JPH02291973A - Current sensor - Google Patents

Current sensor

Info

Publication number
JPH02291973A
JPH02291973A JP11332189A JP11332189A JPH02291973A JP H02291973 A JPH02291973 A JP H02291973A JP 11332189 A JP11332189 A JP 11332189A JP 11332189 A JP11332189 A JP 11332189A JP H02291973 A JPH02291973 A JP H02291973A
Authority
JP
Japan
Prior art keywords
current
amplifier
voltage
feedback circuit
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11332189A
Other languages
Japanese (ja)
Inventor
Yasufumi Suzuki
康文 鈴木
Masayoshi Yanagisawa
柳沢 正義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP11332189A priority Critical patent/JPH02291973A/en
Publication of JPH02291973A publication Critical patent/JPH02291973A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)

Abstract

PURPOSE:To prevent the saturation of a magnetic core and to make it possible to detect current highly accurately by providing a first negative feedback circuit which detects the current by AC zero flux method and a second negative feedback circuit which offsets the offset voltage of an amplifier. CONSTITUTION:A first negative feedback circuit 1 is provided with the following parts: a detecting coil 3 and a feedback coil 5 which are wound around a magnetic core that is brought close to a conductor wire 1 to be measured; an amplifier 9 which converts a voltage induced in the detecting coil 3 by the magnetic flux generated in the magnetic core 2 with a current through the conductor wire 1 and amplifies the current; and a reference resistor 6. The output current of the amplifier 9 is added to the feedback coil 5, and magnetic flux generated in the magnetic core 2 is offset. When the current flows, a voltage corresponding to the current through the conductor wire 1 is generated in the reference resistor 6. A second feedback circuit has an integrator 11 having the specified time constant. The voltage generated at the reference resistor 6 is inputted into the second feedback circuit. The DC voltage component contained in said input is taken out and fed back to the input side of the amplifier 9. The DC offset voltage on the output side of the amplifier 9 is offset in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は被測定導線に流れる電流を検出する電流セン
サに係り、更に詳しく言えば、ゼロフラックス法にて電
流検品を行う際、増幅器等に発生するオフセット電圧を
補償するようにした電流センサに関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a current sensor that detects the current flowing in a conductor under test. The present invention relates to a current sensor that compensates for offset voltage that occurs.

〔従 来 例〕[Conventional example]

第4図には従来の一般的な電流センサの例が示されてい
る。同図において、1は被測定導線、2,2は例えば図
示しない開閉機構により被測定導線1を外包する磁気コ
アであって、その上に電流検出コイル3と帰還コイル5
とが巻かれている。4は増幅器、6は基準抵抗、7は出
方端子である。
FIG. 4 shows an example of a conventional general current sensor. In the figure, 1 is a conductive wire to be measured, 2 and 2 are magnetic cores that enclose the conductive wire 1 to be measured by, for example, an opening/closing mechanism (not shown), and a current detection coil 3 and a feedback coil 5 are placed on top of the magnetic core.
is wrapped around. 4 is an amplifier, 6 is a reference resistor, and 7 is an output terminal.

ここで、被測定導11に電流が流れるとその起磁力によ
り磁気コア2内には磁束が発生し、検出コイル3には誘
導電圧が現れる。この電圧は例えば増幅器4により電流
に変換されて増幅されたのち、帰還コイル5と基準抵抗
6からなる帰還回路にフィードバックされる。これによ
り磁気コア2内においては、被測定導線1の電流による
磁束がこの帰還電流によって発生する逆極性の磁束で打
ち消されるようになっている。
Here, when a current flows through the conductor to be measured 11, a magnetic flux is generated in the magnetic core 2 due to its magnetomotive force, and an induced voltage appears in the detection coil 3. This voltage is converted into a current and amplified by, for example, an amplifier 4, and then fed back to a feedback circuit including a feedback coil 5 and a reference resistor 6. As a result, within the magnetic core 2, the magnetic flux caused by the current in the conducting wire 1 to be measured is canceled out by the magnetic flux of opposite polarity generated by this feedback current.

