JPH02285248A - Chemical sensor - Google Patents

Chemical sensor

Info

Publication number
JPH02285248A
JPH02285248A JP10595489A JP10595489A JPH02285248A JP H02285248 A JPH02285248 A JP H02285248A JP 10595489 A JP10595489 A JP 10595489A JP 10595489 A JP10595489 A JP 10595489A JP H02285248 A JPH02285248 A JP H02285248A
Authority
JP
Japan
Prior art keywords
taste
chemical
chemical substances
kcl
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10595489A
Other languages
Japanese (ja)
Other versions
JP2837867B2 (en
Inventor
Minoru Saito
稔 斎藤
Hiroo Miyamoto
裕生 宮本
Katsuaki Umibe
海部 勝晶
Masakazu Kato
雅一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP1105954A priority Critical patent/JP2837867B2/en
Publication of JPH02285248A publication Critical patent/JPH02285248A/en
Application granted granted Critical
Publication of JP2837867B2 publication Critical patent/JP2837867B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To simultaneously recognize many kinds of chemical substances by using as an acceptor of a chemical sensor an excitatory artificial film changing an oscillating pattern in response to said many kinds of chemical substances and processing data of said oscillating pattern. CONSTITUTION:A cell 1 is divided, for example, into 5mM KCl section and 10mM KCl section. The 100mM KCl section is divided into five blocks in an elongated direction. Accordingly, five 100mM blocks and five 5mM blocks are formed. Excitatory artificial films S1-S5 are sequentially arranged between the divided 100mM block and 5mM block of the cell. The films S1-S5 are oscillated with a frequency of about 1Hz when a direct current of 0.1-1.0muA or so and a pressure of 20-30cmH2O are applied. Then, a mixed substance having various tastes, i.e., bitter, sour, sweet and delicious tastes is added 1mM per 5mM KCl solution. The oscillating frequency at this time is measured by a frequency counter, and the data is transferred to a computer 7 to be processed. Accordingly, various kinds of chemical substances can be recognized simultaneously.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、多種の化学物質を同時に認識し得る生物の味
覚、嗅覚を模倣した化学センサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a chemical sensor that imitates the sense of taste and smell of living organisms and can simultaneously recognize a variety of chemical substances.

(従来の技術) 生物の味覚、嗅覚は多種多様な化学物質を同時に認識す
る化学センサである。
(Prior Art) The senses of taste and smell of living organisms are chemical sensors that simultaneously recognize a wide variety of chemical substances.

−mに、味及び匂いは上述の多種多様な化学物質の複雑
かつ綜合的な組合せに由来して居り、上記味覚・嗅覚が
どのような機構で認識を行うかについてはまだよくわか
っていないことが多い、ただ上記認識に際しての受容器
の応答は非特異的で、多数の受容器の応答パターンから
味や匂いを認識しているとされている。
-M. Taste and smell are derived from complex and comprehensive combinations of the various chemical substances mentioned above, and it is still not well understood what kind of mechanism the sense of taste and smell uses to perform recognition. However, the receptor responses during the above recognition are non-specific, and it is said that tastes and smells are recognized from the response patterns of many receptors.

一方、味覚や嗅覚のように、複雑な味や匂いを人工的に
認識するシステムは、食品、化粧品工業、環境計測等の
広い分野でその要求が高く、これに対していくつかの研
究開発例がある。
On the other hand, systems that artificially recognize complex tastes and odors, such as taste and smell, are in high demand in a wide range of fields such as food, cosmetics industries, and environmental measurement. There is.

例えば下記参考文献のように、森泉らにより水晶振動子
センサアレイとニューラルネットワークによるパターン
認識を用いた匂いセンサが試作されている。
For example, as shown in the following reference, an odor sensor using a crystal oscillator sensor array and pattern recognition using a neural network has been prototyped by Moriizumi et al.

Toko et al、Hプロシーディング オブ ザ
 フィツス センサー シンポジウムProceedi
ng of Lhe5th 5ensor Sympo
sium、1986.P、231〜236.Toko 
etal、HProceeding of the 6
Lh 5ensor Symposiulm。
Toko et al, H Proceedings of the Fytus Sensor Symposium Proceedi
ng of Lhe5th 5ensor Sympo
sium, 1986. P, 231-236. Toko
etal, HProceeding of the 6
Lh 5ensor Symposium.

