JPH0228362B2 - - Google Patents

Info

Publication number
JPH0228362B2
JPH0228362B2 JP58089609A JP8960983A JPH0228362B2 JP H0228362 B2 JPH0228362 B2 JP H0228362B2 JP 58089609 A JP58089609 A JP 58089609A JP 8960983 A JP8960983 A JP 8960983A JP H0228362 B2 JPH0228362 B2 JP H0228362B2
Authority
JP
Japan
Prior art keywords
tube
liquid
degassed
tubes
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58089609A
Other languages
Japanese (ja)
Other versions
JPS59216606A (en
Inventor
Kozo Shirato
Kimio Hayasaka
Kazuyasu Kawashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Erma Inc
Original Assignee
Erma Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Erma Inc filed Critical Erma Inc
Priority to JP8960983A priority Critical patent/JPS59216606A/en
Publication of JPS59216606A publication Critical patent/JPS59216606A/en
Publication of JPH0228362B2 publication Critical patent/JPH0228362B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/027Liquid chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/14Preparation by elimination of some components

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、液体中に溶存している気体(溶存ガ
ス)を除去するための脱気装置に関し、更に詳し
くは気体のみを通し液体の透過を阻止する合成樹
脂材で成形したチユーブを真空チヤンバ内に収容
し、そのチユーブ内に溶存ガスを含む液体を流通
させながら脱気するようにした脱気装置に関する
ものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a deaerator for removing gas dissolved in a liquid (dissolved gas), and more specifically to a deaerator for removing gas dissolved in a liquid. This invention relates to a degassing device in which a tube molded from a synthetic resin material that prevents gas is housed in a vacuum chamber, and a liquid containing dissolved gas is degassed while flowing through the tube.

<従来の技術> この種脱気装置としては特開昭54−123785号公
報に開示された如きものが知られている。斯る脱
気装置において脱気効率を向上させるには、チユ
ーブの内径を細く肉厚を薄くして長く形成させれ
ば良いが、チユーブの内径を細くし長くするとチ
ユーブ内を流通する被脱気液体の管抵抗が増して
流れにくくなるので、所要の流量が得られなくな
る。そこで所要の流量を得るために被脱気液体に
圧力を加えると、余計な設備を必要とするだけで
なくチユーブが破裂しやすくなるので加える圧力
にも自ずと限界があり、従つてこの種脱気装置
は、液体クロマトグラフの移動相等、比較的少流
量で済むものしか適用されていないのが現状であ
る。
<Prior Art> As this type of degassing device, one disclosed in Japanese Patent Application Laid-open No. 123785/1983 is known. In order to improve the degassing efficiency in such a degassing device, the inner diameter of the tube can be made narrower, the wall thickness can be made thinner, and the tube can be made longer. The pipe resistance of the liquid increases and it becomes difficult to flow, making it impossible to obtain the required flow rate. Therefore, if pressure is applied to the liquid to be degassed in order to obtain the required flow rate, not only will extra equipment be required, but the tube will easily burst, so there is a natural limit to the pressure that can be applied. Currently, only devices that require a relatively small flow rate, such as mobile phase for liquid chromatographs, are used.

他方、被脱気液体の用途によつて、脱気の程度
と、その要求される流量が異なる。即ち、例えば
液体クロマトグラフに用いる場合には、ほぼ完全
に脱気したものを数ml常に一定量供給できればよ
く、IC半導体製造プロセスに用いる洗浄用超純
水の場合には0.3ppM以下に脱気したものを毎時
1トン以上必要とし、また薬用ビンを洗浄する洗
浄用水の場合は、毎分数mlから数の範囲で所定
時に所要量を連続して必要とする。しかし乍ら、
従来のこの種脱気装置では上述した通り、所要の
脱気量は得られても、連続して毎時1トンもの多
量の流量が得られるものや、毎分数mlから数の
範囲で所定時に所要量の流量が連続して得られる
ものはない為、IC半導体製造プロセスに用いる
洗浄用超純水のように多量を必要とする場合に
は、大規模な真空脱気塔を設備していた。そこ
で、被脱気液体を流通させるチユーブを複数用い
て並列に接続させて大流量の脱気処理を行なうこ
とが考えられるが、複数のチユーブを単に並列に
接続させただけでは流量変動による脱気量の変動
が著しく、所要脱気量のものを安定して得ること
が出来ず、しかもチユーブ数の増加に伴つて流量
及び脱気量の変動が一層著しくなると共に、装置
全体が大型化してしまう不具合があつた。
On the other hand, the degree of degassing and the required flow rate differ depending on the use of the liquid to be degassed. In other words, for example, when used in liquid chromatography, it is sufficient to constantly supply a constant amount of several ml of almost completely degassed water, and in the case of ultrapure water for cleaning used in IC semiconductor manufacturing processes, it is necessary to degas it to 0.3 ppM or less. More than 1 ton of water is required per hour, and in the case of washing water for washing medicinal bottles, the required amount is continuously required at a given time, ranging from several ml to several ml per minute. However,
As mentioned above, with conventional deaerators of this type, although the required amount of deaeration can be obtained, there are those that can continuously obtain a flow rate as large as 1 ton per hour, or the amount required at a given time in the range of several ml per minute to a few ml per minute. Since there is no way to continuously obtain a large amount of flow rate, a large-scale vacuum degassing tower was installed when a large amount of water was required, such as ultrapure water for cleaning used in the IC semiconductor manufacturing process. Therefore, it is possible to use multiple tubes that flow the liquid to be degassed and connect them in parallel to perform deaeration processing at a large flow rate. The amount fluctuates significantly, making it impossible to stably obtain the required amount of deaeration, and as the number of tubes increases, the fluctuations in flow rate and deaeration amount become even more significant, and the entire device becomes larger. There was a problem.

