JPH02267507A - Automatic focusing device - Google Patents

Automatic focusing device

Info

Publication number
JPH02267507A
JPH02267507A JP8792489A JP8792489A JPH02267507A JP H02267507 A JPH02267507 A JP H02267507A JP 8792489 A JP8792489 A JP 8792489A JP 8792489 A JP8792489 A JP 8792489A JP H02267507 A JPH02267507 A JP H02267507A
Authority
JP
Japan
Prior art keywords
light
automatic focusing
optical axis
focusing device
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8792489A
Other languages
Japanese (ja)
Inventor
Yasuyuki Sugi
靖幸 杉
Yoshiaki Tachibana
良昭 橘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8792489A priority Critical patent/JPH02267507A/en
Publication of JPH02267507A publication Critical patent/JPH02267507A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To always eliminate the parallax even if a distance of an object to be photographed is varied by providing a prism in front of a projection optical system, and varying a prism fitting angle in accordance with a focus ring. CONSTITUTION:In front of a light emitting element 34 and a projection lens 35, a prism 36 is placed, connected to a focus ring 30 by a lever 39, and the focus ring 30 rotates and slides forward and backward, by which the prism 36 turns centering around a fulcrum 31. Therefore, an angle (angle theta) made by a straight line vertical to base length and a focus lens optical axis, and a projection light beam can be varied. Accordingly, since the projection light beam 37 is set so as to be always on the focus lens optical axis 32, the parallax on this plane always is eliminated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はカメラ、ビデオカメラなどに用いて好適な自動
合焦装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an automatic focusing device suitable for use in cameras, video cameras, etc.

[従来の技術〕 投射光学系と発光素子とからなる発光部と受光光学系と
受光素子とからなる受光部とを有し、被写体からの反射
光を受けて自動合焦を行なうようにした自動合焦装置は
種々提案されており、例えば特開昭62−264014
号公報は、受光光学系と受光素子との間に偏向手段を設
けて自動合焦するものである。第1図は従来の自動合焦
装置の一実施例の平面図で、基線長aとフォーカスレン
ズ光軸14とを含む平面、第1図に示される平面内での
自動合焦動作についての発明となっている。
[Prior Art] An automatic camera that has a light emitting section consisting of a projection optical system and a light emitting element, and a light receiving section consisting of a light receiving optical system and a light receiving element, and performs automatic focusing by receiving reflected light from a subject. Various focusing devices have been proposed, for example, Japanese Patent Application Laid-Open No. 62-264014.
In the publication, a deflection means is provided between a light receiving optical system and a light receiving element to achieve automatic focusing. FIG. 1 is a plan view of an embodiment of a conventional automatic focusing device, and the invention relates to an automatic focusing operation within a plane including the base line length a and the focus lens optical axis 14, and the plane shown in FIG. It becomes.

第2図は前記従来の自動合焦装置の一実施例の側面図で
、発光素子26から発した光線が投射レンズ25を介し
て投射光線24となって被写体に向かって進む、被写体
距離L工のときにはフォーカスレンズ光軸22と投射光
線24とのズレ量(以下これをバララックスと呼ぶ)は
P8有、被写体距Xii r−2のときはバララックス
P2有るものとなっていた0本バララックスは第2図に
おいて投射レンズ25と発光素子26とをフォーカスレ
ンズ光軸22に一致させてさせてしまえばバララックス
はなくなるが、第1図、第2図での両方共においてバラ
ラックスを零にしようとすると、撮影レンズ内に発光部
を持つ内部発光方式にせざるを慢ず、発光部が撮影レン
ズの外側にある外部発光方式ではどうしても第1図又は
第2図の平面内においてバララックスが発生する。
FIG. 2 is a side view of one embodiment of the conventional automatic focusing device, in which the light beam emitted from the light emitting element 26 becomes the projection light beam 24 through the projection lens 25 and travels toward the object. When , the amount of deviation between the focus lens optical axis 22 and the projected light beam 24 (hereinafter referred to as balarax) is P8, and when the subject distance is Xii r-2, balarax is P2. In Fig. 2, if the projection lens 25 and the light emitting element 26 are aligned with the focus lens optical axis 22, the vararax will disappear, but in both Figs. If you try to do this, you will have to use an internal light emitting method that has a light emitting part inside the photographic lens, and if you use an external light emitting method in which the light emitting part is outside the photographic lens, variation will inevitably occur within the plane of Figure 1 or 2. do.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術では、発光部が撮影レンズの外側にある外
部発光方式の自動合焦装置において第2図に示すような
バララックスを生ずるという問題点があった0本発明の
目的はパララックスズレの無い又は少ない自動合焦装置
を提供することにある。
In the above-mentioned conventional technology, there was a problem in that an external light-emitting autofocus device in which the light-emitting part was located outside the photographic lens produced a parallax as shown in FIG. The object of the present invention is to provide an automatic focusing device with no or a small number of automatic focusing devices.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、発光素子又は投射光学系の前方に投射光線
の偏向手段を設け、基線長とフォーカスレンズ光軸とに
垂直な直線と投射光線とがなす角度(第2図に示す角度
θ)を変化させるように前記偏向手段がフォーカスレン
ズの移動とともに動くようにすることにより達成される
The above purpose is to provide deflection means for the projection light beam in front of the light emitting element or the projection optical system, and to adjust the angle (angle θ shown in FIG. 2) between the projection light beam and a straight line perpendicular to the base length and the focus lens optical axis. This is achieved by causing the deflection means to move together with the movement of the focus lens so as to change the focus.