1986、P、231〜236.及び森泉ら;信学技報
?1BIE88−78゜P−、41〜48 (発明が解決しようとする課題) しかしかかる化学センサにおいては、上述の化学物質に
関する情報が電気伝導度などのアナログ量に変換される
ものが多く、多種多様の化学物質を同時認識するために
は、それぞれの当該化学物質に特異的に応答する多数の
受容部が必要であった。
1986, P, 231-236. and Mori Izumi et al.; IEICE technical report? 1BIE88-78゜P-, 41-48 (Problems to be Solved by the Invention) However, in many of such chemical sensors, information regarding the above-mentioned chemical substances is converted into analog quantities such as electrical conductivity, and there are a wide variety of In order to recognize multiple chemical substances simultaneously, a large number of receptors that respond specifically to each chemical substance were required.

ところで生物の味覚・嗅覚においては、受容細胞の応答
はそれぞれの化学物質に対して非特異的ではあるが、該
化学物質に関する情報が多くの情報量をもつ神経インパ
ルスの発振パターンに変換され、これを脳でパターン認
識することができるものである。
By the way, in the sense of taste and smell in living organisms, the response of receptor cells is non-specific to each chemical substance, but information about the chemical substance is converted into an oscillation pattern of nerve impulses containing a large amount of information. The brain can recognize patterns.

上記例示の化学センサによる化学物質に関する情報は、
水晶振動子の発振周波数の変化に変換され、ニューラル
ネットワークによりパターン認識されるので味覚・嗅覚
にかなり類似している。しかしながら、前記受容部の水
晶振動子の発振周波数の変化は、該水晶振動子に塗布さ
れた吸着膜が化学物質を吸着した際の膜の重量変化によ
り生ずることから、物理的に吸着されない化学物質は認
識されず、認識可能な化学物質に限界があった。
Information regarding chemical substances obtained by the above-mentioned chemical sensor is as follows:
It is converted into changes in the oscillation frequency of a crystal oscillator, and is pattern recognized by a neural network, so it is quite similar to the sense of taste and smell. However, the change in the oscillation frequency of the crystal oscillator in the receiving section is caused by a change in the weight of the adsorption film applied to the crystal oscillator when it adsorbs a chemical substance. was not recognized, and there were limits to the chemicals that could be recognized.

そして単に水晶振動子の発振周波数のみの変化に依存す
ることから情報量が少なく、多種多様の化学物質を同時
認識する場合にはそれらの化学物質に応答する数多くの
受容部が必要となり、センサ構成を複雑化するばかりで
な(、使用目的によってはそれに応することが困難にな
る等の問題が免がれなかりた。
The amount of information is small because it simply depends on changes in the oscillation frequency of the crystal oscillator, and when recognizing a wide variety of chemicals at the same time, a large number of receptors that respond to those chemicals are required, and the sensor configuration However, depending on the purpose of use, it becomes difficult to meet the requirements.

本発明は化学センサの上記受容部として多種多様の化学
物質に応答して発振パターンを変化する興奮性人工膜を
用い、その発振パターンを情報処理することにより、多
種の化学物質を同時認識する化学センサを提供すること
を目的とする。
The present invention uses an excitable artificial membrane that changes its oscillation pattern in response to a wide variety of chemical substances as the above-mentioned receptor of a chemical sensor, and processes the oscillation pattern to provide a chemical sensor that simultaneously recognizes a wide variety of chemical substances. The purpose is to provide sensors.

(課題を解決するための手段) 本発明は、多種多様な化学物質に応答して発振パターン
を変化する2以上の興奮性人工膜を配置してなる受容部
と、その発振パターンの変化を情報として処理する情報
処理部とからなる化学センサである。
(Means for Solving the Problems) The present invention provides a receptor comprising two or more excitable artificial membranes that change oscillation patterns in response to a wide variety of chemical substances, and information on changes in the oscillation patterns. This is a chemical sensor consisting of an information processing section that processes the information as follows.

