm] of each gas or liquid are as shown in the figure: A: Raw air GA, B: Liquefied air LA derived from the lower column lower part 2c, C: Gas phase part Xa discharged from the top of the first auxiliary rectification column 5, D liquid phase part Ya introduced into the second upper column middle part 3c, E: Impure liquefied nitrogen MN led out from the lower column middle part 2b, F : Gaseous phase part Xb discharged from the top of the second auxiliary rectification column 6, G: Liquid phase part Yb introduced into the upper column middle upper part 3b, H: Liquefied nitrogen LN led out from the lower column upper part 2a, I: Gas phase part Xc, J discharged from the top of the third auxiliary rectification column 7: Liquid phase part Yc, K introduced into the upper part 3a of the upper column 3: High purity nitrogen gas PN, L collected from the upper part 3a of the upper column 3 : Impure nitrogen gas W derived from the upper part 3b of the upper column 3
It is N.

表から明らかなように、液化窒素LN用の第三浦助精留
塔7を1個のみ設けた比較例の場合は、下部塔2より上
部塔3への液化空気LA及び不純液化窒素MN中に微量
の水素が同伴され、製品高純度窒素ガスPN中の水素濃
度は0.15ppmである。しかし、本実施例のごとく
、液化空気LA,不純液化窒素MN及び液化窒素LNの
3系統それぞれに補助精留塔を設けた場合は、製品高純
度窒素ガスPN中の水素濃度は0.014ppmとなり
、1桁純度が向上する。
As is clear from the table, in the case of the comparative example in which only one third Urasuke rectification column 7 for liquefied nitrogen LN is provided, liquefied air LA and impure liquefied nitrogen MN are transferred from the lower column 2 to the upper column 3. A trace amount of hydrogen is entrained in the product, and the hydrogen concentration in the product high-purity nitrogen gas PN is 0.15 ppm. However, if an auxiliary rectifying column is provided for each of the three systems of liquefied air LA, impure liquefied nitrogen MN, and liquefied nitrogen LN as in this example, the hydrogen concentration in the product high-purity nitrogen gas PN will be 0.014 ppm. , the purity is improved by one order of magnitude.

また、補助精留塔では、上記3種の液化ガス中の水素濃
度を0.01ppa+程度(上記表のD,G,J)迄低
減できるが、気液分離器のみでは0.03〜0.08p
pm程度までしか低減することができない。
In addition, the auxiliary rectifier can reduce the hydrogen concentration in the three types of liquefied gases to about 0.01 ppa+ (D, G, and J in the table above), but the gas-liquid separator alone can reduce the hydrogen concentration in the three types of liquefied gases to about 0.01 ppa+ (D, G, and J in the table above). 08p
It can be reduced only to about pm.

次に、第2図は、本発明の第2実施例を示すもので、下
部塔下部2Cから導出されて上部塔中部3Cに導入され
る液化空気LAを他の手慇で精留し、該液化空気LA中
の低沸点成分の低減を図ったものである。尚、以下の説
明において前記第1図に示した第1実施例と同一要素の
ものには同一符号を付して詳細な説明を省略する。
Next, FIG. 2 shows a second embodiment of the present invention, in which liquefied air LA led out from the lower part 2C of the lower column and introduced into the middle part 3C of the upper column is rectified by another hand, and the This is intended to reduce low boiling point components in liquefied air LA. In the following description, the same elements as those in the first embodiment shown in FIG.