<発明が解決しようとする問題点> 本発明はこの様な従来の不具合に鑑みてなされ
たものであり、同じ脱気量の液体が0.1mlから理
論的には無限大迄の範囲で所定時に所定量の流量
が安定して連続して得られると同時に、小型コン
パクトで設置場所をとらず、且つその製造並びに
取扱いが容易で安価な脱気装置を提供せんとする
ものである。
<Problems to be Solved by the Invention> The present invention has been made in view of the above-mentioned problems in the prior art. It is an object of the present invention to provide a degassing device that can stably and continuously obtain a predetermined amount of flow rate, is small and compact, does not take up much space, is easy to manufacture and handle, and is inexpensive.

<問題点を解決するための手段> 斯る目的を達成する本発明脱気装置は、真空チ
ヤンバ内に、気体のみを通し液体の透過を阻止す
る合成樹脂材で各々ほぼ同ぞ内径、肉厚、長さに
形成した複数のチユーブを収容設置せしめ、該各
チユーブの一端口を1つの流入口と複数の分配口
を備えた流入用分配盤の上記分配口に夫々連通接
続すると共に各チユーブの他端口を1つの流出口
と複数の集積口を備えた流出用集積盤の上記集積
口に夫々連通接続させて各チユーブ内を流通する
液体の流通抵抗に微少な差を付与させ、前記流入
用分配盤の流入口から各チユーブ内に被脱気液体
を分配流通させ前記流出用集積盤の流出口で集積
するようにした事を特徴としたものである。
<Means for Solving the Problems> The degassing device of the present invention that achieves the above object has a vacuum chamber made of a synthetic resin material that allows only gas to pass through and blocks liquid from permeating, and each has approximately the same inner diameter and wall thickness. , a plurality of tubes formed in a length are housed and installed, one end of each tube is connected in communication with the distribution port of an inflow distribution board having one inflow port and a plurality of distribution ports, and The other end ports are connected to the above-mentioned accumulation ports of an outflow accumulation board having one outflow port and a plurality of accumulation ports, respectively, to give a slight difference in the flow resistance of the liquid flowing in each tube, so that the inflow The liquid to be degassed is distributed and distributed into each tube from the inlet of the distribution board, and is accumulated at the outlet of the outflow accumulation board.

<実施例> 以下、本発明実施の一例を図面に基づいて説明
する。
<Example> Hereinafter, an example of implementing the present invention will be described based on the drawings.

本発明脱気装置は基本的に、1個の真空チヤン
バ1と、複数のチユーブ2,2…と、1個の流入
用分配盤3及び流出用集積盤4とで構成される。
The deaerator of the present invention basically comprises one vacuum chamber 1, a plurality of tubes 2, 2, . . . , one inflow distribution board 3 and one outflow accumulation board 4.

真空チヤンバ1は堅牢な金属材を用いて円筒形
状に成形すると共に、その上下に上蓋板1aと下
蓋板1bを一体に被蓋して内部を気密状に形成し
てなり、その上蓋板1aに真空ポンプ(図示せ
ず)の接続管7と接続する接続口8と、圧力セン
サ9の取付口10を各々真空チヤンバ1内部と連
通状に一体突設すると共に、流入用分配盤3の流
入口3aと流出用集積盤4の流出口4aを突出さ
せ、真空ポンプでもつて当該真空チヤンバ1の内
部を減圧させる。又、真空チヤンバ1の内部には
チユーブ2を収容設置すると共に、多数のチユー
ブ2をブロツク毎に支持する仕切板5を設置す
る。この仕切板5は真空チヤンバ1の内径とほぼ
同径の円形板状に成形し、その中央を支柱11に
よつて水平状に支持せしめ、適当な箇所に各チユ
ーブ2を導出させる為の切欠き溝12及び気体導
通孔13を穿設する。
The vacuum chamber 1 is formed into a cylindrical shape using a strong metal material, and is integrally covered with an upper cover plate 1a and a lower cover plate 1b on the upper and lower sides to form an airtight interior. A connection port 8 for connecting to a connection pipe 7 of a vacuum pump (not shown) and a mounting port 10 for a pressure sensor 9 are integrally provided on the plate 1a so as to communicate with the inside of the vacuum chamber 1, and an inflow distribution board 3 is provided. The inlet 3a of the chamber 1 and the outlet 4a of the outlet stack 4 are made to protrude, and the inside of the vacuum chamber 1 is depressurized using a vacuum pump. Further, inside the vacuum chamber 1, tubes 2 are housed and installed, and a partition plate 5 for supporting a large number of tubes 2 in blocks is installed. This partition plate 5 is formed into a circular plate shape with approximately the same diameter as the inside diameter of the vacuum chamber 1, and its center is supported horizontally by a support 11, with notches for guiding each tube 2 to an appropriate location. Grooves 12 and gas conduction holes 13 are bored.