この発明において興奮性人工膜は、例えば上記文献にも
示されるD OP H(Dioleyl phosph
ate)ミリボア膜等である。このDOPHミリポア膜
は、その振動周波数、振幅及び波形が苦味、酸味、塩味
、甘味及びうま味の各種味覚物質のそれぞれに対して異
なった応答を示す、このような興奮性人工膜の発生した
発振パターンは、例えばこれをコンピュータに取り込み
多変量解析のような常法の統計的手法、及びバックプロ
パゲーションのようなニューラルネットワーク等の手段
を用いて情報の解析を行い、多種多様の化学物質を同時
認識し、味覚あるいは嗅覚に類似した味あるいは匂いと
しての認識を行うのである。
In this invention, the excitable artificial membrane is, for example, DOP H (Dioleyl phospho
ate) millibore membrane, etc. This DOPH Millipore membrane exhibits oscillation patterns generated by such an excitable artificial membrane, whose vibration frequency, amplitude, and waveform respond differently to each of the various taste substances of bitterness, sourness, saltiness, sweetness, and umami. For example, by importing this into a computer and analyzing the information using conventional statistical methods such as multivariate analysis and neural networks such as backpropagation, it is possible to simultaneously recognize a wide variety of chemical substances. It is recognized as a taste or smell similar to the sense of taste or smell.

(作 用) 本発明化学センサにおいては、神経1 (Elの電気的
な発振があり、その発振パターンガ多種多様の化学物質
に応答して変化する興奮性人工膜が2つ以上設けられた
受容部を有する。そしてこの受容部によるパターンの情
報はその量が著しく多量のもので、かつ各化学物質に非
特異的のものではあるが、これらの情報のコンビエータ
処理により非常に幅広い化学物質の同時Ly2識を可能
なくしめることになる。
(Function) In the chemical sensor of the present invention, there is electrical oscillation of nerve 1 (El), and the oscillation pattern changes in response to a wide variety of chemical substances. Although the amount of pattern information provided by this receptor is extremely large and is non-specific to each chemical substance, the processing of this information by the combinator allows simultaneous Ly2 detection of a wide range of chemical substances. It will make knowledge impossible.

(実施例) 以下本発明を具体的な実施例にて詳細に説明する。(Example) The present invention will be explained in detail below using specific examples.

まず興奮性人工膜の1つ(S、)として、合成脂質ジオ
レイルホスフェイト(DOPH)をミリポア社製のミリ
ポアフィルタ−に吸着させ作製した。
First, one of the excitable artificial membranes (S) was prepared by adsorbing the synthetic lipid dioleyl phosphate (DOPH) onto a Millipore filter manufactured by Millipore.

得られた興奮性人工膜(Sl)を、本発明の実施態様で
ある第1図の100mMと5CAMのMCI水溶液を満
たしたセル1の間に隔膜として設置し、0,5菖の直流
電流と30c+aHJの圧力を印加することにより周波
数約1七で発振させた。面図において2はマノメータ、
3は直流電源、4はXY−レコーダー 5は銀−塩化銀
電極である。次に苦味1酸味。
The obtained excitable artificial membrane (Sl) was installed as a diaphragm between the cell 1 filled with 100 mM and 5 CAM MCI aqueous solution as shown in FIG. By applying a pressure of 30c+aHJ, oscillation was caused at a frequency of about 17. In the plan view, 2 is a manometer,
3 is a DC power supply, 4 is an XY-recorder, and 5 is a silver-silver chloride electrode. Next is bitterness and sourness.

塩味、甘味及びうま味の各種味覚物質を上述の5mMK
cf水溶液中1mMとなるように添加したところ発振周
波数は次表1に定性的に示すようにそれぞ杆に対して異
なった応答を示した。
Salty, sweet and umami taste substances are mixed with the above 5mMK.
When added to a cf aqueous solution at a concentration of 1mM, the oscillation frequency showed different responses to each rod, as qualitatively shown in Table 1 below.

表  1 他に興奮性人工膜(Sz〜SS)としては、上記のよう
な味覚応答を示す上記DOPHに対し、生体膜の構成部
分である、例えばジオレオイルホスファチジルコリン、
ジステアロイルホスファチジルエタノールアミンのよう
なリン脂質の1種あるいは数種を組み合わせて添加した
ものをミリポアフィルタ−に吸着させて作製し、上記S
、と同様に行って、同表1(S、〜SS)に示すような
味覚応答を示すものとした。すなわちこれら各興奮性人
工III (S、〜S、)は、すべて味覚物質に対して
応答し、そして特に51は苦味、S8は酸味、Sstま
塩味、S4は甘味、更にS、はうま味にやや特異的に応
答するものであった。
Table 1 Other examples of excitable artificial membranes (Sz to SS) include, for example, dioleoylphosphatidylcholine, which is a constituent part of biological membranes, in contrast to the DOPH that exhibits the above-mentioned taste response.
The above-mentioned S
, and the taste responses shown in Table 1 (S, ~SS) were obtained. That is, each of these excitatory artificial IIIs (S, ~S,) all respond to taste substances, and in particular, 51 has a bitter taste, S8 has a sour taste, Sst has a salty taste, S4 has a sweet taste, and S has a slightly umami taste. It responded specifically.