〔作用〕[Effect]

前記偏向手段は第2図に示す角度θを変化させるように
動くもので有、第1図に示される平面内での光線角度に
ついては変化させないため、自動合焦動作に悪影響を及
ぼすことはない。
The deflection means moves so as to change the angle θ shown in FIG. 2, and does not change the angle of the ray within the plane shown in FIG. 1, so it does not adversely affect the automatic focusing operation. .

〔実施例〕〔Example〕

以下本発明の実施例3種類を第3図〜第8図により説明
する。第3図は本発明による自動合焦装置の第一実施例
の側面図で、基線長とフォーカスレンズ光軸とに垂直な
直線及びフォーカスレンズ光軸を含む平面を表わしてい
る。第3図において発光素子34を出た光が投射レンズ
35を通って進みプリズム36によって偏向され投射光
線37となって被写体33に向かって進む、被写体距離
L、の変化につれて自然合焦装置によりフォーカスリン
グ30が回転し、へりコイドネジによってフォーカスリ
ング30が前後に動く、プリズム36はレバー39によ
りフォーカスリング30に連結している。フォーカスリ
ング30が回転して前後に動くことにより、プリズム3
6は支点31を中心にして回転する。このプリズム36
の回転は投射光41137が被写体33に当たる位置が
被写体距離L1が変化しても常にフォーカスレンズ光軸
32上にあるように、すなわちバララックスがないよう
にセットされている。プリズム36によって投射光l!
37が第3図に示される平面内においてフォーカスレン
ズ光軸32となす角度θ、は。
Three embodiments of the present invention will be described below with reference to FIGS. 3 to 8. FIG. 3 is a side view of the first embodiment of the automatic focusing device according to the present invention, showing a straight line perpendicular to the base length and the focus lens optical axis, and a plane including the focus lens optical axis. In FIG. 3, light emitted from a light emitting element 34 passes through a projection lens 35, is deflected by a prism 36, becomes a projection beam 37, and travels toward a subject 33. As the subject distance L changes, the light is focused by a natural focusing device. The prism 36 is connected to the focus ring 30 by a lever 39 as the ring 30 rotates and the focus ring 30 moves back and forth by a helicoid screw. By rotating the focus ring 30 and moving back and forth, the prism 3
6 rotates around a fulcrum 31. This prism 36
The rotation is set so that the position at which the projected light 41137 hits the subject 33 is always on the focus lens optical axis 32 even if the subject distance L1 changes, that is, there is no variation. The prism 36 projects light l!
What is the angle θ that 37 makes with the focus lens optical axis 32 in the plane shown in FIG.

バララックスが零であるとき次式により表わされる。When the balax is zero, it is expressed by the following equation.

θ□= j an−1 Lま ただし、L工:被写体距離 Lヨ:フォーカスレンズ光軸3 2と投射レンズ光軸38と の第3図にて示される平面 内での距離 角度θ1は、上式から被写体距離Lユが変化したとき、
Loに対してそれぞれ一意的に決まる。
θ□= j an−1 L However, L: Subject distance L: The distance angle θ1 between the focus lens optical axis 32 and the projection lens optical axis 38 in the plane shown in FIG. From the formula, when the subject distance L changes,
Each is uniquely determined for Lo.