チユーブ2は被脱気液体(脱気すべき液体)a
を流通させ流通している過程で被脱気液体から溶
存ガスを脱気するためのものであり、気体のみを
通し液体の透過を阻止する合成樹脂材、例えば四
弗化エチレン樹脂材やシリコン樹脂材等を用いて
成形するが、その内径や肉厚や長さは被脱気液体
の性質や流量及び材質や要求される脱気量(脱気
の程度)によつて設定される。実験の結果では、
チユーブ2の内径を0.2〜12mm、肉厚を0.2〜1.0
mm、長さを10〜45mとし、被脱気液体の流量を毎
分0.1〜10.0mlとした時、完全に近い状態にまで
脱気することが出来た。従つて、要求される脱気
量を基準にした場合、チユーブ2の材質と内径及
び肉厚を定めた後、チユーブ2の長さは実測に基
づいて選択設定される。実験例では、チユーブ2
を四弗化エチレン樹脂材で成形し、0.3ppM(mg
O2/)以下の脱気量を求められた場合に、チ
ユーブ2の内径を1.0〜2.0mmとし、肉厚を0.2〜
0.5mmとし、長さを50〜100mとした時、被脱気液
体の最大流量(チユーブの内をほとんど抵抗なく
流れる最大流量)は毎分10〜20mlとなり、所要の
脱気量が得られた。又、チユーブ2をシリコン樹
脂材で成形した場合には、四弗化エチレン樹脂材
の場合より内径及び肉厚を大きくし、しかも長さ
を10mに短くしても、所要の脱気量の液体が最大
毎分20〜40ml得られた。次いで被脱気液体の要求
流量に基づいてチユーブ2の必要な本数を決定す
る。即ち、脱気された液体を例えば毎分最大500
ml要求された場合に、一本のチユーブ2内をほと
んど抵抗なく流れる最大流量が例えば一分間当り
20mlであるとすれば、25本(500÷20=25)のチ
ユーブ2を用意すれば、毎分0.1mlから最大500ml
の脱気された液体が連続して得られることにな
る。また例えば、被脱気液体を毎時1トン要求さ
れた場合には、チユーブ1本の最大流量が毎分25
mlであるとすれば、チユーブ1本当り毎時1.5
(25×60=1500ml)となるから667本(1000÷1.5
=667)以上のチユーブ2を用意すれば、毎時1
トンの脱気された液体が連続して得られることに
なる。
Tube 2 is the liquid to be degassed (liquid to be degassed) a
It is used to degas dissolved gas from the liquid to be degassed during the distribution process, and is made of synthetic resin materials that allow only gas to pass through and block the permeation of liquids, such as tetrafluoroethylene resin materials and silicone resins. The inner diameter, wall thickness, and length are determined depending on the properties of the liquid to be degassed, the flow rate, the material, and the required amount of deaeration (degree of deaeration). In the experimental results,
The inner diameter of tube 2 is 0.2 to 12 mm, and the wall thickness is 0.2 to 1.0.
When the length was 10 to 45 m and the flow rate of the liquid to be degassed was 0.1 to 10.0 ml per minute, it was possible to completely degas the liquid. Therefore, based on the required amount of degassing, after determining the material, inner diameter, and wall thickness of the tube 2, the length of the tube 2 is selected and set based on actual measurements. In the experimental example, tube 2
is molded with tetrafluoroethylene resin material, and 0.3ppM (mg
O 2 /) or less, the inner diameter of tube 2 should be 1.0 to 2.0 mm, and the wall thickness should be 0.2 to 2.0 mm.
When the tube was set to 0.5 mm and the length was 50 to 100 m, the maximum flow rate of the liquid to be degassed (the maximum flow rate that flows through the tube with almost no resistance) was 10 to 20 ml per minute, and the required deaeration amount was obtained. . In addition, when tube 2 is molded from silicone resin, even if the inner diameter and wall thickness are made larger than in the case of polytetrafluoroethylene resin and the length is shortened to 10 m, the required amount of liquid can be degassed. was obtained at a maximum of 20 to 40 ml per minute. Next, the required number of tubes 2 is determined based on the required flow rate of the liquid to be degassed. i.e. degassed liquid up to 500
When ml is requested, the maximum flow rate that flows through one tube 2 with almost no resistance is, for example, per minute.
If it is 20ml, if you prepare 25 tubes (500÷20=25), the flow will be from 0.1ml to a maximum of 500ml per minute.
of degassed liquid will be obtained continuously. For example, if 1 ton of liquid to be degassed is required per hour, the maximum flow rate per tube is 25 ton per minute.
ml, 1 tube per hour is 1.5
(25×60=1500ml), so 667 bottles (1000÷1.5
= 667) If you prepare the above tube 2, 1 hourly
Tons of degassed liquid will be obtained continuously.