上記のようにして得た5種の興奮性人工膜S〜S、を、
第2図の如くセル1を上記と同様に5mFIKc1及び
100mMKClニ区画し、か”)100mMMCI区
画部を長手方向に5区画に仕切って各5つの100mM
区画部と5IIM区画部としたセル間に順次設置した。
The five types of excitable artificial membranes S to S obtained as described above were
As shown in Figure 2, cell 1 was divided into 5mFIKc1 and 100mM KCl sections in the same manner as above, and the 100mM MCI section was partitioned into 5 sections in the longitudinal direction, each containing 5 100mM KCl sections.
They were installed sequentially between the cells defined as the compartment and 5IIM compartments.

そして、0.1−1.0 dの直流電流及び20〜30
a++tl□0の圧力を印加することにより各興奮性人
工膜S、〜S、を周波数的I Hzで発振させた。両図
において5は各区画セルに設置した銀塩化銀1掻、6は
周波数カウンター 7はコンピューターである。
and 0.1-1.0 d DC current and 20-30 d
By applying a pressure of a++tl□0, each excitable artificial membrane S, ~S, was caused to oscillate at a frequency of I Hz. In both figures, 5 is a silver chloride unit installed in each compartment cell, 6 is a frequency counter, and 7 is a computer.

次に苦味、酸味、塩味、甘味及びうま味の各種味覚物質
の混合物を、5nMKCf水溶液中11となるように添
加しそのときの発振周波数を周波数カウンタで測定し、
そのデータをコンピューターへ転送しコンピューター上
で情報処理した。この場合例えば興奮性人工MSlの発
振周波数の変化をΔf、とし、上記酸味、塩味、甘味、
うま味の効果を除去するために興奮性人工膜S2〜S、
の周波数変化Δr2〜Δf、に適当な係数を乗じた後上
記ΔElより差し引き、これを苦味応答R1とした。
Next, a mixture of various taste substances of bitterness, sourness, saltiness, sweetness and umami was added to the 5nM KCf aqueous solution at a concentration of 11, and the oscillation frequency at that time was measured using a frequency counter.
The data was transferred to a computer and processed there. In this case, for example, let the change in the oscillation frequency of the excitatory artificial MSI be Δf, and the sour, salty, sweet taste,
Excitable artificial membranes S2-S to remove the umami effect,
The frequency changes Δr2 to Δf were multiplied by an appropriate coefficient and then subtracted from the above ΔEl, and this was defined as the bitterness response R1.

すなわち R,=Δf、−0,1(Δf□+Δf、+Δf、+Δt
s)とした。同様にして、酸味応答R1,塩味応答R3
+甘味応答R1,うま味応答R,を表わした。ただし、
苦味に対する周波数変化は他よりも大きいのでΔf、に
は係数0.6を乗じた。またR1は減少効果を示すため
に符号を逆にした。
That is, R, = Δf, -0, 1 (Δf□+Δf, +Δf, +Δt
s). Similarly, sour taste response R1, salty taste response R3
+Sweetness response R1, umami response R. however,
Since the frequency change for bitter taste is larger than for other tastes, Δf was multiplied by a coefficient of 0.6. Also, the sign of R1 was reversed to show the reduction effect.

第3図は、(a);苦味40糟o1%、酸味20mo1
m。
Figure 3 shows (a); bitterness 40 mo1%, sourness 20 mo1
m.

塩味15molχ 甘味15molX、 うま味10m
olχ。
Salty taste 15molχ, sweetness 15molχ, umami taste 10m
olχ.

(b):苦味10+olX、酸味50molχ2塩味1
0molX甘味5 molχ、うま味20s+olχ。
(b): Bitterness 10+olX, sourness 50molχ2 salty 1
0 molX sweetness 5 molχ, umami 20s+olχ.

(C):苦味5mo1χ1酸味20aolχ、塩味10
molχ。
(C): bitterness 5molχ1 sourness 20aolχ, salty 10
molχ.