下部塔下部2cから導出される液化空気LAは、管12
で導出され、減圧弁13で中間圧力に減圧された後に補
助精留塔8の上部に導入される。この補助精留塔8の底
部には、原料空気GAの一部を加熱源とするりボイラー
9が設けられており、該補助精留塔8底部の液化空気L
Aを加熱蒸発させて上昇ガスとし、液化空気LAの精留
を行って低沸点成分を頂部に濃縮している。この補助精
留塔8頂部の低沸点成分を多く含む気相部Xdは、前記
実施例に示す第一補助精留塔5と同様に、排出弁17を
経て導出され、底部の液相部Ydは、その底部から導出
されて第二減圧弁23で上部塔圧力まで減圧して上部塔
中部3Cに低沸点成分の少ない還流液として導入される
The liquefied air LA led out from the lower column lower part 2c is passed through the pipe 12
After being depressurized to intermediate pressure by the pressure reducing valve 13, it is introduced into the upper part of the auxiliary rectification column 8. At the bottom of this auxiliary rectifying column 8, a boiler 9 is provided which uses part of the raw air GA as a heat source, and the liquefied air L at the bottom of the auxiliary rectifying column 8 is
A is heated and evaporated to form a rising gas, and the liquefied air LA is rectified to concentrate low-boiling components at the top. The gas phase portion Xd at the top of the auxiliary rectification column 8 containing many low-boiling components is led out through the discharge valve 17, similar to the first auxiliary rectification column 5 shown in the above embodiment, and the liquid phase portion Yd at the bottom. is drawn out from the bottom, reduced in pressure to the upper column pressure by the second pressure reducing valve 23, and introduced into the upper column middle section 3C as a reflux liquid containing few low-boiling components.

本実施例においても、前記実施例と同様に、上部塔3に
導入する各液化ガス中の低沸点成分を低減させているの
で、上部塔3で精留分離して、その上部3aから採取す
る高純度窒素PN中の低沸点成分量を低減させることが
できる。
In this example, as in the previous example, the low boiling point components in each liquefied gas introduced into the upper column 3 are reduced, so the components are rectified and separated in the upper column 3 and collected from the upper part 3a. The amount of low boiling point components in high purity nitrogen PN can be reduced.

このように、本発明は、他の低沸点成分低減手段と組合
せても同様の効果を得ることができるから、液化ガスの
流量や組成,採取する製品の種類,空気液化分離装゛置
の構成等により、各種手段、例えば、上記第2実施例に
示す補助精留塔8を不純液化窒素MNに用いたり、気液
分離器等で低沸点成分を分離する手段を組合せたり、さ
らに前記従来の技術で述べた補助精留段等を適宜組合せ
て実施することが可能である。
As described above, the present invention can obtain the same effect even when combined with other low-boiling point component reduction means, so the flow rate and composition of the liquefied gas, the type of product to be collected, and the configuration of the air liquefaction separation device For example, using the auxiliary rectification column 8 shown in the second embodiment for impure liquefied nitrogen MN, combining means for separating low-boiling components with a gas-liquid separator, etc. It is possible to carry out the process by appropriately combining the auxiliary rectification stages etc. described in the technical section.

上記両実施例に示すように、下部塔下部2Cの液化空気
LA及び/又は下部塔中部2bの不純液化窒素MNを補
助精留塔に導入して精留し、該補助精留塔頂部に濃縮し
た低沸点成分を排出することにより、上部塔3に導入さ
れる低沸点成分の量を低減することができ、製品として
採取する高純度窒素ガスPN中の低沸点成分量を低減さ
せることができる。
As shown in both of the above embodiments, the liquefied air LA in the lower part 2C of the lower column and/or the impure liquefied nitrogen MN in the middle part 2b of the lower column are introduced into the auxiliary rectification column, rectified, and concentrated at the top of the auxiliary rectification column. By discharging the low boiling point components, the amount of low boiling point components introduced into the upper column 3 can be reduced, and the amount of low boiling point components in the high purity nitrogen gas PN collected as a product can be reduced. .

尚、本発明に用いる補助精留塔の段数は、液量や液組成
等により適宜設定されるものである。また、補助精留塔
は、通常の目皿板式のものの他、充填塔等適宜選択し得
る。
The number of plates in the auxiliary rectification column used in the present invention is appropriately set depending on the liquid amount, liquid composition, and the like. Further, the auxiliary rectification column may be appropriately selected from a normal perforated plate type, a packed column, etc.