この両磁束が打ち消し合ったとき、すなわちゼロフロラ
ックスとなったとき、基準抵抗6の両端間には増幅器4
からの帰還電流によって電圧降下が生じているから、そ
の電圧を例えば出力端子7から図示しない測定部に取り
込んで測定することにより被測定導線1に流れる電流を
求めることができる。
When these two magnetic fluxes cancel each other out, that is, when the flux becomes zero, an amplifier 4 is connected between both ends of the reference resistor 6.
Since a voltage drop occurs due to the feedback current from the conductor 1, the current flowing through the conductor 1 to be measured can be determined by taking the voltage from the output terminal 7 into a measuring section (not shown) and measuring it.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来の電流センサはその負帰還作用により磁気回路
の非直線性などによる影響を受けず、比較的広い周波数
にわたって安定で、精度の良い電流検出ができるという
長所がある。
The above-mentioned conventional current sensor has the advantage that it is not affected by nonlinearity of the magnetic circuit due to its negative feedback effect, and is capable of stable and accurate current detection over a relatively wide frequency range.

ところで、負帰還を利用して特性を改善する場合には帰
還量が多いほどその効果が大きいので、一般には帰還増
幅器の利得を十分高くするようにしている。この場合、
増幅器を高利得にするに伴って比較的大きなオフセット
電圧が発生し,上記第4図の例ではそれによる直流電流
が帰還コイル5を流れ、磁気コ72が飽和しやすくなる
という現象が生じる。
By the way, when improving characteristics using negative feedback, the larger the amount of feedback, the greater the effect, so generally the gain of the feedback amplifier is made sufficiently high. in this case,
As the gain of the amplifier is increased, a relatively large offset voltage is generated, and in the example shown in FIG. 4, the resulting direct current flows through the feedback coil 5, causing the magnetic coil 72 to become easily saturated.

その一例を第5図により説明すると、同図(A)′は電
流センサなどに用いられる磁気コアを磁界中に置いたと
き、磁界の強さとコア内の磁束密度との関係を示したも
のである。ここで、例えば同図CB)に示すように被測
定導線1に電流が流れ、それによる磁界が同図(A)の
P−Qの範囲であったとすると、通常はコア2内の磁束
密度はそのヒステリシス特性により第4図(A)の実線
からずれて変化するが、例えば横軸を時間軸として磁束
密度の相対的な変化を表すと同図(C)の実線で示すよ
うになり,検出コイル3にはファラデーの法則に基づく
図示しない誘導電圧が現れる。ゼロフラックス法におい
てはこの電圧を増幅器4により電流に変換して増幅し、
帰還コイル5に流して上記(C)の破線で示すように、
コア2内の磁束と逆向きの磁束を発生させるようにして
いる。これにより両磁束が打ち消し合うとともに動作点
が原点0の位置に固定され、基準抵抗6には同図(D)
に示すように帰還電流によって検出コイル3の誘導電圧
と相似の波形を有する電圧が発生する。この場合、磁気
回路に非直線性があっても負帰還により、その磁気回路
の動作点が固定されるため特性が改善され、被測定導線
1に流れる電流(B)と検出コイル3に現れる電圧、及
び基準抵抗6に発生する電圧(D)とは一定のレベル関
係の下に対応するから、この基準抵抗に発生する電圧を
測定すれば被測定導線に流れる電流を求めることができ
る。
An example of this can be explained with reference to Figure 5. Figure (A)' shows the relationship between the strength of the magnetic field and the magnetic flux density inside the core when a magnetic core used in a current sensor, etc. is placed in a magnetic field. be. For example, if a current flows through the conductor 1 to be measured as shown in (CB) in the same figure, and the resulting magnetic field is in the range of P-Q in (A) of the same figure, the magnetic flux density in the core 2 is normally Due to its hysteresis characteristics, it changes from the solid line in Figure 4 (A), but for example, if the horizontal axis is the time axis and the relative change in magnetic flux density is expressed as shown by the solid line in Figure 4 (C), the detection An induced voltage (not shown) appears in the coil 3 based on Faraday's law. In the zero flux method, this voltage is converted into a current by an amplifier 4 and amplified.
As shown by the broken line in (C) above, the current is passed through the feedback coil 5.
A magnetic flux in the opposite direction to the magnetic flux inside the core 2 is generated. As a result, both magnetic fluxes cancel each other out and the operating point is fixed at the origin 0 position, and the reference resistor 6 is shown in the same figure (D).
As shown in FIG. 2, a voltage having a waveform similar to the induced voltage of the detection coil 3 is generated by the feedback current. In this case, even if there is nonlinearity in the magnetic circuit, the operating point of the magnetic circuit is fixed due to negative feedback, so the characteristics are improved, and the current (B) flowing in the conductor under test 1 and the voltage appearing in the detection coil 3 , and the voltage (D) generated at the reference resistor 6 correspond to each other under a certain level relationship. Therefore, by measuring the voltage generated at this reference resistor, the current flowing through the conductor to be measured can be determined.