然して、チユーブ2の材質、内径、肉厚、長さ
及び必要な本数が決定され、各チユーブ2を全て
同じ長さに成形し、その一端口を流入用分配盤3
の分配口3bに連通接続し、その他端口を流出用
集積盤4の集積口4bに連通接続すると共に、渦
巻状に巻回して真空チヤンバ1内に収容設置し、
各チユーブ2,2…内を流通する被脱気液体の流
通抵抗に微少な差を付与させる。その際、各チユ
ーブ2が折れ曲つたり捩れたりすることがないよ
うに注意すると共に、効率よく収容設置し得るよ
うに、各チユーブ2の渦巻束2a,2b,2c…
の直径や高さを違えて同芯状に積み重ね状に収容
設置する。即ち、図示実施例では中心の渦巻束2
aの外周に、その渦巻束2aの半分の高さの渦巻
束2bと2cを同芯状態に積み重ね、これを1つ
のブロツクとして真空チヤンバ1内に仕切板5を
介して順次積み重ね状に収容設置したものであ
る。
The material, inner diameter, wall thickness, length, and required number of tubes 2 are determined, and each tube 2 is molded to the same length, and one end of the tube is connected to the inflow distribution board 3.
The other end is connected to the distribution port 3b of the outflow stacking board 4, and the other end is connected to the stacking port 4b of the outflow stacking board 4, and is wound in a spiral shape and housed in the vacuum chamber 1,
A slight difference is given to the flow resistance of the liquid to be degassed flowing through each tube 2, 2.... At that time, care should be taken not to bend or twist each tube 2, and to ensure efficient storage and installation, the spiral bundles 2a, 2b, 2c...
They are stacked concentrically with different diameters and heights. That is, in the illustrated embodiment, the central spiral bundle 2
The spiral bundles 2b and 2c, which are half the height of the spiral bundle 2a, are stacked concentrically around the outer periphery of the spiral bundle 2a, and are housed in the vacuum chamber 1 as one block in a stacked manner via the partition plate 5. This is what I did.

又、各チユーブ2を真空チヤンバ1内に収容設
置した際、各チユーブにおける脱気効率を損なわ
ないようにする為に、チユーブ2同士及びチユー
ブ2と真空チヤンバ1との接触をできるだけなく
することが望ましく、その為にチユーブ2を真空
チヤンバ1の内壁及び仕切板5との間並びに各チ
ユーブ2相互間にスペーサ材6を介在させる。ス
ペーサ材6としては連続気泡を有する樹脂発泡材
等を用いて平板形状或いは小片形状に形成し、例
えば平板形状のスペーサ材6を真空チヤンバ1の
上下内壁と周壁内壁及び仕切板5の上下表面に沿
わせて設置し、小片形状のスペーサ材をチユーブ
2の相互間に設置するものである。
Furthermore, when each tube 2 is housed and installed in the vacuum chamber 1, in order not to impair the degassing efficiency in each tube, it is necessary to avoid contact between the tubes 2 and between the tubes 2 and the vacuum chamber 1 as much as possible. Preferably, for this purpose, a spacer material 6 is interposed between the tubes 2 and the inner wall of the vacuum chamber 1 and the partition plate 5, and between each tube 2. The spacer material 6 is formed into a flat plate shape or small piece shape using a resin foam material having open cells, etc. For example, the flat plate-shaped spacer material 6 is applied to the upper and lower inner walls and peripheral inner walls of the vacuum chamber 1 and the upper and lower surfaces of the partition plate 5. The tubes 2 are installed along each other, and a small piece-shaped spacer material is installed between the tubes 2.