また、上記両実施例の説明においては、本発明の方法を
実施するために必要な部分のみを図示して説明を行った
が、本発明は、通常の各種付帯設備を備えた複精留塔を
用いて実施することが可能であり、他のガス製品や液製
品も同時に採取することができる。さらに、前述のごと
く、この種の精留塔に適用し得る他の低沸点成分の低減
手段を各種組合せて、より高純度の窒素ガスを得ること
もできる。また、分離した低沸点成分を主成分とする放
出ガスを回収してネオン等を採取するための原料ガスと
しても良い。
In addition, in the explanation of both of the above embodiments, only the parts necessary for carrying out the method of the present invention were illustrated and explained, but the present invention is applicable to a double rectification tower equipped with various usual auxiliary equipment. It is possible to carry out the process using a gaseous gas and liquid products, and other gas and liquid products can also be collected at the same time. Furthermore, as described above, higher purity nitrogen gas can be obtained by combining various other means for reducing low boiling point components that can be applied to this type of rectification column. Alternatively, the separated emitted gas mainly composed of low boiling point components may be recovered and used as a raw material gas for collecting neon or the like.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、下部塔下部の液化空気
もしくは下部塔中部の不純液化窒素を上部塔の所定位置
に導入するにあたり、下部塔から導出して補助精留塔に
導入し、精留して該補助精留塔項部に濃縮した低沸点成
分を排出することにより、液化空気もしくは不純液化窒
素に同伴されて上部塔に導入される低沸点成分の量を大
幅に低減することができ、製品として採取する高純度窒
素ガス中の低沸点成分量を低減させることができる。
As explained above, in the present invention, when introducing liquefied air in the lower part of the lower column or impure liquefied nitrogen in the middle of the lower column to a predetermined position in the upper column, it is led out from the lower column and introduced into the auxiliary rectification column. By discharging the concentrated low-boiling components into the upper section of the auxiliary rectification column, it is possible to significantly reduce the amount of low-boiling components that are entrained in liquefied air or impure liquefied nitrogen and introduced into the upper column. This makes it possible to reduce the amount of low-boiling components in the high-purity nitrogen gas collected as a product.

これにより、原料空気中の低沸点成分含有量が変動して
大幅に増加した場合でも、高純度窒素ガス中の低沸点成
分の量を基準値以下に容易に押えることが可能となり、
さらに従来よりも高純度窒素ガスの採取率を向上でき、
同一規模の空気液化分離装置における高純度窒素の採取
量を大幅に増加させることができる。
As a result, even if the content of low-boiling components in the feed air fluctuates and increases significantly, it is possible to easily keep the amount of low-boiling components in high-purity nitrogen gas below the standard value.
Furthermore, the collection rate of high-purity nitrogen gas can be improved compared to conventional methods.
It is possible to significantly increase the amount of high-purity nitrogen collected in an air liquefaction separation device of the same scale.

また通常の複精留塔に、簡単な補助精留塔と弁とを追加
するだけで容易に構成することができるので、装置コス
トの上昇も僅かであり、既存設備への対応も可能である
In addition, it can be easily configured by simply adding a simple auxiliary rectifying column and a valve to a normal double rectifying column, so there is only a slight increase in equipment cost, and it can be used with existing equipment. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の第1実施例を示す系統図、第2図
は第2実施例を示す系統図である。 1・・・複精留塔  2・・・下部塔  2b・・・下
部塔中部  2C・・・下部塔下部  3・・・上部塔
3b・・・上部塔中上部  3c・・・上部塔中部5.
6・・・補助精留塔  13,16・・・減圧弁14.
17・・・排出弁  A−L・・・流量及び水素濃度の
測定点  LA・・・液化空気  LN・・・液化窒素
  MN・・・不純液化窒素  PN・・・高純度窒素
ガス  Xa,Xb,Xc・”気相部  Ya,Yb,
Yc・・・液相部 特 許 出 願 人 日本酸素株式会社同 木   戸        彦 (1 ,;・1(ジ 瑯1
FIG. 1 is a system diagram showing a first embodiment of the method of the present invention, and FIG. 2 is a system diagram showing a second embodiment. 1... Double rectification column 2... Lower column 2b... Lower column middle part 2C... Lower column lower part 3... Upper column 3b... Upper column middle upper part 3c... Upper column middle part 5 ..
6... Auxiliary rectification column 13, 16... Pressure reducing valve 14.
17... Discharge valve A-L... Measuring point for flow rate and hydrogen concentration LA... Liquefied air LN... Liquefied nitrogen MN... Impure liquefied nitrogen PN... High purity nitrogen gas Xa, Xb, Xc・”Gas phase part Ya, Yb,
Yc...liquid phase patent applicant: Tohiko Doki, Nippon Sanso Co., Ltd.