甘味60mo1%、  うま味5 nol!より夫々成
る混合物質を添加した場合の測定結果である。同図の如
く上述の混合物質中に含まれる各味覚物質の量が定性的
に認識されることが61認された。
Sweetness 60mol1%, Umami 5 nol! These are the measurement results when a mixed substance consisting of each of these substances was added. As shown in the figure, it was found that the amount of each taste substance contained in the above-mentioned mixed substance could be recognized qualitatively.

以上の実施例は、味覚物質の認識例について説明したが
、β−ヨノンのような匂い物質についても同様に発振パ
ターンが変化するので上記と同様に認識することが可能
であり、更にトリオレインのような生体11A1似吻質
や蛋白質の組み合わせにより、多種多様の化学物質に応
答するようになり同様の認識が可能である。
The above example describes an example of recognition of a taste substance, but odorants such as β-ionone can also be recognized in the same way as the oscillation pattern changes, and triolein can also be recognized in the same way. The combination of biological 11A1-like proboscis and proteins allows it to respond to a wide variety of chemical substances, making it possible to recognize them in the same way.

また上記実施例は、各化学物質による発振周波数の変化
のみを情報として極めて簡単な方法で認識した例を説明
したが、この発振周波数の他に振幅及び発形の変化を情
報として、同様に多変量解析のような統計的手法及びパ
ックプロパゲーションのようなニューラル名ットワーク
による解析でさらに高度な認識及び学習能力をもたせる
ことも可能である。
Furthermore, in the above embodiment, only the changes in the oscillation frequency due to each chemical substance are recognized in an extremely simple manner as information, but in addition to the oscillation frequency, changes in amplitude and oscillation shape can also be recognized in a similar manner. It is also possible to provide even more advanced recognition and learning abilities through analysis using statistical methods such as variable analysis and neural networks such as pack propagation.

(発明の効果) 以上の説明から明らかなように、本発明化学センサによ
れば、上記神経類(12の電気的発振がありそのパター
ンが多様の化学′1!Flzに応答して変化する2以上
の興奮性人工膜からなる受容部の存在により、多種多様
の化学物質を同時認識することが可能となるものであり
、従来の化学センサが実現できなかった味覚・嗅覚に著
しく類似した機能を有する化学センサを提供し上述の問
題を解消する効果を有する。
(Effects of the Invention) As is clear from the above explanation, according to the chemical sensor of the present invention, there are 12 electrical oscillations of the above-mentioned nerves (2) whose patterns change in response to various chemicals '1!Flz'. The existence of receptors made of excitable artificial membranes makes it possible to simultaneously recognize a wide variety of chemical substances, and enables functions remarkably similar to taste and smell, which conventional chemical sensors have not been able to achieve. The present invention has the effect of solving the above-mentioned problems.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の詳細な説明図、第3図は味
覚物質混合物の定性的認識を示す図である。 1・・・セル、3・・・電源、5・・・電極、6・・・
周波数カウンタ、7・・・コンビエータ−S、〜S、・
・・興奮性人工膜。 木¥呵ズ雄杷杆説明図 第 l  z
FIGS. 1 and 2 are detailed illustrations of the present invention, and FIG. 3 is a diagram showing qualitative recognition of a tastant mixture. 1... Cell, 3... Power supply, 5... Electrode, 6...
Frequency counter, 7... Combiator-S, ~S,・
...excitable artificial membrane. Wood loquat explanatory diagram No. l z

Claims (1)

【特許請求の範囲】[Claims] 神経類似の電気的な発振があり、その発振パターンが多
種多様の化学物質に応答して変化する2以上の興奮性人
工膜からなる受容部と、その発振パターンの変化を情報
として処理する情報処理部とから成る化学センサ。
There is electrical oscillation similar to that of nerves, and the oscillation pattern changes in response to a wide variety of chemical substances.A receptor consisting of two or more excitable artificial membranes, and information processing that processes changes in the oscillation pattern as information. A chemical sensor consisting of parts.
JP1105954A 1989-04-27 1989-04-27 Chemical sensor Expired - Fee Related JP2837867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1105954A JP2837867B2 (en) 1989-04-27 1989-04-27 Chemical sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1105954A JP2837867B2 (en) 1989-04-27 1989-04-27 Chemical sensor

Publications (2)

Publication Number Publication Date
JPH02285248A true JPH02285248A (en) 1990-11-22
JP2837867B2 JP2837867B2 (en) 1998-12-16