しかしながら、増幅器4にオフセット電圧などが発生す
ると、それによる直流電流が帰還コイル5に流れること
になる。そのため上記第5図(A)に示すように,例え
ばコ72がマイナス方向に磁化されて原点OがO′へ移
動したとすると、検出コイル3はこの直流磁束に対して
感度が無いので0′をOへ戻す帰還作用が働かない。し
たがってこの場合にはコア2の動作点がO′となる。
However, if an offset voltage or the like occurs in the amplifier 4, a direct current due to the offset voltage will flow to the feedback coil 5. Therefore, as shown in FIG. 5(A), for example, if the coil 72 is magnetized in the negative direction and the origin O moves to O', the detection coil 3 has no sensitivity to this DC magnetic flux, so 0' The feedback action that returns the to O does not work. Therefore, in this case, the operating point of the core 2 is O'.

よって、被測定導線1に電流(B′)が流れるとコア2
における磁束密度は例えば第5図(C′)の実線で示す
ように変化し、検出コイル3はこの変化に感応して図示
しない誘導電圧を発生する。この電圧は上記増幅器4に
て電流に変換され、同様に帰還コイル5にフィードバッ
クされる。これにより、コア2内には上記第5図(C′
)の実線と逆極性の破線で示す磁束が発生して互いに打
ち消し合い、基準抵抗6には第5図(D′)の破線で示
すように、検出コイル3の誘導電圧と相似の波形を有す
る電圧が発生する。
Therefore, when current (B') flows through the conductor 1 to be measured, the core 2
The magnetic flux density changes, for example, as shown by the solid line in FIG. 5(C'), and the detection coil 3 generates an induced voltage (not shown) in response to this change. This voltage is converted into a current by the amplifier 4, and similarly fed back to the feedback coil 5. As a result, inside the core 2, as shown in FIG. 5 (C'
) are generated and cancel each other out, and the reference resistor 6 has a waveform similar to the induced voltage in the detection coil 3, as shown by the broken line in FIG. 5(D'). Voltage is generated.

この電圧を同様に測定して被測定導線に流れる電流を求
めるのであるが、例えば直流磁化により第5図(A)の
0′のようにコアの動作点がずれて磁気飽和が生じた場
合には、基準抵抗に発生する電圧がひずみ波形となる。
This voltage is similarly measured to determine the current flowing through the conductor under test. For example, when DC magnetization causes the operating point of the core to shift as shown at 0' in Figure 5 (A) and magnetic saturation occurs. In this case, the voltage generated across the reference resistor becomes a distorted waveform.

したがって、この電圧と被測定導線に流れる電流との間
における正規の対応関係が崩れ,測定した電流値は極め
て誤差の大きいものとなる。
Therefore, the normal correspondence between this voltage and the current flowing through the conductor to be measured is broken, and the measured current value has an extremely large error.

このオフセット電圧による直流電流が帰還コイル5に流
れるのを阻止するため、例えば第6図に示すように増幅
器4の出力個へコンデンサ8を挿入することも考えられ
る。しかし,このコンデンサに直流電流が加わるとそれ
によって充電されるから、例えばその充電電圧により増
幅器4の動作点がバイアスされたりすると回路の動作ダ
イナミノクレンジが制限されるようなこともある。
In order to prevent the DC current due to this offset voltage from flowing to the feedback coil 5, it is conceivable to insert a capacitor 8 into the output of the amplifier 4, as shown in FIG. 6, for example. However, when a direct current is applied to this capacitor, it is charged, so if the operating point of the amplifier 4 is biased by the charging voltage, for example, the operating dynamic range of the circuit may be limited.

また、電流センサに対して広い動作周波数帯域が要求さ
れているような場合には、特に低い周波数においても所
定の機能を果たさせるため基準抵抗6とコンデンサ8な
どによる時定数を十分大きくする必要がある。しかし、
基準抵抗6の値は例えば測定電流レベルやコイルの巻数
、増幅器の出力電流等によって制限を受け,必ずしも大
きな抵抗値とすることができないので、通常はコンデン
サ8を大容量のものとすることになる。更に交流動作の
ため無極性もしくは両極性の特性であることが必要とな
るが、これらの条件を満たすコンデンサは通常の部品と
して得ることが困難である。
In addition, when a wide operating frequency band is required for the current sensor, it is necessary to make the time constant of the reference resistor 6 and capacitor 8 sufficiently large in order to perform the specified function even at particularly low frequencies. There is. but,
The value of the reference resistor 6 is limited by, for example, the measured current level, the number of turns of the coil, the output current of the amplifier, etc., and it is not necessarily possible to set it to a large resistance value, so the capacitor 8 is usually of a large capacity. . Furthermore, since AC operation requires non-polar or bipolar characteristics, it is difficult to obtain capacitors that meet these conditions as ordinary components.

仮りに得られたとしてもその形状、寸法等が大きくなる
ため現在の小形化している電流センサに採用することは
むずかしく、いずれにしても好ましくない。
Even if it could be obtained, its shape, size, etc. would be large, making it difficult to employ in current sensors that are becoming smaller, and in any case, it is not preferable.

この発明は上記の点に着目してなされたもので、その目
的は、増幅器等に発生したオフセット成分を打ち消して
磁気コアの飽和を防止し、高精度の電流検出を可能とす
る電流センサを提供することにある。
This invention was made with attention to the above points, and its purpose is to provide a current sensor that cancels offset components generated in amplifiers, etc., prevents saturation of the magnetic core, and enables highly accurate current detection. It's about doing.

〔課題を解決するための手段〕[Means to solve the problem]

この発明の実施例が示されている第1図を参照すると、
上記従来装置と同様の交流ゼロフラックス法による電流
検出を行うため、例えば検出コイル3、増幅器9、電力
増幅器10、帰還コイル5、及び磁気コ72,2にて閉
ループを形成した第1の負帰還回路を有している。
Referring to FIG. 1, an embodiment of the invention is shown.
In order to perform current detection using the AC zero flux method similar to the conventional device described above, a first negative feedback loop is formed by, for example, a detection coil 3, an amplifier 9, a power amplifier 10, a feedback coil 5, and magnetic coils 72 and 2. It has a circuit.

更に、増幅器9のオフセット電圧を打ち消すため、例え
ば基準抵抗6の出力側と増幅器9の入力側間に積分器1
1を設けて直流閉ループを形成した第2の負帰還回路を
僅えている。
Furthermore, in order to cancel the offset voltage of the amplifier 9, for example, an integrator 1 is connected between the output side of the reference resistor 6 and the input side of the amplifier 9.
1 to form a DC closed loop.

〔作   用〕[For production]

上記第1図において、例えば増幅器9の出力側にプラス
のオフセット電圧が発生していると、被測定導線1に流
れる電流によって検出コイル3に誘導した電圧がそれに
重畳し、したがって基準抵抗6の出力側には例えば第2
図(A)に示すように、上記重畳電圧と相似の電圧が発
生する。
In FIG. 1 above, for example, if a positive offset voltage is generated on the output side of the amplifier 9, the voltage induced in the detection coil 3 by the current flowing in the conductor under test 1 is superimposed on it, and therefore the output of the reference resistor 6 For example, the second
As shown in Figure (A), a voltage similar to the above superimposed voltage is generated.

ここで、上記誘導電圧の繰り返し周期,すなわち被測定
電流の繰り返し周期より十分大きい時定lr’cを有す
る積分器11にこの重畳電圧を入力すると、被測定電流
に対するコンデンサCの交流インピーダンスZcは極め
て小さく、Zc40とみなせるから、積分器11は交流
利得(Zc/r)がほぼゼロの増幅器として動作し、そ
の出力側には交流成分が現れない。
Here, when this superimposed voltage is input to the integrator 11 having a time constant lr'c sufficiently larger than the repetition period of the induced voltage, that is, the repetition period of the current to be measured, the AC impedance Zc of the capacitor C with respect to the current to be measured becomes extremely large. Since it is small and can be regarded as Zc40, the integrator 11 operates as an amplifier with an AC gain (Zc/r) of almost zero, and no AC component appears on its output side.

しかし直流に対するコンデンサCのインピーダンスは極
めて高く、zC幻のとみなせるからその利得(Zc/r
)も極めて高くなる。したがって第2図(B)に示すよ
うに例えば正のオフセノト電圧成分が発生して人力する
と積分器11はそれに対して高利得の直流増幅器として
動作し,その出力側からは発生したオフセット電圧を打
ち消すような電圧を送出する。よって、この出力電圧を
増幅器9の十入力側に負帰還すると、同図(C)に示す
ように増幅器9の出力側においてオフセット電圧が打ち
消され、例えば第5図(A)を例にとると動作点が原点
Oに固定された状態となり、基準抵抗6の出力側からは
、本来の交流ゼロフラックス法による測定電圧が得られ
る。
However, the impedance of capacitor C with respect to direct current is extremely high and can be regarded as phantom zC, so its gain (Zc/r
) will also be extremely high. Therefore, as shown in Fig. 2(B), for example, when a positive offset voltage component is generated and manually applied, the integrator 11 operates as a high-gain DC amplifier, and the output side cancels out the offset voltage generated. It sends out a voltage like this. Therefore, when this output voltage is negatively fed back to the input side of the amplifier 9, the offset voltage is canceled at the output side of the amplifier 9 as shown in FIG. 5(C). For example, taking FIG. 5(A) as an example, The operating point is fixed at the origin O, and the voltage measured by the original AC zero flux method is obtained from the output side of the reference resistor 6.

〔実 施 例〕〔Example〕

第3図を併せて参照しながらオフセット電圧の打ち消し
動作について、以下説明する。なお、第3図は第1図に
おける各部の動作の関係式をラプラス変換し、伝達関数
の形で表してある。
The offset voltage cancellation operation will be described below with reference to FIG. 3. In addition, in FIG. 3, the relational expressions of the operations of each part in FIG. 1 are Laplace-transformed and expressed in the form of a transfer function.

同第3図において、Gエ(81は例えば被測定導線1に
流れる電流から磁気コ72を介して検出コイル3の出力
電圧までの伝達関数、G 2 ( S )は例えば増幅
器9の入力から帰還回路に流れる帰還電流までの伝達関
数とすると、 ?A(Sl= N d s / ′FtG2(8)=A
1Az/(Re+ Ls)である。ただし、 Nd:検出コイルのターン数 民:磁気コアの磁気抵抗 Aエ,A2:増幅器及び電力増幅器の利得R0:基準抵
抗の抵抗値 L:帰還コイルのインダクタンス である。
In FIG. 3, G (81 is, for example, a transfer function from the current flowing through the conductor under test 1 to the output voltage of the detection coil 3 via the magnetic coil 72, and G2 (S) is the feedback from the input of the amplifier 9, for example. Assuming the transfer function to the feedback current flowing in the circuit, ?A(Sl=Nds/'FtG2(8)=A
1Az/(Re+Ls). However, Nd: Number of turns of the detection coil Nd: Magnetic resistance of the magnetic core Ae, A2: Gain of the amplifier and power amplifier R0: Resistance value of the reference resistor L: Inductance of the feedback coil.

いま、被測定導線1に流れる電流をi、基準抵抗6に現
れる出力電圧をe、帰還コイル5のターン数をNfとす
ると、交流信号帯域では上記第1の帰還ループにより、 e =CG■+s+Gz+s+/ (1 + Gt(3
)(jz(S)N f )]Roi となる。
Now, if the current flowing through the conductor under test 1 is i, the output voltage appearing on the reference resistor 6 is e, and the number of turns of the feedback coil 5 is Nf, in the AC signal band, due to the above first feedback loop, e = CG■+s+Gz+s+ / (1 + Gt(3
)(jz(S)N f )]Roi.

ここで、一巡伝達関数の利得が十分大きいものとすると
、1 <G,(s,G2(s,N fであるから、上式
の出力電圧eは、 e=Roi/Nf となる。
Here, assuming that the gain of the open loop transfer function is sufficiently large, 1 < G, (s, G2 (s, N f), so the output voltage e in the above equation becomes e=Roi/Nf.

一方、増幅器9のオフセット電圧をDとすると、この電
圧Dは直流であること、及び積分器11の時定数が被測
定信号の繰り返し周期に比べて十分大きなものであるこ
とにより、上記電圧Dの出力をadとすると、adはG
 2 ( S l− R o →1 / S→G 2 
( S )の閉ループによって決定され、 e d =(G2(8)Rll/(1 +02(3)R
O/ S))Dとなる。
On the other hand, if the offset voltage of the amplifier 9 is D, this voltage D is a direct current and the time constant of the integrator 11 is sufficiently large compared to the repetition period of the signal under test. If the output is ad, ad is G
2 ( S l- R o →1 / S → G 2
(S), and e d = (G2(8)Rll/(1 +02(3)R
O/S))D.

ここで、ループゲインが大きく負帰還量が十分あれば、
1 <02(S)R。/ 3であるから、上式より ed=sD を得る。更に、このループの信号が直流であることによ
りS−}0となり、したがって、ed→○、すなわちオ
フセット電圧は現われず、本来の交流ゼロフラック法に
よる動作を損なうことなく、基準抵抗6の出力には交流
め誘導電圧に比例した電圧が現れる。
Here, if the loop gain is large and the amount of negative feedback is sufficient,
1 <02(S)R. /3, we obtain ed=sD from the above equation. Furthermore, since the signal of this loop is DC, S-}0 is obtained, and therefore ed → ○, that is, no offset voltage appears, and the output of the reference resistor 6 is changed without impairing the operation of the original AC zero flux method. A voltage proportional to the induced voltage appears.

この実施例においては、第2の負帰還ループに積分器を
利用した場合が示されているが、時定数の十分大きい一
次遅れ要素、例えばローパスフィルタを用いてもよい。
In this embodiment, an integrator is used in the second negative feedback loop, but a first-order delay element with a sufficiently large time constant, such as a low-pass filter, may also be used.

また、この発明は開閉可能な磁気コアにて被より定導線
を外包するクランプ式の′な流センサに限られるもので
はなく、交流ゼロフラックス法による変流器などにも適
用できることは当然のことである。
Furthermore, the present invention is not limited to a clamp-type current sensor in which a fixed conducting wire is wrapped around a twisted magnetic core that can be opened and closed, but it goes without saying that it can also be applied to current transformers using the AC zero flux method. It is.

〔効   果〕〔effect〕

以上、詳細に説明したように、この発明においては例え
ば被測定導線を開閉可能に外包する磁気コアに巻かれた
検出コイル及び帰還コイルと、上記2つのコイル間に設
けられた増幅器と、上記帰還コイルと直列的に設けられ
た基準抵抗とを含み、上記被測定導線に流れる電流によ
り検出コイルに発生した誘導電圧を増幅器により電流に
変換して帰還コイルに加え、上記磁気コア内の交流磁束
を打ち消すようにした第1の負帰還回路を備えている。
As described above in detail, the present invention includes, for example, a detection coil and a feedback coil wound around a magnetic core that encloses the conductor under test in an openable/closable manner, an amplifier provided between the two coils, and the feedback coil. It includes a reference resistor installed in series with the coil, and converts the induced voltage generated in the detection coil by the current flowing through the conductor under test into a current using an amplifier and applies it to the feedback coil to increase the alternating magnetic flux in the magnetic core. A first negative feedback circuit is provided to cancel the negative feedback.