Claims (1)

【特許請求の範囲】 1、原料空気を圧縮して精製、冷却した後に複精留塔に
導入して液化精留分離を行う空気液化分離方法において
、前記複精留塔に補助精留塔を付設し、該補助精留塔に
複精留塔の下部塔下部に分離する液化空気を導出して減
圧した後に還流液として導入し、補助精留塔塔頂部に精
留分離した気相部を排出し、塔底部の液相部を前記複精
留塔の上部塔中部に導入し、上部塔上部より高純度窒素
を導出することを特徴とする空気液化分離方法。 2、原料空気を圧縮して精製、冷却した後に複精留塔に
導入して液化精留分離を行う空気液化分離方法において
、前記複精留塔に補助精留塔を付設し、該補助精留塔に
複精留塔の下部塔中部の不純液化窒素を導出して減圧し
た後に還流液として導入し、補助精留塔塔頂部に精留分
離した気相部を排出し、塔底部の液相部を前記複精留塔
の上部基中上部に導入し、上部塔上部より高純度窒素を
導出することを特徴とする空気液化分離方法。 3、原料空気を圧縮して、精製、冷却した後に複精留塔
に導入して液化精留分離を行う空気分離装置において、
複精留塔の下部塔下部及び/又は下部塔中部及び/又は
下部塔上部より液化ガスを導出する経路と、導出した液
化ガスを減圧する手段と、減圧した液化ガスを補助精留
する補助精留塔と、該補助精留塔の塔頂部に精留分離し
た気相部を排出する経路と、補助精留塔の塔底部に精留
分離した液相部を前記複精留塔の上部塔中部及び/又は
上部塔中段上部及び/又は上部塔上部にそれぞれ導入す
る経路とを設けるとともに、上部塔上部に高純度窒素を
導出する経路を設けたことを特徴とする空気液化分離装
置。 4、前記液化ガスが、酸素富化液化空気及び/又は窒素
富化液化窒素及び/又は液化窒素であることを特徴とす
る請求項3記載の空気液化分離装置。
[Scope of Claims] 1. An air liquefaction separation method in which raw air is compressed, purified, cooled, and then introduced into a double rectification column for liquefaction rectification separation, wherein an auxiliary rectification column is provided in the double rectification column. The liquefied air separated at the bottom of the lower column of the double rectification column is introduced into the auxiliary rectification column, and after being depressurized, it is introduced as a reflux liquid, and the gas phase separated by rectification is transferred to the top of the auxiliary rectification column. An air liquefaction separation method characterized in that the liquid phase at the bottom of the column is introduced into the middle part of the upper column of the double rectification column, and high-purity nitrogen is led out from the upper part of the upper column. 2. In an air liquefaction separation method in which raw air is compressed, purified, and cooled and then introduced into a double rectification column for liquefaction rectification separation, an auxiliary rectification column is attached to the double rectification column, and the auxiliary rectification column is The impure liquefied nitrogen in the middle of the lower column of the double rectification column is led out to the distillation column, the pressure is reduced, and then introduced as a reflux liquid.The gas phase separated by rectification is discharged to the top of the auxiliary rectification column. An air liquefaction separation method characterized in that a phase portion is introduced into the upper part of the upper base of the double rectification column, and high purity nitrogen is derived from the upper part of the upper column. 3. In an air separation device that compresses raw air, refines it, cools it, and then introduces it into a double rectification column to perform liquefaction rectification separation,
A route for delivering the liquefied gas from the lower part of the lower column and/or the middle of the lower column and/or the upper part of the lower column of the double rectification column, a means for reducing the pressure of the extracted liquefied gas, and an auxiliary rectification for auxiliary rectification of the reduced pressure liquefied gas. a distillation column, a path for discharging the rectified and separated gas phase part to the top of the auxiliary rectification column, and a path for discharging the rectified and separated liquid phase part to the bottom of the auxiliary rectification column to the upper column of the double rectification column. An air liquefaction separation device characterized in that an air liquefaction separation device is provided with a path for introducing high-purity nitrogen into the middle and/or upper part of the upper column, and a path for introducing high-purity nitrogen into the upper part of the upper column. 4. The air liquefaction separation device according to claim 3, wherein the liquefied gas is oxygen-enriched liquefied air and/or nitrogen-enriched liquefied nitrogen and/or liquefied nitrogen.
JP1113279A 1989-05-02 1989-05-02 Air liquefaction separation method and apparatus Expired - Lifetime JP2781984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1113279A JP2781984B2 (en) 1989-05-02 1989-05-02 Air liquefaction separation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1113279A JP2781984B2 (en) 1989-05-02 1989-05-02 Air liquefaction separation method and apparatus