流入用分配盤3は被脱気液体aを受け入れる為
の1つの流入口3aと、受け入れた流体aを複数
の各分配口3b,3b…に分配する為の分配通路
3c及びその分配通路3cと連通して被脱気液体
aを複数本の各チユーブ2,2…に分配する為の
複数の分配口3b,3b…を備えてなり、流入用
分配盤3自体は略円盤形状に成形し、各分配口3
b,3b…は流入用分配盤3の周面にほぼ放射状
に配置形態されている。尚、各分配口3b,3b
…は流入用分配盤3の下面位置に配置形成するよ
うにしてもよい。
The inflow distribution board 3 has one inlet port 3a for receiving the liquid a to be degassed, and a distribution passage 3c for distributing the received fluid a to a plurality of distribution ports 3b, 3b, . . . It is equipped with a plurality of distribution ports 3b, 3b... for communicating and distributing the liquid to be degassed to the plurality of tubes 2, 2..., and the inflow distribution plate 3 itself is formed into a substantially disk shape, Each distribution port 3
b, 3b, . . . are arranged approximately radially on the circumferential surface of the inflow distribution board 3. In addition, each distribution port 3b, 3b
... may be arranged and formed at the lower surface position of the inflow distribution board 3.

流出用集積盤4は流入用分配盤3とほぼ同様の
形状に成形し、脱気された液体bを受け入れる為
の複数の集積口4b,4b…と、各集積口4b,
4b…と連通した集積路4c及びその集積路4c
と連通した1つの流出口4aを備えてなる。
The outflow stacking board 4 is formed into almost the same shape as the inflow distribution board 3, and includes a plurality of collecting ports 4b, 4b, . . . for receiving the degassed liquid b, and each collecting port 4b,
The accumulation path 4c communicating with 4b... and its accumulation path 4c
It has one outlet 4a communicating with the outlet.

そして、流入用分配盤3の分配口3bと流出用
集積盤4の集積口4bとは夫々同数配置形成し、
各分配口3bと集積口4bとを1本1本のチユー
ブ2で連通接続することにより各チユーブ2,2
…内を流通する被脱気液体aの流通抵抗に微少な
差を付与させるものである。又、図示実施例では
流入用分配盤3と流出用集積盤4とを互いに一部
を重ね合せ一体にして真空チヤンバ1の内側上部
に設置したが、流入用分配盤3と流出用集積盤4
とを別々に成形してもよいと共に、その流入用分
配盤3と流出用集積盤4を真空チヤンバ1の内側
又は外側の上又は下位置に夫々分離して設置して
もよい。
The distribution ports 3b of the inflow distribution board 3 and the collection ports 4b of the outflow collection board 4 are arranged in the same number, respectively.
By connecting each distribution port 3b and accumulation port 4b with each tube 2, each tube 2,2
. . . to give a slight difference to the flow resistance of the liquid to be degassed flowing therethrough. In addition, in the illustrated embodiment, the inflow distribution board 3 and the outflow accumulation board 4 are partially overlapped and integrated and installed at the inner upper part of the vacuum chamber 1, but the inflow distribution board 3 and the outflow accumulation board 4
They may be molded separately, and the inflow distribution board 3 and outflow accumulation board 4 may be separately installed at upper or lower positions inside or outside the vacuum chamber 1, respectively.

而して、被脱気液体aを流入用分配盤4の流入
口3aから供給すると、分配通路3cから各分配
口3b,3b…に分配されて各々のチユーブ2,
2…内を流通するようになるが、各チユーブ2,
2…内を流通する被脱気液体の流通抵抗に微少な
差を付与させてあるので、被脱気体aの供給流量
が少ない場合には、被脱気液体aが流通している
チユーブ2と流通していないチユーブ2とが存在
する。即ち、1本当りの最大流量が例えば一分間
当り10mlのチユーブ2を20本使用した場合、脱気
された液体bは一分間当り最大200ml(10ml×20
本)得られるが、今ここで被脱気液体aを流入用
分配盤3の流入口3aから一分間当り20ml供給し
たとすると、流入用分配盤3の各分配口3b,3
b…(この場合、流入用分配盤の分配口3bは20
箇ある)に均等に1mlずつ分配(20ml÷20本=1
ml)されるのではなく、2乃至3箇の分配口3b
のみを通して夫々のチユーブ2を流通するように
なる。この現象は、各チユーブ2…が真空チヤン
バ1内に収容設置されている状態、すなわち各チ
ユーブ2…の高低差や巻回具合が同一でない事、
流入用分配盤3の流入口3aから各分配口3b,
3b…までの距離、並びに流出用集積盤4の流出
口4aから各集積口b,4b…までの距離が夫々
均等でなく、更にはチユーブ2の内径や材質によ
る摩擦係数、各分配口3bの口径等が微妙に異な
る事等の相剰的作用により各チユーブ2…内を流
通する被脱気液体の流通抵抗が各チユーブによつ
て微妙に相違するので、被脱気液体の流量に応じ
て流通抵抗が小さいチユーブ2から順に流通する
ようになる為である。但し、この各チユーブ2に
おける流通抵抗の差はさほど大きいものではな
く、チユーブ1本当りに流通する流量が増加し或
いは一定量に達すると、上記差異の占る流通抵抗
全体に対する割合は無視できる程度のものとな
り、流通抵抗差によりほとんど流通しなかつた他
のチユーブ2にも流通するようになる。この様
に、各チユーブの流通抵抗の微少な差が、流量の
増減によつて脱気に有効となるチユーブの本数を
自助自動的に選定する機能を有し、全体の流通に
より圧力損失自体もほぼ一定に調整されるわけで
ある。
When the liquid to be degassed a is supplied from the inlet 3a of the inflow distribution board 4, it is distributed from the distribution passage 3c to the respective distribution ports 3b, 3b, . . .
2..., but each tube 2,
Since a slight difference is given to the flow resistance of the liquid to be degassed flowing through the tube 2, when the supply flow rate of the liquid to be degassed a is small, the flow resistance of the liquid to be degassed flowing through the tube 2 and There is a tube 2 which is not distributed. In other words, if 20 tubes 2 with a maximum flow rate of 10 ml per minute are used, the degassed liquid B will flow at a maximum of 200 ml per minute (10 ml x 20 tubes).
However, if the liquid to be degassed is supplied at 20ml per minute from the inlet 3a of the inflow distribution board 3, then each distribution port 3b, 3 of the inflow distribution board 3
b... (In this case, the distribution port 3b of the inflow distribution panel is 20
Distribute 1 ml evenly to each portion (20 ml ÷ 20 bottles = 1
ml) rather than two or three dispensing ports 3b.
Each tube 2 is distributed through the tube. This phenomenon is caused by the fact that the tubes 2 are housed in the vacuum chamber 1, that is, the height differences and winding conditions of the tubes 2 are not the same.
From the inflow port 3a of the inflow distribution board 3 to each distribution port 3b,
3b... and the distances from the outlet 4a of the outflow stacking board 4 to each stacking port b, 4b... Because the flow resistance of the liquid to be degassed flowing through each tube 2 differs slightly depending on the tube due to the additive effect of the slightly different diameters, etc., the flow rate of the liquid to be degassed varies depending on the This is because the fluid flows in order from tube 2, which has the lowest flow resistance. However, the difference in flow resistance between each tube 2 is not so large, and when the flow rate per tube increases or reaches a certain amount, the ratio of the above difference to the total flow resistance becomes negligible. It also begins to circulate to other tubes 2, which had hardly been distributed due to the difference in distribution resistance. In this way, the slight difference in the flow resistance of each tube has the function of automatically selecting the number of tubes that will be effective for deaeration by increasing or decreasing the flow rate, and the pressure loss itself can be reduced due to the overall flow. It is adjusted almost constant.

然して、被脱気液体aは各チユーブ2…が真空
チヤンバ1内に収容されているので、各チユーブ
2…内を流通している過程で、溶存ガスがチユー
ブ2を透過して真空チヤンバ1内に排出され脱気
され、脱気された液体bは流出用集積盤4の各集
積口4b,4b…から集積路4cに集められて流
出口4aからホース等により所定の場所に配給さ
れる。
However, since the liquid to be degassed is housed in each tube 2 in the vacuum chamber 1, dissolved gas passes through the tube 2 and enters the vacuum chamber 1 while flowing through each tube 2. The degassed liquid b is collected in the collection path 4c from each collection port 4b, 4b, .

<発明の効果> 本発明脱気装置は斯様に構成したので、被脱気
液体はその流量に応じて各チユーブ内を適当に流
通し、各チユーブ内を流通している過程で脱気さ
れ、且つチユーブ1本当りの脱気量は各チユーブ
とも同じであるから、同じ脱気量の液智体が0.1
mlから理論的には無限大迄の範囲で所定時に所要
量の流量が安定して連続して得られるようにな
る。
<Effects of the Invention> Since the deaerator of the present invention is configured in this manner, the liquid to be degassed flows through each tube appropriately according to its flow rate, and is degassed while flowing through each tube. , and since the amount of deaeration per tube is the same for each tube, the liquid inertia with the same deaeration amount is 0.1
The required flow rate can be stably and continuously obtained at a given time in the range from ml to infinity, theoretically.

本発明の脱気装置を用いて脱気したデータの一
例を第7図aと第7図bに示す。図中、縦軸は脱
気量で、1の液体中に溶存している酸素の量
(mgO2/)で現わし、横軸は被脱気液体の1分
間当りの流量(ml/min)を現わす。そして、第
7図aは被脱気液体として蒸留水を使用した例で
あり、第7図bは一般水道水を使用した例であ
る。このデータ表から明らかな如く、被脱気液体
の流量が増ると多少脱気量は落ちるが、ほとんど
同じ脱気量の液体が毎分0.1mlから1300mlまで連
続して得られることが解る。又、第7図cは第7
図aと同様な蒸溜水を用い、従来の脱気装置(特
開昭54−123785号公報で開示された装置)で脱気
したデータ表である。但し、従来の脱気装置では
流通抵抗の増大により同量の流量での比較ができ
ない為、小流量でのみ行なつた。図中イはチユー
ブの長さが短かい場合、ロはチユーブが長い場合
を示す。このデータ表から明らかな通り、流量の
増加と共に脱気量が大巾に変動しており、第7図
aのデータ表との比較によつ本発明の有用性が理
解されるだろう。
Examples of data degassed using the deaerator of the present invention are shown in FIGS. 7a and 7b. In the figure, the vertical axis is the amount of degassing, expressed as the amount of oxygen dissolved in the liquid (mgO 2 /), and the horizontal axis is the flow rate of the liquid to be degassed per minute (ml/min). appear. FIG. 7a shows an example in which distilled water is used as the liquid to be degassed, and FIG. 7b shows an example in which ordinary tap water is used. As is clear from this data table, as the flow rate of the liquid to be degassed increases, the amount of degassed drops somewhat, but it can be seen that almost the same amount of degassed liquid can be continuously obtained from 0.1 ml to 1300 ml per minute. Also, Figure 7c shows the seventh
This is a data table in which distilled water similar to that in Figure A was used for degassing with a conventional degassing device (device disclosed in Japanese Patent Application Laid-open No. 123785/1985). However, with conventional deaerators, it was not possible to compare the same flow rate due to increased flow resistance, so this was done only at a small flow rate. In the figure, A indicates a case where the tube is short, and B indicates a case where the tube is long. As is clear from this data table, the amount of degassing varies widely as the flow rate increases, and the usefulness of the present invention will be understood by comparison with the data table of FIG. 7a.

しかも、本発明脱気装置は装置全体が非常に小
型コンパクトになり(実施例のものは真空チヤン
バの高さが360mm、内径が240mmである)、設置場
所をとらず、その経済的効果は大なるものがあ
る。
Moreover, the degassing device of the present invention has a very small and compact device (the vacuum chamber in the example has a height of 360 mm and an inner diameter of 240 mm), does not take up much space for installation, and has great economic effects. There is something.

更に、構造が簡単で製造が容易であり、従来の
脱気塔に比較して非常に安価に提供し得ると同時
に、その保守点検が容易となる。
Furthermore, it has a simple structure and is easy to manufacture, and can be provided at a much lower cost than conventional degassing towers, and at the same time, its maintenance and inspection are easy.

よつて、所期の目的を達成し得る。 Therefore, the intended purpose can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明脱気装置の1実施例を示し、第1
図は真空チヤンバとチユーブを切欠して示す正面
図、第2図は第1図の2−2線断面図、第3図は
第2図の3−3線断面図、第4図は第1図の4−
4線断面図、第5図は流入用分配盤と流出用集積
盤及び各チユーブとの関係を説明する模式図、第
6図は仕切板の平面図、第7図a及び第7図bは
本発明脱気装置により脱気したデータのグラフ図
で、第7図aは被脱気液体として蒸留水を使用し
た例、第7図bは一般水道水を使用した例であ
る。第7図cは従来の脱気装置で脱気したデータ
のグラフ図である。 図中、1は真空チヤンバ、2はチユーブ、3は
流入用分配盤、3aは流入口、3bは分配口、4
は流出用集積盤、4bは集積口、4aは流出口で
ある。
The drawing shows one embodiment of the deaerator of the present invention, and the first
The figure is a cutaway front view of the vacuum chamber and tube, Figure 2 is a sectional view taken along line 2-2 in Figure 1, Figure 3 is a sectional view taken along line 3-3 in Figure 2, and Figure 4 is a sectional view taken along line 1-2 in Figure 1. Figure 4-
4-line sectional view, FIG. 5 is a schematic diagram explaining the relationship between the inflow distribution board, outflow accumulation board, and each tube, FIG. 6 is a plan view of the partition plate, and FIGS. 7a and 7b are 7A is an example in which distilled water is used as the liquid to be degassed, and FIG. 7B is an example in which ordinary tap water is used as the liquid to be degassed. FIG. 7c is a graph of data obtained by degassing with a conventional degassing device. In the figure, 1 is a vacuum chamber, 2 is a tube, 3 is an inflow distribution board, 3a is an inlet, 3b is a distribution port, 4
4b is a collection port, and 4a is an outflow port.

Claims (1)

【特許請求の範囲】[Claims] 1 真空チヤンバ内に、気体のみを通し液体の透
過を阻止する合成樹脂材で各々ほぼ同じ内径、肉
厚、長さに形成した複数のチユーブを渦巻状に巻
回して収容設置せしめ、該各チユーブの一端口を
1つの流入口と複数の分配口を備えた流入用分配
盤の上記分配口に夫々連通接続すると共に各チユ
ーブの他端口を1つの流出口と複数の集積口を備
えた流出用集積盤の上記集積口に夫々連通接続さ
せ、且つ前記各チユーブの渦巻束の直径や高さを
互いに違えて各チユーブ内を流通する液体の流通
抵抗に微少な差を付与させ、前記流入用分配盤の
流入口から各チユーブ内に被脱気液体を分配流通
させ前記流出用集積盤の流出口で集積するように
した事を特徴とする脱気装置。
1 A plurality of tubes, each made of a synthetic resin material that allows only gas to pass through and blocks the permeation of liquid, each formed with approximately the same inner diameter, wall thickness, and length, are spirally wound and installed in a vacuum chamber, and each tube is housed in a vacuum chamber. One end of each tube is connected in communication with the distribution ports of an inflow distribution board having one inflow port and a plurality of distribution ports, and the other end of each tube is connected to an outflow distribution board having one outflow port and a plurality of accumulation ports. The tubes are connected in communication with the accumulation ports of the accumulation board, and the diameters and heights of the spiral bundles of the tubes are different from each other to give a slight difference in the flow resistance of the liquid flowing through each tube, and the inflow distribution A degassing device characterized in that a liquid to be degassed is distributed and distributed into each tube from an inlet of a panel, and is accumulated at an outlet of the outflow accumulation panel.
JP8960983A 1983-05-21 1983-05-21 Degassing apparatus Granted JPS59216606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8960983A JPS59216606A (en) 1983-05-21 1983-05-21 Degassing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8960983A JPS59216606A (en) 1983-05-21 1983-05-21 Degassing apparatus

Publications (2)

Publication Number Publication Date
JPS59216606A JPS59216606A (en) 1984-12-06
JPH0228362B2 true JPH0228362B2 (en) 1990-06-22

Family

ID=13975486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8960983A Granted JPS59216606A (en) 1983-05-21 1983-05-21 Degassing apparatus

Country Status (1)

Country Link
JP (1) JPS59216606A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6025514A (en) * 1983-07-21 1985-02-08 Eruma Kogaku Kk Degassing apparatus
JPH0337681Y2 (en) * 1985-07-31 1991-08-09
JPH0326882Y2 (en) * 1986-12-12 1991-06-11
JP2893530B2 (en) * 1988-12-08 1999-05-24 ジャパンゴアテックス株式会社 Degassing membrane and degassing process
US4869732A (en) * 1988-12-23 1989-09-26 Texaco Inc. Deoxygenation of aqueous polymer solutions used in enhanced oil recovery processes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54123785A (en) * 1978-02-24 1979-09-26 Du Pont Deaerator
JPS57165007A (en) * 1981-04-06 1982-10-09 Eruma Kogaku Kk Method and apparatus for degassing dissolved gas in liquid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54123785A (en) * 1978-02-24 1979-09-26 Du Pont Deaerator
JPS57165007A (en) * 1981-04-06 1982-10-09 Eruma Kogaku Kk Method and apparatus for degassing dissolved gas in liquid

Also Published As

Publication number Publication date
JPS59216606A (en) 1984-12-06

Similar Documents

Publication Publication Date Title
US4729773A (en) Unit for degassing liquids
EP0055839B1 (en) Hollow fibre membrane-type fluid separation apparatus
KR20120089849A (en) High pressure liquid degassing membrane contactors and methods of manufacturing and use
US20080093289A1 (en) Filter media surface modification for enhanced sealing and apparatus utilizing the same
JPH05137909A (en) Method and device for back washing
US4221671A (en) Upright circular tube settler with stacked tube modules
JPH0228362B2 (en)
CN101291725B (en) Distribution device for a gas-liquid phase mixture for apparatus
JPH0258963B2 (en)
US7387661B2 (en) Pleated construction for effecting gas transfer membrane
JPS6354410B2 (en)
GB2222099A (en) Degassing device.
US4616698A (en) Heat exchanger for liquid/liquid heat exchanger
JP2000275229A (en) Deaerating device
CN100457224C (en) Gas-liquid contacting tray
JPH0337681Y2 (en)
CN111617729B (en) Countercurrent continuous contact unit and countercurrent continuous contact device
CN112107888A (en) High-efficiency liquid-liquid two-phase separator with rotational flow and phase separation coupling
CN216236319U (en) Filtering device of water system for temperature control equipment
CN112295253B (en) Capillary liquid phase distributor and rectifying column
JP3233190B2 (en) Liquid distribution device and solid-liquid separation device provided with the distribution device
KR200426022Y1 (en) Hollow fiber membrane module for easy exchange of hollow fiber
RU1789171C (en) Apparatus for curing liquid at constant temperature
JPS6113070Y2 (en)
CN117160237A (en) High-efficient hollow fiber membrane contactor