Family

ID=14421221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1105954A Expired - Fee Related JP2837867B2 (en) 1989-04-27 1989-04-27 Chemical sensor

Country Status (1)

Country Link
JP (1) JP2837867B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018097197A1 (en) * 2016-11-28 2018-05-31 国立研究開発法人物質・材料研究機構 Sample identification method based on chemical sensor measurement, sample identification device, and input parameter estimation method
WO2018101128A1 (en) * 2016-11-29 2018-06-07 国立研究開発法人物質・材料研究機構 Method and device for estimating value to be estimated associated with specimen

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62150119A (en) * 1985-12-25 1987-07-04 Mitsui & Co Ltd Detection method using self-exciting oscillation
JPS62187252A (en) * 1986-02-13 1987-08-15 Hitachi Ltd Palate detector
JPS6332364A (en) * 1986-07-25 1988-02-12 Toshiba Corp Function film having self-excited oscillation effect

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62150119A (en) * 1985-12-25 1987-07-04 Mitsui & Co Ltd Detection method using self-exciting oscillation
JPS62187252A (en) * 1986-02-13 1987-08-15 Hitachi Ltd Palate detector
JPS6332364A (en) * 1986-07-25 1988-02-12 Toshiba Corp Function film having self-excited oscillation effect

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018097197A1 (en) * 2016-11-28 2018-05-31 国立研究開発法人物質・材料研究機構 Sample identification method based on chemical sensor measurement, sample identification device, and input parameter estimation method
US11353437B2 (en) 2016-11-28 2022-06-07 National Institute For Materials Science Sample identification method based on chemical sensor measurement, sample identification device, and input parameter estimation method
WO2018101128A1 (en) * 2016-11-29 2018-06-07 国立研究開発法人物質・材料研究機構 Method and device for estimating value to be estimated associated with specimen
JPWO2018101128A1 (en) * 2016-11-29 2019-06-27 国立研究開発法人物質・材料研究機構 Method and apparatus for estimating an estimated target value associated with a sample

Also Published As

Publication number Publication date
JP2837867B2 (en) 1998-12-16

Similar Documents

Publication Publication Date Title
Cacace et al. The Hofmeister series: salt and solvent effects on interfacial phenomena
Vlasov et al. Electronic tongues and their analytical application
Winquist et al. Monitoring of freshness of milk by an electronic tongue on the basis of voltammetry
Naumann et al. Kinetics of valinomycin-mediated K+ ion transport through tethered bilayer lipid membranes
Yoshikawa et al. Spontaneous oscillation of electrical potential across organic liquid membranes
JPH01244335A (en) Chemical sensor for detecting odor
Hayashi et al. Electric characteristics of lipid-modified monolayer membranes for taste sensors
Winquist et al. Electronic tongues and combinations of artificial senses
JPH02285248A (en) Chemical sensor
Ung et al. Proton-bridge motions in amine conjugate acid ions having intramolecular hydrogen bonds to hydroxyl and amine groups
Oohira et al. Electric characteristics of hybrid polymer membranes composed of two lipid species
Holmberg et al. 2nd workshop of the second network on artificial olfactory sensing (NOSE II)
Hayashi et al. Effect of taste substances on electric characteristics of a lipid cast membrane with a single pore
Pakdaman et al. Noise induced synchronization in a neuronal oscillator
Kim et al. Application of a taste evaluation system to the monitoring of Kimchi fermentation
Holmin et al. Multivariate optimisation of electrochemically pre-treated electrodes used in a voltammetric electronic tongue
Rastogi et al. Interface-mediated oscillatory phenomena
Toko et al. Beer analysis using an electronic tongue
JPH03163351A (en) Taste detecting system
Fei et al. Pacemaker-driven spatiotemporal patterns on an electrode array
Ishihara et al. Smart chemical taste sensor for determination and prediction of taste qualities based on a two-phase optimized radial basis function network
Oohira et al. Electrical Characteristics of Lipid/PY C/DO PP Membrane and PVC/DOPP Membrane Used as Transducers in Chemical Sensors
Michalke et al. Membrane activity of an anion channel from Clavibacter michiganense ssp. nebraskense
JPH11248669A (en) Taste sensor and measurement using it
Yoshikawa et al. Characteristic effects of taste-compounds on the dynamic behavior of oleate-monolayer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees