JPH02291531A - Optical transmission line switch - Google Patents

Optical transmission line switch

Info

Publication number
JPH02291531A
JPH02291531A JP1111821A JP11182189A JPH02291531A JP H02291531 A JPH02291531 A JP H02291531A JP 1111821 A JP1111821 A JP 1111821A JP 11182189 A JP11182189 A JP 11182189A JP H02291531 A JPH02291531 A JP H02291531A
Authority
JP
Japan
Prior art keywords
optical
optical fiber
light
earth element
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1111821A
Other languages
Japanese (ja)
Inventor
Koichi Aoyama
青山 耕一
Koichi Sano
浩一 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1111821A priority Critical patent/JPH02291531A/en
Publication of JPH02291531A publication Critical patent/JPH02291531A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To switch transmission lines with low loss in a short time by inserting a rare earth element added optical fiber amplifier which turns on and off a light signal according to the intensity of exciting light. CONSTITUTION:Optical fiber amplifiers 180 - 183 are connected to the multiplexed light projection sides of optical couplers 170 - 173 through optical fibers 10c - 13c respectively, one-terminal sides of the optical fibers 10d - 13d are connected to the output terminals, and when the exciting light is made incident with specific intensity, light signals are amplified with a specific gain. When the exciting light decreases below the specific intensity, the optical fiber amplifiers 180 - 183 serve as absorbing media to attenuate the light signals. Thus, the rare earth element added optical fibers 180 - 183 which turn on and off the light signals according to the incidence state of the exciting light are inserted into the optical fibers 10 - 13 which connect transmission lines A and B, and C and D respectively. Consequently, the transmission lines can be switched in a short time and the light loss can be compensated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光ファイバを用いる種々のシステムにおいて
、2本の光ファイバ伝送路間で切り替えを行なう光伝送
路切替器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical transmission line switch that switches between two optical fiber transmission lines in various systems using optical fibers.

(従来の技術) 第2図は、従来の光伝送路切替器を説明するための図で
ある。第2図において、1は伝送路切替部で、手動切り
替えの光コネクタや光スイッチ等により構成される。2
,3,4.5は光ファイバで、それぞれ伝送路A,B,
C,Dに接続されている。また。図中の実線矢印は、光
信号の流れを示している。
(Prior Art) FIG. 2 is a diagram for explaining a conventional optical transmission line switch. In FIG. 2, reference numeral 1 denotes a transmission path switching section, which is comprised of manually switched optical connectors, optical switches, and the like. 2
, 3, 4.5 are optical fibers, and transmission lines A, B,
Connected to C and D. Also. Solid arrows in the figure indicate the flow of optical signals.

このような構成において、伝送路Aに伝送路Cを、また
伝送路Bに伝送路Dを接続する時には、第2図の(a)
に示すように、伝送路切替部1にて、光ファイバ2と光
ファイバ3を、光ファイバ4と光ファイバ5とを接続す
る。
In such a configuration, when connecting transmission line C to transmission line A and transmission line D to transmission line B, use the method shown in (a) in Figure 2.
As shown in FIG. 2, the transmission line switching unit 1 connects the optical fibers 2 and 3 and the optical fibers 4 and 5.

一方、伝送路Aに伝送路Dを、また伝送路Bに伝送路C
を接続する時は、第2図の(b)に示すように、伝送路
切替部1にて、光ファイバ2と光ファイバ5を、光ファ
イバ4と光ファイバ3とを接続する。
On the other hand, transmission path D is connected to transmission path A, and transmission path C is connected to transmission path B.
When connecting, as shown in FIG. 2(b), the transmission line switching section 1 connects the optical fibers 2 and 5, and the optical fibers 4 and 3.

(発明が解決しようとする課題) しかしながら、上記構成において、伝送路切替部1が手
動切り替えの光コネクタにて構成されている場合、故障
復旧の迅速性に欠けるとともに、切り替えに時間を要す
るという欠点があった。
(Problems to be Solved by the Invention) However, in the above configuration, when the transmission line switching unit 1 is configured with an optical connector that can be manually switched, there is a drawback that failure recovery is not quick and switching takes time. was there.

一方、伝送路切替部1が光スイッチにて構成されている
場合には、現状では挿入損失が大きいという問題がある
On the other hand, when the transmission path switching section 1 is configured with an optical switch, there is currently a problem that the insertion loss is large.

また、予備伝送路に切り替えるに際し、伝送路切替部1
等による光損失を補償するために、光ファイバ2,3,
4.5に光増幅器を配置することが考えられる。この光
増幅器の代表的なものとしては、半導体レ〜ザを用いた
光増幅器がある。
In addition, when switching to the backup transmission line, the transmission line switching unit 1
In order to compensate for optical loss due to etc., the optical fibers 2, 3,
It is conceivable to place an optical amplifier at 4.5. A typical example of this optical amplifier is an optical amplifier using a semiconductor laser.

しかしながら、この半導体レーザを用いた光増幅器は、 ■増幅特性が入射光の偏波状態に依存する、■温度変動
に対して特性の変動が大きい、という欠点を有している
However, this optical amplifier using a semiconductor laser has the following drawbacks: (1) the amplification characteristics depend on the polarization state of the incident light; and (2) the characteristics fluctuate greatly in response to temperature fluctuations.

特に、現在の光通信システムでは、主に伝送路に偏波依
存性のないIJμm零分散単一モード光ファイバ(カッ
トオフ波長1.1μm以上)もしくは1.5μm零分散
単一モード光ファイバ(カットオフ波長0.6μm以上
)が用いられており、半導体レーザ型の光増幅器におい
ては、上記■の欠点のために、伝送路途中に挿入するこ
とは困難であった。
In particular, in current optical communication systems, the transmission path is mainly an IJμm zero-dispersion single-mode optical fiber (cutoff wavelength of 1.1μm or more) or a 1.5μm zero-dispersion single-mode optical fiber (cutoff wavelength 1.1μm or more), which has no polarization dependence. In semiconductor laser type optical amplifiers, it has been difficult to insert them in the middle of a transmission line due to the drawback (2) above.

本発明は、かかる事情に鑑みてなされたしのであり、そ
の目的は、短時間に伝送路の切り替えを行なえるととも
に、光損失を補償できる低損失な光伝送路切替器を提供
することにある。
The present invention has been made in view of the above circumstances, and its purpose is to provide a low-loss optical transmission line switch that can switch transmission lines in a short time and compensate for optical loss. .

(課題を解決するための手段) 上記目的を達成するため、本発明では、入射される励起
光強度に応じて光信号をオン/オフする希土類元素添加
光ファイバ増幅器が挿入された2本の光伝送路と、これ
ら2本の先伝送路の各希土類元素添加光ファイバ増幅器
への人力の一部を分岐して、他の光伝送路の希土類元素
添加光ファイバ増幅器の出力側とを接続し、かっ、その
途中に入射される励起光強度に応じて光信号をオン/オ
フする希土類元素添加光ファイバ増幅器が挿入された2
本の光伝送路とを備え、かつ、前記各希土類元素添加光
ファイバ増幅器の入出力側に、カットオフ波長が0.6
μm以上の偏波依存性のない単一モード光ファイバをそ
れぞれ接続した。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides two optical fibers into which a rare earth element-doped optical fiber amplifier is inserted, which turns on/off an optical signal according to the intensity of the incident excitation light. The transmission line and a part of the human power to each rare earth element-doped optical fiber amplifier of these two previous transmission lines are branched and connected to the output side of the rare earth element-doped optical fiber amplifier of the other optical transmission line, A rare-earth element-doped optical fiber amplifier was inserted in the middle of the fiber, which turns the optical signal on and off according to the intensity of the pumping light incident on it.
and a cutoff wavelength of 0.6 on the input/output side of each rare earth element-doped optical fiber amplifier.
Single mode optical fibers with no polarization dependence of μm or more were connected to each.

(作 用) 本発明によれば、例えば、分岐光信号が伝搬される光伝
送路を介さないで、光信号をそのまま伝送する場合には
、分岐光信号が伝搬される光伝送路に挿入された希土類
元素添加光ファイバ増幅器には、励起光が入射されず、
そのまま光信号を伝搬させる光伝送路に挿入された希土
類元素添加光ファイバ増幅器には、励起光が入射される
(Function) According to the present invention, for example, when transmitting an optical signal as it is without passing through an optical transmission path through which the branched optical signal is propagated, the optical signal is inserted into the optical transmission path through which the branched optical signal is propagated. Pumping light is not incident on the rare earth element-doped optical fiber amplifier.
The pumping light is incident on the rare earth element-doped optical fiber amplifier inserted into the optical transmission line through which the optical signal propagates as it is.

励起光が入射された希土類元素添加光ファイバ増幅器は
励起状態、即ち、オン状態となる。この状態時に、希土
類元素添加光ファイバ増幅器に光信号が入射されると、
励起光による励起されたエネルギーの一部が光信号に変
換され、光信号は増幅作用を受ける。
The rare earth element-doped optical fiber amplifier into which the excitation light is incident is brought into an excited state, that is, an on state. In this state, when an optical signal is input to the rare earth element-doped optical fiber amplifier,
A part of the energy excited by the pumping light is converted into an optical signal, and the optical signal is amplified.

増幅された光信号は、当該希土類元素添加光ファイバ増
幅器から出射され、次段の光伝送路に伝送される。
The amplified optical signal is output from the rare earth element-doped optical fiber amplifier and transmitted to the next stage optical transmission line.

これに対して、励起光が入射されない希土類元素添加光
ファイバ増幅器は、非励起状態、即ち、オフ状態となる
。この状態時に、光信号が、各光ファイバ増幅器にそれ
ぞれ人射されても、光信号は光ファイバ増幅器にて吸収
され、その強度が減衰されてほとんど出射されない。
On the other hand, the rare earth element-doped optical fiber amplifier to which no excitation light is input is in a non-excited state, that is, in an off state. In this state, even if an optical signal is irradiated to each optical fiber amplifier, the optical signal is absorbed by the optical fiber amplifier, its intensity is attenuated, and almost no signal is emitted.

一方、一の伝送路を伝搬された光信号を、分岐され光信
号を伝搬させる光伝送路を介して他の光伝送路に伝送す
る場合には、上記の場合とは逆に、分岐光信号が伝搬さ
れる光伝送路に挿入された希土類元素添加光ファイバ増
幅器に、励起光を入射させ、そのまま光信号が伝搬され
る光伝送路に挿入された希土類元素添加光ファイバ増幅
器には、励起光を入射させない。
On the other hand, when an optical signal propagated through one transmission line is branched and transmitted to another optical transmission line via an optical transmission line that propagates the optical signal, the branched optical signal Pumping light is input to a rare earth element-doped optical fiber amplifier inserted into an optical transmission line through which the optical signal is propagated, and the pump light is input into the rare earth element-doped optical fiber amplifier inserted into the optical transmission line through which the optical signal is propagated. Do not let it enter.

このようにして、接続すべき伝送路同士の接続が行われ
る。
In this way, the transmission lines to be connected are connected to each other.

(実施例) 第1図は、本発明に係る光伝送路切替器の一実施例を示
す構成図である。第1図において、A,B,C,Dは伝
送路、10,11.12.13は伝送路接続用光ファイ
バで、例えば、偏波依存性のないカットオフ波長が0.
6μm以上で波長1.5μm近傍に零分散波長を有する
単一モード光ファイバからなる。また、これらの光ファ
イバ10.11,12.13を伝搬される光信号は、例
えば、発振波長1.55μmの半導体レーザー光が用い
られる。
(Embodiment) FIG. 1 is a configuration diagram showing an embodiment of an optical transmission line switching device according to the present invention. In FIG. 1, A, B, C, and D are transmission lines, and 10, 11, 12, and 13 are optical fibers for connecting the transmission lines, and for example, the cutoff wavelength without polarization dependence is 0.
It consists of a single mode optical fiber having a wavelength of 6 μm or more and a zero dispersion wavelength near 1.5 μm. Further, as the optical signals propagated through these optical fibers 10.11 and 12.13, for example, semiconductor laser light having an oscillation wavelength of 1.55 μm is used.

140 , 141は光信号を2分岐する光分岐回路で
ある。光分岐回路140は、光ファイバ10aを伝搬さ
れた光信号を一の入射端に入射し、二つの出射端より分
岐した光信号を光ファイバ10b及び光ファイバ12a
にそれぞれ出射する。同様に、光分岐回路141は、光
ファイバllaを伝搬された光信号を一の入射端に入射
し、二つの出射端より分岐した光信号を光ファイバll
b及び光ファイバ13aにそれぞれ出射する。
140 and 141 are optical branching circuits that branch the optical signal into two. The optical branching circuit 140 inputs the optical signal propagated through the optical fiber 10a into one input end, and outputs the optical signal branched from two output ends to the optical fiber 10b and the optical fiber 12a.
emitted from each. Similarly, the optical branching circuit 141 inputs the optical signal propagated through the optical fiber lla to one input end, and branches the optical signals from the two output ends to the optical fiber lla.
b and the optical fiber 13a, respectively.

150 , 151 , 152 , 153は励起光
源で、例えば発振波長1.48μmの半導体レーザから
なり、励起光を所定の強度で出射する。
Excitation light sources 150, 151, 152, and 153 are composed of, for example, semiconductor lasers with an oscillation wavelength of 1.48 μm, and emit excitation light at a predetermined intensity.

1B0 . lf31 , 162 , lθ3は励起
光用光ファイバで、励起光源150 , 151 , 
152 , 153から出射された励起光が伝搬される
1B0. lf31, 162, lθ3 are optical fibers for excitation light, and excitation light sources 150, 151,
Excitation light emitted from 152 and 153 is propagated.

170 , 171 , 172 . 173は光結合
器で、光分岐回路140及び141にて分岐された光信
号と励起光源150 , 151 , 152 , 1
53による励起光とをそれぞれ合波する。
170, 171, 172. 173 is an optical coupler, which connects the optical signals branched by the optical branching circuits 140 and 141 with the excitation light sources 150 , 151 , 152 , 1
and the excitation light from 53.

11!0 . 181 . 182 . 183は希土
類元素添加光ファイバ増幅器(以下、光ファイバ増幅器
という)で、光ファイバに希土類元素、例えばエルビウ
ム(Er”’)を所定の濃度で添加して構成されている
11!0. 181. 182. Reference numeral 183 denotes a rare earth element-doped optical fiber amplifier (hereinafter referred to as an optical fiber amplifier), which is constructed by doping an optical fiber with a rare earth element, for example, erbium (Er"') at a predetermined concentration.

これら光ファイバ増幅器180 , 181 , 18
2 ,183は、入力端は光結合器170 , 171
 , 172 ,173の合波光出射側に光ファイバ1
0c,lie,12c,13cを介してそれぞれ接続さ
れ、出力端には光ファイバ10d,lld,12d,1
3dの一端がそれぞれ接続されており、励起光が所定の
強度で入射されていると、光信号を所定の利得(〜2 
5 d B)をもって増幅する。一方、励起光が所定の
強度以下で入射されているか、あるいは入射されていな
いと、光ファイバ増幅器180〜183は吸収媒体とな
って光信号を減衰させる。その増幅特性は、入射光の偏
波状態に依存せず、かつ、温度変動に対して特性が安定
している。また、その長さは100m以下(数m〜数十
m)に設定される。
These optical fiber amplifiers 180, 181, 18
2, 183, the input end is the optical coupler 170, 171
, 172 , 173 have an optical fiber 1 on the output side of the multiplexed light.
0c, lie, 12c, 13c, respectively, and the output end has optical fibers 10d, lld, 12d, 1
When one end of the 3d is connected to each other and the excitation light is incident at a predetermined intensity, the optical signal is converted to a predetermined gain (~2
5 dB). On the other hand, if the excitation light is incident with less than a predetermined intensity or is not incident, the optical fiber amplifiers 180 to 183 act as absorption media and attenuate the optical signal. Its amplification characteristics do not depend on the polarization state of incident light and are stable against temperature fluctuations. Moreover, the length is set to 100 m or less (several meters to several tens of meters).

なお、利得のある波長或は、光ファイバに添加した希土
類元素がEr3+の場合、光信号の波長は1。53〜1
.56μm(励起光の波長は、〜1.48μm)に制限
される(文献: K.llaglmotO、 et. 
 a!.  ’A  212  km  Non−re
peated  Transslsslon  Exp
erla+cnt  at  l.8Gb/s  us
1ng  LD  Pua+pedEr”−Doped
  Fiber  Ampllflers  In  
an  IM/Dlrect−Dctectlon  
System   .OFC’  89.Post  
Deadl1ne  Papcr. Ilouston
. Feb.1989.  参照)。
In addition, if the wavelength has a gain or the rare earth element added to the optical fiber is Er3+, the wavelength of the optical signal is 1.53 to 1.
.. 56 μm (the wavelength of the excitation light is ~1.48 μm) (Reference: K. llaglmotO, et.
a! .. 'A 212 km Non-re
peated Transsslsslon Exp
erla+cnt at l. 8Gb/s us
1ng LD Pua+pedEr”-Doped
Fiber Amplifiers In
an IM/Dlrect-Dctectlon
System. OFC' 89. Post
Deadl1ne Papcr. Ilouston
.. Feb. 1989. reference).

190 , 191 , 192 . 193は励起光
除去用光フィルタで、光ファイバ10dと10e間、光
ファイバlidと11e間、光ファイバ12cと12d
間並びに光ファイバ13cと13d間にそれぞれ挿入さ
れており、各光ファイバ増幅器IH , 181 ,1
82 , 183の出射光のうち、光信号は透過させ、
励起光は遮断する。
190, 191, 192. 193 is an optical filter for removing excitation light, between optical fibers 10d and 10e, between optical fibers lid and 11e, and between optical fibers 12c and 12d.
and between the optical fibers 13c and 13d, respectively, and each optical fiber amplifier IH, 181, 1
Of the emitted light of 82 and 183, the optical signal is transmitted,
Excitation light is blocked.

200 , 201は光結合器で、一の入射端に光ファ
イバ10e及びlieの他端が、残りの入射端に光ファ
イバ12d,13dの一端がそれぞれ接続され、出射端
には光ファイバ10f,llfがそれぞれ接続されてい
る。光結合器200は、光ファイバ10e.13dを伝
搬された光信号を光ファイバ10fに、光結合器201
は、光ファイバ11e,12dを伝搬された光信号を光
ファイバ11fにそれぞれ結合させる。
200 and 201 are optical couplers, one input end of which is connected to the other ends of the optical fibers 10e and lie, the remaining input end of which is connected to one end of the optical fibers 12d and 13d, and the output end of which is connected to the optical fibers 10f and llf. are connected to each other. The optical coupler 200 includes an optical fiber 10e. An optical coupler 201 connects the optical signal propagated through optical fiber 13d to optical fiber 10f.
couples the optical signals propagated through the optical fibers 11e and 12d to the optical fiber 11f, respectively.

次に、上記構成による動作を第3図の(a)及び(b)
に基づいて説明する。
Next, the operation of the above configuration is shown in FIGS. 3(a) and (b).
The explanation will be based on.

まず、伝送路AとC1伝送路BとDを接続する場合につ
いて第3図の(a)により説明する。
First, the case of connecting the transmission lines A and C1 and the transmission lines B and D will be explained with reference to FIG. 3(a).

この場合には、励起光iaiW 150及び151が駆
動され、一方、励起光源152及び153は駆動されな
い。
In this case, the excitation lights iaiW 150 and 151 are driven, while the excitation light sources 152 and 153 are not driven.

これにより、励起光源150及び151から励起光が出
射される。これらの励起光は、光ファイバIGO , 
tail ,光結合器170 , 171並びに光ファ
イバ10c,10d,lie,lidを介して光ファイ
バ増幅器180 , 181にそれぞれ入射される。
As a result, excitation light is emitted from excitation light sources 150 and 151. These excitation lights are transmitted through optical fibers IGO,
tail, optical couplers 170, 171, and optical fibers 10c, 10d, lie, and lid, and enter optical fiber amplifiers 180, 181, respectively.

励起光の入射に伴い、光ファイバ増幅器180,181
は励起状態、即ち、オン状態となる。この状態時に、各
光ファイバ増幅器180 , 181に光信号が入射さ
れると、励起光による励起されたエネルギーの一部が光
信号に変換され、光信号は増幅作用を受ける。
As the pumping light enters, the optical fiber amplifiers 180, 181
becomes an excited state, that is, an on state. In this state, when an optical signal is input to each optical fiber amplifier 180, 181, a part of the energy excited by the pumping light is converted into an optical signal, and the optical signal is amplified.

増幅された光信号は、当該光ファイバ増幅器180 ,
 181から出射される。これらの増幅された光信号は
、光ファイバ10d,lidを介して光フィルタ190
 ,  191に入射される。光フィルタ190 , 
191は、光信号を透過させ、励起光を遮断する。
The amplified optical signal is transmitted to the optical fiber amplifier 180,
It is emitted from 181. These amplified optical signals are passed through the optical filter 190 via the optical fiber 10d and lid.
, 191. optical filter 190,
191 allows optical signals to pass through and blocks excitation light.

これにより、伝送路A及び伝送路Bをそれぞれ伝送され
た光信号が、増幅された後、光ファイバ10e,lie
,光結合器200 . 201並びに光ファイバ10f
,llfを介して伝送路C及び伝送路Dそれぞれ送出さ
れる。
As a result, the optical signals transmitted through the transmission path A and the transmission path B are amplified and then connected to the optical fibers 10e and 10e.
, optical coupler 200 . 201 and optical fiber 10f
, llf, and are transmitted to transmission path C and transmission path D, respectively.

これに対して、励起光源152及び153からは、励起
光が出射されない。従って、励起光は、光ファイバ増幅
器182 ,  183に入射されない。これにより、
光ファイバ増幅器182 , 183は非励起状態、即
ち、オフ状態となる。この状態時に、伝送路A及び伝送
路Bを介して伝送された光信号が、各光ファイバ増幅器
182 , 183にそれぞれ入射されると、光信号は
光ファイバ増幅器182 , 183にて吸収され、そ
の強度が減衰されてほとんど出射されない。
On the other hand, excitation light sources 152 and 153 do not emit excitation light. Therefore, the pump light is not input to the optical fiber amplifiers 182 and 183. This results in
The optical fiber amplifiers 182 and 183 are in a non-excited state, that is, in an off state. In this state, when the optical signal transmitted via the transmission path A and the transmission path B is incident on each optical fiber amplifier 182, 183, the optical signal is absorbed by the optical fiber amplifier 182, 183, and its The intensity is attenuated and almost no radiation is emitted.

これにより、伝送路Aを伝送された光信号は、伝送路D
に伝送されない。同様に、伝送路Bを伝送された光信号
は、伝送路Cに伝送されない。
As a result, the optical signal transmitted through the transmission path A is transmitted through the transmission path D.
is not transmitted to Similarly, the optical signal transmitted through transmission path B is not transmitted to transmission path C.

また、伝送路AとD1伝送路BとCを接続する場合には
、励起光源152及び153が駆動され、方、励起光源
150及び151は駆動されない。
Furthermore, when connecting the transmission lines A and D1 and the transmission lines B and C, the excitation light sources 152 and 153 are driven, while the excitation light sources 150 and 151 are not driven.

これにより、励起光源152及び153から励起光が出
射される。これらの励起光は、光ファイバ182 , 
183 、光結合器172 . 173並びに光ファイ
バ12b,13bを介して光ファイバ増幅器1B2、1
83にそれぞれ入射される。励起光の入射に伴い、光フ
ァイバ増幅器182 , 183は励起状態、即ち、オ
ン状態となる。
As a result, excitation light is emitted from excitation light sources 152 and 153. These excitation lights are transmitted through optical fibers 182,
183, optical coupler 172. 173 and optical fiber amplifiers 1B2 and 1 via optical fibers 12b and 13b.
83 respectively. As the excitation light enters, the optical fiber amplifiers 182 and 183 are in an excitation state, that is, in an on state.

これにより、伝送路Aを伝送された光信号は、伝送路D
に伝送される。同様に、伝送路Bを伝送された光信号は
、伝送路Cに伝送される。
As a result, the optical signal transmitted through the transmission path A is transmitted through the transmission path D.
transmitted to. Similarly, the optical signal transmitted through transmission path B is transmitted to transmission path C.

これに対して、励起光源150及び151からは、励起
光は出射されない。従って、励起光は、光ファイバ増幅
器180 , tillに入射されない。これにより、
光ファイバ増幅器180 , 181は非励起状態、即
ち、オフ状態となる。
On the other hand, excitation light sources 150 and 151 do not emit excitation light. Therefore, the pump light is not incident on the optical fiber amplifier 180, till. This results in
The optical fiber amplifiers 180 and 181 are in a non-excited state, that is, in an off state.

これにより、伝送路Aを伝送された光信号は、伝送路C
に伝送されない。同様に、伝送路Bを伝送された光信号
は、伝送路Dに伝送されない。
As a result, the optical signal transmitted through transmission path A is transmitted through transmission path C.
is not transmitted to Similarly, the optical signal transmitted through transmission path B is not transmitted to transmission path D.

以上のように、本実施例によれば、伝送路A,Bと伝送
路C,Dとを接続するための光ファイバ10.11,1
2.13の各々に、励起光の入射状態に応じて光信号の
オン/オフを行なう希土類元素添加光ファイバ増幅器1
80 , 181 , 182 ,183をそれぞれ挿
入したので、短時間に伝送路の切り替えを行なえるとと
もに、光損失を補償しiリる低損失な光伝送路切替器を
実現している。
As described above, according to this embodiment, the optical fibers 10, 11, 1 for connecting the transmission lines A, B and the transmission lines C, D
In each of 2.13, there is a rare earth element-doped optical fiber amplifier 1 that turns on/off the optical signal according to the incident state of the excitation light.
80, 181, 182, and 183, it is possible to switch transmission lines in a short time and to realize a low-loss optical transmission line switch that compensates for optical loss.