角度φは発光素子34と投射レンズ35との位置関係に
より決まる角度で、上式から決まるθ1に対し、プリズ
ム36と投射レンズ光軸38との角度αをある値に設定
すれば角度θ、が得られるように設定されているものと
する。角度θ、と角度ψとが決まれば、頂角及び屈折率
の決まっているプリズム36に対して角度αも決まる6
以上のことにより、被写体距離り、が変化してもそれに
応じてプリズム36を回転させ角度αを所定の値にする
ことにより、投射光線37と被写体33との交点をフォ
ーカスレンズ光軸32上にすることができ、第3国事面
内においてバララックスズレのない自動合焦装置を提供
することができる。第4図にこの第一実施例の構成図を
示す、バネ44はプリズム43のレバ一部を常にフォー
カスリング41にガタなく当接させておくためのもので
ある。
The angle φ is an angle determined by the positional relationship between the light emitting element 34 and the projection lens 35, and if the angle α between the prism 36 and the projection lens optical axis 38 is set to a certain value, the angle θ is determined from θ1 determined from the above equation. It is assumed that the settings are set so that it can be obtained. Once the angle θ and the angle ψ are determined, the angle α for the prism 36 whose apex angle and refractive index are determined is also determined 6
As described above, even if the subject distance ri changes, by rotating the prism 36 accordingly and setting the angle α to a predetermined value, the intersection of the projected light ray 37 and the subject 33 can be aligned on the focus lens optical axis 32. Therefore, it is possible to provide an automatic focusing device that is free from variation and deviation within the third national plane. FIG. 4 shows a configuration diagram of this first embodiment. A spring 44 is used to keep a portion of the lever of the prism 43 always in contact with the focus ring 41 without play.

次に本発明の第二実施例を第5図、第6図、第7図によ
り説明する。第5図は本発明による自動合焦装置の第二
実施例の側面図で発光素子51から出た光が投射レンズ
52を通ってミラー53に達し、そこで反射され被写体
に達する。ミラー53はレバー55によりフォーカスカ
ム56にバネ54の力によりガタなく当接している。フ
ォーカスカム56はフォーカス環57の回転及び前後移
動に合わせて回転1前後移動するようにフォーカス環5
7と連結している。第6図は本発明による自動合焦装置
の第二実施例の正面図で発光素子61、投射レンズ62
、受光素子64、受光レンズ65からなる距離検出光学
系により被写体距離を検出し、フォーカス環66を移動
させて自動合焦するするものである0以上のことから、
被写体距離の変化が距離検出光学系により検出され、フ
ォーカス環66.57及びフォーカスカム56が移動し
:ミラー53が回転する構造となっている。
Next, a second embodiment of the present invention will be explained with reference to FIGS. 5, 6, and 7. FIG. 5 is a side view of a second embodiment of the automatic focusing device according to the present invention, in which light emitted from a light emitting element 51 passes through a projection lens 52, reaches a mirror 53, and is reflected there, reaching an object. The mirror 53 is brought into contact with the focus cam 56 by the lever 55 without play due to the force of the spring 54. The focus cam 56 moves back and forth by one rotation in accordance with the rotation and back and forth movement of the focus ring 57.
It is connected to 7. FIG. 6 is a front view of a second embodiment of the automatic focusing device according to the present invention, including a light emitting element 61 and a projection lens 62.
, a distance detection optical system consisting of a light-receiving element 64 and a light-receiving lens 65 detects the object distance, and automatically focuses by moving the focus ring 66.
The structure is such that a change in object distance is detected by a distance detection optical system, the focus ring 66, 57 and focus cam 56 move, and the mirror 53 rotates.

被写体距離の変化に応じてどのようにミラーを回転させ
るかにつき第7図により説明する。第7図は、第5図と
同じ側面図を模式的に表わした図で、発光素子71を発
した光が投射レンズ72を通ってミラー73で反射され
被写体74に達成するものである。投射光線76とフォ
ーカスレンズ光軸77とのなす角度θは被写体距離りい
とミラーからフォーカスレンズ光軸77との距離L2 
とにより下式で表わされる。
How to rotate the mirror according to changes in the subject distance will be explained with reference to FIG. FIG. 7 is a diagram schematically showing the same side view as FIG. 5, in which light emitted from a light emitting element 71 passes through a projection lens 72, is reflected by a mirror 73, and reaches a subject 74. The angle θ between the projected light beam 76 and the focus lens optical axis 77 is determined by the distance L2 between the subject distance and the mirror and the focus lens optical axis 77.
It is expressed by the following formula.

θ = t an−’      ・・・・・・ ■L
θ = t an-' ・・・・・・ ■L
.

投射レンズ光軸とフォーカスレンズ光軸77とのなす角
度βとすれば、ミラーへの入射光線角度及び反射光線角
度ψとは下式により表わされる。
Assuming that the angle β between the projection lens optical axis and the focus lens optical axis 77 is the angle β, the incident light ray angle to the mirror and the reflected light ray angle ψ are expressed by the following formula.

ミラーの法線とフォーカスレンズ光軸77とのなす角度
をαとすればαは下記により表わされる。
Letting α be the angle between the normal line of the mirror and the focus lens optical axis 77, α is expressed as follows.

α= 180@−ψ−β・・・・・・ ■角度βは予め
設定されているので、被写体距離L0に対し、式■、■
、■により角度αは一意に決まる。よって各被写体距離
に対し■、■、■式がら求められる角度αになるように
ミラー73を回転させれば、投射光線76と被写体74
との交点は常に第7国軍面(フォーカスレンズ光軸と基
線長とに垂直な直線とフォーカスレンズ光軸とを含む平
面)内においてフォーカスレンズ光軸上で交わることに
なり第7国手面内においてバララックスが零の自動合焦
装置とすることができる。
α= 180@−ψ−β・・・・・・ ■Since the angle β is set in advance, the formulas ■,■
, ■, the angle α is uniquely determined. Therefore, if the mirror 73 is rotated so that the angle α obtained from formulas ■, ■, and
The intersection point always intersects on the focus lens optical axis within the 7th national military plane (a plane that includes the focus lens optical axis and a straight line perpendicular to the focus lens optical axis and the base line length), so within the 7th national military plane It can be an automatic focusing device with zero vararax.

次に本発明の第三実施例を第8図により説明する。第8
図は本発明の第三実施例による自動合焦装置の側面図で
、フォーカスレンズ光軸と基線長とに垂直な直線とフォ
ーカスレンズ光軸とを含む平面を表わしている0発光素
子83を発した光が平行平面板84及び投射レンズ85
を通って被写体86に到達し、その反射光を受光レンズ
、受光素子で検出して距離検出を行ない、フォーカス環
81を回転、前後移動して自動合焦するものである。フ
ォーカスカム82はフォーカス環81と連−績されてお
り、フォーカス環81の回転、前後移動に合わせてフォ
ーカスカム82も回転、前後移動する。平行平面板84
のレバー80はフォーカスカム82にバネ等によりガタ
なく当接されており、そのためフォーカスカム82の回
転、前後移動に伴って平行平面板84が回転する。すな
わち被写体距離の変化に伴って自動合焦によりフォーカ
ス環81が移動し、平行平面板84が回転する構造とな
っている。被写体距離L1、フォーカスレンズ光軸87
と投射レンズ光軸88との距IliをL2 とすれば投
射光線89とフォーカスレンズ光軸87との角度θは下
式に表わされる。
Next, a third embodiment of the present invention will be described with reference to FIG. 8th
The figure is a side view of an automatic focusing device according to a third embodiment of the present invention, in which a light emitting element 83 emits light representing a plane including the focus lens optical axis and a straight line perpendicular to the focus lens optical axis and the base line length. The light is transmitted to the parallel plane plate 84 and the projection lens 85.
The reflected light is detected by a light receiving lens and a light receiving element to detect the distance, and the focus ring 81 is rotated and moved back and forth to achieve automatic focusing. The focus cam 82 is connected to the focus ring 81, and as the focus ring 81 rotates and moves back and forth, the focus cam 82 also rotates and moves back and forth. Parallel plane plate 84
The lever 80 is brought into contact with the focus cam 82 without play by a spring or the like, so that the parallel plane plate 84 rotates as the focus cam 82 rotates and moves back and forth. That is, the structure is such that the focus ring 81 moves due to automatic focusing as the subject distance changes, and the parallel plane plate 84 rotates. Subject distance L1, focus lens optical axis 87
Letting the distance Ili between the projection lens optical axis 88 and the projection lens optical axis 88 be L2, the angle θ between the projection light beam 89 and the focus lens optical axis 87 is expressed by the following formula.

L。L.

θ=tan″″1   ・・・・・・ ■発光素子83
を出た光は、角度αだけ傾いた平行平面板84を通過す
ることにより投射レンズ光軸85からdだけズして投射
レンズ85に投射レンズ光軸88に平行に入射する。こ
のとき、投射レンズの焦点距離をfとすれば角度θとの
関係は下式で表ねされる。
θ=tan″″1 ...... ■Light emitting element 83
The emitted light passes through a plane-parallel plate 84 tilted by an angle α, deviates from the projection lens optical axis 85 by d, and enters the projection lens 85 in parallel to the projection lens optical axis 88. At this time, if the focal length of the projection lens is f, the relationship with the angle θ is expressed by the following formula.

θ : tan−1・・・・・・  ■また、dと角度
αとの関係は平行平面板の屈折率、厚さから一意的に決
まる。よって被写体距離L1が変化したときに、■、■
式により求まるdを与える角度αだけ平行平面板84を
傾けることにより、投射光線89と被写体86との交点
は常にフォーカスレンズ光軸87上に有、第8国事面内
においてパララック零の自動合焦装置とすることができ
る。
θ: tan-1... ■Furthermore, the relationship between d and angle α is uniquely determined from the refractive index and thickness of the parallel plane plate. Therefore, when the subject distance L1 changes, ■,■
By tilting the parallel plane plate 84 by an angle α that gives d determined by the formula, the intersection between the projected light ray 89 and the subject 86 is always on the focus lens optical axis 87, and automatic focusing with zero parallax is achieved within the eighth national plane. It can be a device.

なお、本発明の3種類の実施例共に共通な事として、第
8図の角度θ、第7図の角度θ、第3図の角度θ1が被
写体距離の変化に伴い変化している。従来の自動合焦装
置では第2図の(90゜θ)の角度は変化しない、この
ため本発明の3種類の実施例共に、被写体からの反射光
の角度が、第8図、第7図、第3図で示される平面内で
変化してしまうことになるが、第6図でのミラ−63第
4図でのプリズム43に示すように、偏光手段を発光部
のみだけでなく受光部までおおうようにすれば、受光部
までおおわれている前記偏向手段により1発光部の方で
前記偏向手段で行なった光線の角度変化をもう一度逆に
行なうこととなり、受光素子への光線の入射は従来と同
様にすることが出来るので、距離検出、自動合焦に悪影
響を与えることはない、また、受光素子の受光部の大き
さを基線長と直角方向に十分大きくすれば、前記の偏向
手段を受光部までおおわなくても距離検出、自動合焦を
従来同様に行なうことが可能である。
It should be noted that, as common to all three embodiments of the present invention, the angle θ in FIG. 8, the angle θ in FIG. 7, and the angle θ1 in FIG. 3 change as the subject distance changes. In the conventional automatic focusing device, the angle (90° θ) shown in Fig. 2 does not change, so in all three embodiments of the present invention, the angle of the reflected light from the subject is the same as that shown in Figs. 8 and 7. However, as shown in the mirror 63 in FIG. 6 and the prism 43 in FIG. If the deflection means covering the light-receiving section is used to reverse the angle change of the light beam made by the deflection means in one light-emitting section, the incidence of the light beam on the light-receiving element will be different from that of the conventional method. Since it can be done in the same manner as above, there is no negative effect on distance detection and automatic focusing.Also, if the size of the light receiving part of the light receiving element is made sufficiently large in the direction perpendicular to the base line length, the deflection means described above can be used. Distance detection and automatic focusing can be performed in the same way as before without covering the light receiving section.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、距離検出光学系の受光部から出た投射
光線と被写体との交点を、フォーカスレンズ光軸と基線
長とに垂直な直線とフォーカスレンズ光軸どを含む平面
内において、被写体距離が変化しても常にフォーカスレ
ンズ光軸上とすることができるので、前記平面内におけ
るパララックスを常に零とすることができるという効果
がある。
According to the present invention, the intersection point between the projected light beam emitted from the light receiving section of the distance detection optical system and the subject is located within the plane including the focus lens optical axis, a straight line perpendicular to the focus lens optical axis and the base length, and the subject. Since the focus lens can always be on the optical axis even if the distance changes, there is an effect that the parallax within the plane can always be zero.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の自動合焦装置の一実施例の平面図、第2
図は従来の自動合焦装置の一実施例の側面図、第3図は
本発明による自動合焦装置の第一実施例の側面図、第4
図は本発明による自動合焦装置の第一実施例の構成図、
第5図は本発明による自動合焦装置の第二実施例の側面
図、第6図は本発明による自動合焦装置の第二実施例の
正面図、第7図は本発明による自動合焦装置の第二実施
例の側面図、第8図は本発明による自動合焦装置の第三
実施例の側面図である。 11:フォーカスレンズ、12:発光素子、13:投射
レンズ、 14:投射光線及びフォーカスレンズ光軸及び投射レン
ズ光軸。 15:受光レンズ光軸、16二反射光線、17:受光レ
ンズ、18:平行平面板、19:受光素子、21:フォ
ーカスレンズ、22:フォーカスレンズ光軸、 23:投射レンズ光軸、24:投射光線、25:投射レ
ンズ、26:発光素子。 30:フォーカスリング、31:支点、32:フォーカ
スレンズ光軸、33:被写体、34:発光素子、35:
投射レンズ、 44 : 56 : 58 : 62 : 64 : 66 ニ ア2 ニ ア4 ニ ア6 : 81 : 83 ニ プリズム、37:投射光線、 投射レンズ光軸、39ニレバー 撮影レンズ、41:フォーカスリング、距離検出光学系
、43ニブリズム、 バネ、45:捧、46:止め部材、 発光素子、52:投射レンズ、53:ミラー 54:バ
ネ、55ニレバー フォーカスカム、57:フォーカス環、撮影レンズ、6
1:発光素子、 投射レンズ、63:ミラー 受光素子、65:受光レンズ、 フォーカス環、71:発光素子、 投射レンズ、73:ミラー 被写体、75:フォーカス環、 投射光線、77:フォーカスレンズ光軸、フォーカス環
、82:フォーカスカム、発光素子、84:平行平面板
、86:被写体、85:投射レンズ、87:フオーカス
レンズ光軸、88;投射レンズ光軸。
Figure 1 is a plan view of an embodiment of a conventional automatic focusing device;
The figure is a side view of one embodiment of a conventional automatic focusing device, FIG. 3 is a side view of a first embodiment of an automatic focusing device according to the present invention, and FIG.
The figure is a configuration diagram of a first embodiment of an automatic focusing device according to the present invention.
FIG. 5 is a side view of a second embodiment of the automatic focusing device according to the present invention, FIG. 6 is a front view of the second embodiment of the automatic focusing device according to the present invention, and FIG. 7 is an automatic focusing device according to the present invention. FIG. 8 is a side view of a second embodiment of the device, and FIG. 8 is a side view of a third embodiment of the automatic focusing device according to the invention. 11: Focus lens, 12: Light emitting element, 13: Projection lens, 14: Projection light beam, focus lens optical axis, and projection lens optical axis. 15: Light receiving lens optical axis, 16 Two reflected rays, 17: Light receiving lens, 18: Parallel plane plate, 19: Light receiving element, 21: Focus lens, 22: Focus lens optical axis, 23: Projection lens optical axis, 24: Projection Ray, 25: Projection lens, 26: Light emitting element. 30: Focus ring, 31: Fulcrum, 32: Focus lens optical axis, 33: Subject, 34: Light emitting element, 35:
Projection lens, 44: 56: 58: 62: 64: 66 Near 2 Near 4 Near 6: 81: 83 Niprism, 37: Projection light beam, Projection lens optical axis, 39 Nilever photographic lens, 41: Focus ring, distance detection optical system , 43 Nibrism, Spring, 45: Dedicated, 46: Stopping member, Light emitting element, 52: Projection lens, 53: Mirror 54: Spring, 55 Nilever focus cam, 57: Focus ring, Photographing lens, 6
1: Light-emitting element, projection lens, 63: Mirror light-receiving element, 65: Light-receiving lens, focus ring, 71: Light-emitting element, projection lens, 73: Mirror object, 75: Focus ring, projection light beam, 77: Focus lens optical axis, Focus ring, 82: Focus cam, light emitting element, 84: Parallel plane plate, 86: Subject, 85: Projection lens, 87: Focus lens optical axis, 88: Projection lens optical axis.

Claims (1)

【特許請求の範囲】 1、投射光学系と発光素子とからなり被写体に光線を投
射する発光部と、受光光学系と受光素子とからなり前記
被写体からの反射光を受光する受光部とを具備して距離
検出を行なう光学系と、前記光学系により検出された距
離に応じてフォーカスレンズを移動する駆動装置とを具
備した自動合焦装置において、前記発光素子又は前記投
射光学系の前方に前記投射光線の偏向手段を設け、前記
発光素子と前記受光素子との基線長と前記フォーカスレ
ンズの光軸とに垂直な直線と前記投射光線とがなす角度
を変化させるように前記偏向手段が前記フォーカスレン
ズの移動と共に動くことを特徴とする自動合焦装置。 2、上記の偏向手段がプリズムである請求項1記載の自
動合焦装置。 3、上記の偏向手段がミラーである請求項1記載の自動
合焦装置。 4、上記の偏向手段が平行平面板である請求項1記載の
自動合焦装置。
[Scope of Claims] 1. A light-emitting section comprising a projection optical system and a light-emitting element and projecting a light beam onto a subject; and a light-receiving section comprising a light-receiving optical system and a light-receiving element and receiving reflected light from the subject. In the automatic focusing device, the automatic focusing device includes an optical system that detects a distance by using the light emitting element or the projection optical system, and a drive device that moves the focus lens according to the distance detected by the optical system. Deflecting means for the projected light beam is provided, and the deflecting means deflects the focused beam so as to change the angle formed by the projected light beam and a straight line perpendicular to the base length of the light emitting element and the light receiving element and the optical axis of the focus lens. An automatic focusing device that moves with the movement of the lens. 2. The automatic focusing device according to claim 1, wherein said deflection means is a prism. 3. The automatic focusing device according to claim 1, wherein said deflection means is a mirror. 4. The automatic focusing device according to claim 1, wherein said deflecting means is a parallel plane plate.
JP8792489A 1989-04-10 1989-04-10 Automatic focusing device Pending JPH02267507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8792489A JPH02267507A (en) 1989-04-10 1989-04-10 Automatic focusing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8792489A JPH02267507A (en) 1989-04-10 1989-04-10 Automatic focusing device

Publications (1)

Publication Number Publication Date
JPH02267507A true JPH02267507A (en) 1990-11-01

Family

ID=13928470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8792489A Pending JPH02267507A (en) 1989-04-10 1989-04-10 Automatic focusing device

Country Status (1)

Country Link
JP (1) JPH02267507A (en)

Similar Documents

Publication Publication Date Title
JPH067218B2 (en) Autofocus device
JPS61251809A (en) Automatic focus adjusting device
US4682886A (en) Distance measuring device
US5258804A (en) Focus detection device having a mechanism for adjusting light-receiving state
JP2001166360A (en) Focusing device for image recording system
US4549802A (en) Focus detection apparatus
JPS60233610A (en) Range finding device
JP2007010951A (en) Focus detecting device and imaging apparatus
JPH02267507A (en) Automatic focusing device
JP2594438B2 (en) Distance measuring device
JPH0210514Y2 (en)
JPH02267509A (en) Automatic focusing device
JPH01147439A (en) Automatic parallax correcting device for camera
JP3437262B2 (en) Projection system for automatic focus detection
JPS62222225A (en) Variable focus camera
JP2620143B2 (en) Distance measurement mechanism of autofocus device
JPH0423223Y2 (en)
JPS62237412A (en) Automatic focusing device
JP2764122B2 (en) Auto focus camera
JPH06105328B2 (en) Automatic focusing device
JPH0711622B2 (en) Projection system for automatic focus detection
JPS61230109A (en) Automatic focusing device
JPH02101414A (en) Auto focusing device
JPS62206506A (en) Auto-focusing device
JPS62286007A (en) Auto-focusing device