更に、上記帰還コイルを経て基準抵抗に流れる電流によ
り同基準抵抗に発生する電圧を例えば上記電流の繰り返
し周期より十分大きい時定数を有する積分器に加え、上
記電圧に含まれる直流電圧成分を抽出して上記増幅器の
入力側へ帰還することにより同増幅器にて発生する直流
のオフセット電圧を実質的にゼロとなるように補正する
第2の負帰還回路を備えている。
Furthermore, the voltage generated in the reference resistor due to the current flowing through the reference resistor via the feedback coil is applied to an integrator having a time constant sufficiently larger than the repetition period of the current, and the DC voltage component included in the voltage is extracted. The second negative feedback circuit corrects the direct current offset voltage generated in the amplifier to substantially zero by feeding it back to the input side of the amplifier.

したがって、この発明を適用した電流センサによれば、
増幅器等を高利得化してもオフセット電圧によって直流
的に磁気飽和を生じるようなことが無くなり、本来の交
流ゼロフラック法の動作が確保され、高精度の電流検出
が可能となる。
Therefore, according to the current sensor to which this invention is applied,
Even if the gain of an amplifier or the like is increased, DC magnetic saturation due to offset voltage will not occur, the original AC zero flux method operation will be ensured, and highly accurate current detection will be possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図はこの発明の実施例に係り、第1図
はその構成の一例を示す回路図、第2図はオフセット電
圧の補償原理説明用レベル図、第3図はオフセット電圧
の補正原理説明用特性ブロック図、第4図は従来装置の
回路図、第5図は従来装置におけるオフセット電圧の発
生説明用特性図、第6図は従来装置の変形実施例を示す
回路図である。 図中、 1は被測定導線、 2は磁気コア、 3は検 出コイル、 5は帰還コイル、 6は基準抵抗、 9は 増幅器、 IOは電力増幅器、 11は債分器である。 特 許 出 願 人 日置電機株式会社
1 to 3 relate to an embodiment of the present invention, FIG. 1 is a circuit diagram showing an example of its configuration, FIG. 2 is a level diagram for explaining the offset voltage compensation principle, and FIG. 3 is a level diagram for explaining the offset voltage compensation principle. FIG. 4 is a characteristic block diagram for explaining the correction principle, FIG. 4 is a circuit diagram of a conventional device, FIG. 5 is a characteristic diagram for explaining generation of offset voltage in the conventional device, and FIG. 6 is a circuit diagram showing a modified embodiment of the conventional device. . In the figure, 1 is a conductor to be measured, 2 is a magnetic core, 3 is a detection coil, 5 is a feedback coil, 6 is a reference resistor, 9 is an amplifier, IO is a power amplifier, and 11 is a voltage divider. Patent applicant Hioki Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)被測定導線に流れる交流電流をゼロフラックス法
にて検出する第1の負帰還回路と、該第1の負帰還回路
に発生するオフセット電圧を補償する第2の負帰還回路
を備えた電流センサであって、上記第1の負帰還回路は
、被測定導線に近接させる磁気コアに巻かれた検出コイ
ル及び帰還コイルと、上記被測定導体に流れる電流にて
磁気コア内に発生する磁束により上記検出コイルに現れ
る誘導電圧を電流に変換して増幅する増幅器と、該増幅
器の出力電流を上記帰還コイルに加えて磁気コア内に発
生した磁束を打ち消すとともに、同電流を流すことによ
り上記被測定導線の電流に対応した電圧を発生させるた
めの基準抵抗とを備えてなり、 上記第2の負帰還回路は、所定の時定数を有する積分器
を含み、上記基準抵抗に発生した電圧を入力となし、同
入力に含まれる直流電圧成分を抽出して上記増幅器の入
力側へ帰還し、同増幅器の出力側における直流オフセッ
ト電圧を打ち消すようにしたことを特徴とする電流セン
サ。
(1) Equipped with a first negative feedback circuit that detects the alternating current flowing in the conductor under test using a zero flux method, and a second negative feedback circuit that compensates for the offset voltage generated in the first negative feedback circuit. The first negative feedback circuit is a current sensor, and includes a detection coil and a feedback coil wound around a magnetic core that is brought close to the conductor to be measured, and a magnetic flux generated in the magnetic core by the current flowing through the conductor to be measured. an amplifier that converts the induced voltage appearing in the detection coil into a current and amplifies it; and the output current of the amplifier is applied to the feedback coil to cancel the magnetic flux generated in the magnetic core, and by passing the same current, the and a reference resistor for generating a voltage corresponding to the current in the measurement lead, and the second negative feedback circuit includes an integrator having a predetermined time constant, and inputs the voltage generated across the reference resistor. A current sensor characterized in that a DC voltage component contained in the input is extracted and fed back to the input side of the amplifier to cancel a DC offset voltage at the output side of the amplifier.
JP11332189A 1989-05-02 1989-05-02 Current sensor Pending JPH02291973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11332189A JPH02291973A (en) 1989-05-02 1989-05-02 Current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11332189A JPH02291973A (en) 1989-05-02 1989-05-02 Current sensor

Publications (1)

Publication Number Publication Date
JPH02291973A true JPH02291973A (en) 1990-12-03

Family

ID=14609272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11332189A Pending JPH02291973A (en) 1989-05-02 1989-05-02 Current sensor

Country Status (1)

Country Link
JP (1) JPH02291973A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141755A (en) * 1999-11-16 2001-05-25 Mitsubishi Electric Corp Current measuring device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4869566A (en) * 1971-12-21 1973-09-21
JPS54130167A (en) * 1978-03-31 1979-10-09 Yokogawa Hokushin Electric Corp Signal reduction circuit
JPS61116666A (en) * 1984-11-09 1986-06-04 Sanyo Electric Co Ltd Correction circuit for current measuring apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4869566A (en) * 1971-12-21 1973-09-21
JPS54130167A (en) * 1978-03-31 1979-10-09 Yokogawa Hokushin Electric Corp Signal reduction circuit
JPS61116666A (en) * 1984-11-09 1986-06-04 Sanyo Electric Co Ltd Correction circuit for current measuring apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141755A (en) * 1999-11-16 2001-05-25 Mitsubishi Electric Corp Current measuring device

Similar Documents

Publication Publication Date Title
JP6304647B2 (en) Current detector
US6984979B1 (en) Measurement and control of magnetomotive force in current transformers and other magnetic bodies
JP4245236B2 (en) Current detection circuit
JP3691551B2 (en) Current sensor based on compensation principle
JP4842275B2 (en) Detection circuit for current measurement
EP2871485B1 (en) Current detection device
JPH07146315A (en) Ac current sensor
JPH0627151A (en) Amperometric converter operated on basis of compensation primciple
US7145321B2 (en) Current sensor with magnetic toroid
CN110687339B (en) Current sensor
JP2014235045A (en) Current sensor
JP3099336B2 (en) Electromagnetic digital current detector
JPH02291973A (en) Current sensor
US20060192549A1 (en) Current sensor with magnetic toroid dual frequency detection scheme
JP2019002768A (en) Current sensor
JP3999303B2 (en) Current detector
EP0309254B1 (en) Apparatus and process for deriving an AC voltage from a DC voltage including detecting direct current magnetic flux deflections of an electrical transformer
JPH03115870A (en) Current sensor
KR102039270B1 (en) A Ground-Fault Current Detection Circuit
CN210805493U (en) Open-close type current transformer
KR102039269B1 (en) A Residual Current Detection Circuit
JPS61129582A (en) Measuring method of mutual inductance
JPH03195009A (en) Current transformer device of error compensation type
JPH0493772A (en) Dc current detector
CN118091228A (en) Current sensor and control method thereof