(発明の効果) 以上説明したように、本発明によれば、入射される励起
光強度に応じて光信号をオン/オフする希土類元素添加
光ファイバ増幅器を挿入された2本の光伝送路と、これ
ら2本の光伝送路の各希土類元素添加光ファイバ増幅器
への入力の一郎を分岐して、他の光伝送路の希土類元素
添加光ファイバ増幅器の出力側とを接続し、かつ、その
途中に入射される励起光強度に応じて光信号をオン/オ
フする希土類元素添加光ファイバ増幅器が挿入された2
本の光伝送路とを備え、かつ、前記各希土類元素添加光
ファイバ増幅器の入出力側に、カットオフ波長が0.6
μm以上の偏波依存性のない単一モード光ファイバをそ
れぞれ接続したので、短時間に、しかも低損失に伝送路
の切り替えを行なえる光伝送路切替器を提供できる利点
がある。
(Effects of the Invention) As explained above, according to the present invention, two optical transmission lines each having a rare-earth element-doped optical fiber amplifier inserted therein which turns on/off an optical signal according to the intensity of the incident pumping light. , branch the input signal to each rare earth element-doped optical fiber amplifier of these two optical transmission lines, connect it to the output side of the rare earth element-doped optical fiber amplifier of the other optical transmission line, and A rare-earth element-doped optical fiber amplifier was inserted to turn the optical signal on and off according to the intensity of the pumping light incident on it.
and a cutoff wavelength of 0.6 on the input/output side of each rare earth element-doped optical fiber amplifier.
Since single mode optical fibers with no polarization dependence of μm or more are connected, there is an advantage that an optical transmission line switching device can be provided which can switch transmission lines in a short time and with low loss.

また、現在の光通信システムにおいて主に用いられてい
る偏波依存性のない1.3μm零分散単一モード光ファ
イバ(カットオフ波長1.1μm以上)もしくは1.5
μm零分散単一モード光ファイバ(カットオフ波長0.
8μm以上)の光伝送路でも、安定な特性の光伝送路切
替器を実現できる利点がある。
In addition, 1.3μm zero-dispersion single mode optical fiber (cutoff wavelength 1.1μm or more) or 1.5μm zero-dispersion single mode optical fiber without polarization dependence, which is mainly used in current optical communication systems,
μm zero dispersion single mode optical fiber (cutoff wavelength 0.
There is an advantage that an optical transmission line switching device with stable characteristics can be realized even with an optical transmission line (8 μm or more).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る光伝送路切替器の一実施例を示す
構成図、第2図は従来の光伝送路切替器を説明するため
の図、第3図(a).(b)は本発明に係る光伝送路切
替器の動作を説明するための図である。 図中、10、11、12、13・・・伝送路接続用光フ
ァイバ、140 . 141・・・光分岐回路、150
,151 , 152 , 153・・・励起光源、L
H , 1B1 , lG2 ,163・・・励起光用
光ファイバ、170 , 171 , 172 ,17
3 , 200 , .201・・・光結合器、180
 , 181 , 182 ,183・・・希土類元素
添加光ファイバ増幅器、■90,191 , 192 
, 193・・・励起光除去用光フィルタ。 伝送路切替部 (a) (b) 従来例の説明図 第2図
FIG. 1 is a block diagram showing an embodiment of an optical transmission line switching device according to the present invention, FIG. 2 is a diagram for explaining a conventional optical transmission line switching device, and FIG. 3(a). (b) is a diagram for explaining the operation of the optical transmission line switch according to the present invention. In the figure, 10, 11, 12, 13... optical fibers for transmission line connection, 140. 141... Optical branch circuit, 150
, 151, 152, 153... excitation light source, L
H, 1B1, lG2, 163... optical fiber for excitation light, 170, 171, 172, 17
3, 200, . 201... optical coupler, 180
, 181, 182, 183... Rare earth element doped optical fiber amplifier, ■90, 191, 192
, 193... Optical filter for removing excitation light. Transmission line switching unit (a) (b) Explanatory diagram of conventional example Fig. 2

Claims (1)

【特許請求の範囲】  入射される励起光強度に応じて光信号をオン/オフす
る希土類元素添加光ファイバ増幅器が挿入された2本の
光伝送路と、 これら2本の光伝送路の各希土類元素添加光ファイバ増
幅器への入力の一部を分岐して、他の光伝送路の希土類
元素添加光ファイバ増幅器の出力側とを接続し、かつ、
その途中に、入射される励起光強度に応じて光信号をオ
ン/オフする希土類元素添加光ファイバ増幅器が挿入さ
れた2本の光伝送路とを備え、 かつ、前記各希土類元素添加光ファイバ増幅器の入出力
側に、カットオフ波長が0.6μm以上の偏波依存性の
ない単一モード光ファイバをそれぞれ接続した ことを特徴とする光伝送路切替器。
[Claims] Two optical transmission lines into which rare earth element-doped optical fiber amplifiers are inserted that turn on/off optical signals according to the intensity of the incident pumping light, and rare earth elements in each of these two optical transmission lines. Branching a part of the input to the element-doped optical fiber amplifier and connecting it to the output side of the rare-earth element-doped optical fiber amplifier of another optical transmission line, and
Two optical transmission lines in which rare earth element-doped optical fiber amplifiers are inserted that turn on/off optical signals according to the intensity of the incident pumping light are inserted, and each of the rare earth element-doped optical fiber amplifiers An optical transmission line switching device, characterized in that a polarization-independent single mode optical fiber having a cutoff wavelength of 0.6 μm or more is connected to the input and output sides of the device.
JP1111821A 1989-04-28 1989-04-28 Optical transmission line switch Pending JPH02291531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1111821A JPH02291531A (en) 1989-04-28 1989-04-28 Optical transmission line switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1111821A JPH02291531A (en) 1989-04-28 1989-04-28 Optical transmission line switch

Publications (1)

Publication Number Publication Date
JPH02291531A true JPH02291531A (en) 1990-12-03

Family

ID=14571005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1111821A Pending JPH02291531A (en) 1989-04-28 1989-04-28 Optical transmission line switch

Country Status (1)

Country Link
JP (1) JPH02291531A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0503849A2 (en) * 1991-03-15 1992-09-16 AT&T Corp. Photonic cross-connect switch
US6424440B1 (en) 1997-10-28 2002-07-23 Nec Corporation Optical switch, optical amplifier and optical power controller as well as optical add-drop multiplexer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0503849A2 (en) * 1991-03-15 1992-09-16 AT&T Corp. Photonic cross-connect switch
EP0503849A3 (en) * 1991-03-15 1994-03-30 American Telephone & Telegraph
US6424440B1 (en) 1997-10-28 2002-07-23 Nec Corporation Optical switch, optical amplifier and optical power controller as well as optical add-drop multiplexer
US6466344B2 (en) 1997-10-28 2002-10-15 Nec Corporation Optical switch, optical amplifier and optical power controller as well as optical add-drop multiplexer
US7197246B2 (en) 1997-10-28 2007-03-27 Nec Corporation Optical switch, optical amplifier and optical power controller as well as optical add-drop multiplexer

Similar Documents

Publication Publication Date Title
JP2933998B2 (en) Erbium-doped fiber amplifier coupling device
JP2918794B2 (en) Optical amplifier
JP2747315B2 (en) Glass waveguide amplifier for bidirectional transmission
JPH10275954A (en) Optical system
US5633743A (en) Optical communications system using tunable tandem Fabry-Perot etalon
JPH02291531A (en) Optical transmission line switch
JP3052598B2 (en) Bidirectional repeater with optical amplification
JP3077705B2 (en) Optical fiber amplifier
JP2862145B2 (en) Bidirectional optical amplifier
US6252701B1 (en) Optical fiber amplifier
JPH02241073A (en) Redundancy system of light source for pumping
JP2859386B2 (en) Bidirectional optical fiber amplifier
JP2694014B2 (en) Bidirectional optical amplifier transmission circuit
CA2069567C (en) Optical amplification apparatus
JP2744471B2 (en) Optical amplification transmission circuit
JPH0422928A (en) Optical fiber amplifier
JP2836359B2 (en) Pumping light source backup method for optical fiber amplifier
JP2891266B2 (en) Optical fiber amplifier
JPH095806A (en) Optical amplifier
JPH037917A (en) Optical separating and switching device for wavelength multiplex signal
JP2859385B2 (en) Bidirectional optical fiber amplifier
JPH03215982A (en) Fiber type light amplifier
Haugen et al. Full-duplex bidirectional transmission at 622 Mbit/s with two erbium-doped fiber amplifiers
JPH04130464U (en) optical amplification circuit
JPH06268304A (en) Optical fiber amplifier