Publications (2)

Publication Number Publication Date
JPH02293578A true JPH02293578A (en) 1990-12-04
JP2781984B2 JP2781984B2 (en) 1998-07-30

Family

ID=14608150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1113279A Expired - Lifetime JP2781984B2 (en) 1989-05-02 1989-05-02 Air liquefaction separation method and apparatus

Country Status (1)

Country Link
JP (1) JP2781984B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1403602A1 (en) * 2002-09-28 2004-03-31 Linde AG Process and device for the production of ultra high purity Nitrogen

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60142184A (en) * 1983-12-28 1985-07-27 日本酸素株式会社 Method of liquefying and separating air

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60142184A (en) * 1983-12-28 1985-07-27 日本酸素株式会社 Method of liquefying and separating air

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1403602A1 (en) * 2002-09-28 2004-03-31 Linde AG Process and device for the production of ultra high purity Nitrogen

Also Published As

Publication number Publication date
JP2781984B2 (en) 1998-07-30

Similar Documents

Publication Publication Date Title
KR900007207B1 (en) Process to produce ultrahigh purity oxygen
KR100291684B1 (en) How to separate air
US5137559A (en) Production of nitrogen free of light impurities
JP2000055542A (en) Production of argon by low temperature air separation
JPH06210162A (en) Ultralow temperature fractionation system with thermally unified argon column
US4057407A (en) Method and apparatus for recovering argon from an air fractionating process
JPH02225994A (en) Method and device of refining nitrogen
US5123947A (en) Cryogenic process for the separation of air to produce ultra high purity nitrogen
EP0283213A2 (en) Process for the Recovery of Argon
JPH05288464A (en) Method and device for cryogenic rectification for producing nitrogen and ultra high purity oxygen
JPH05312469A (en) Apparatus and method for liquefying and separating air
JPH02293578A (en) Air liquefying separation method and its apparatus
JPS58198677A (en) Method and device for separating air
JPH0412391B2 (en)
JPH1030880A (en) Method and apparatus for separating first and second oxygen products from the air
JP2736546B2 (en) Air liquefaction separation method and apparatus
JPH05203350A (en) Extremely low temperature refining system for increase of argon
JPH0615947B2 (en) Air liquefaction separation method and device
JP3282040B2 (en) Ultra high purity oxygen sampling method and apparatus
JPH10103859A (en) Argon purifying method and air separator
JPH02298789A (en) Air liquefaction and separation method and its device
JPH0526114B2 (en)
JPS61289284A (en) Method and device for separating air
JP2553989B2 (en) Air liquefaction separation method
JPH04139004A (en) Method and apparatus for purification of oxygen

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term