JPH02264057A - Nonwoven fabric and production thereof - Google Patents

Nonwoven fabric and production thereof

Info

Publication number
JPH02264057A
JPH02264057A JP1082106A JP8210689A JPH02264057A JP H02264057 A JPH02264057 A JP H02264057A JP 1082106 A JP1082106 A JP 1082106A JP 8210689 A JP8210689 A JP 8210689A JP H02264057 A JPH02264057 A JP H02264057A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
melt
fiber
ultrafine
prone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1082106A
Other languages
Japanese (ja)
Inventor
Masaji Asano
浅野 正司
Hiromasa Okada
岡田 弘正
Toshiaki Iwamoto
岩本 俊昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP1082106A priority Critical patent/JPH02264057A/en
Publication of JPH02264057A publication Critical patent/JPH02264057A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nonwoven Fabrics (AREA)

Abstract

PURPOSE:To obtain a new ultrafine fiber combined filament nonwoven fabric having moisture absorptivity, hydrophilicity, lipophilicity and elasticity by combining saponified ethylene-vinyl acetate copolymer-based ultrafine fiber streams with polyurethane-based ultrafine fiber streams at a specific ratio and collecting the combined streams in the form of a sheet. CONSTITUTION:A polymer consisting essentially of saponified ethylene-vinyl acetate copolymer with 40-60mol% ethylene content and 0.055-0.085l/g intrinsic viscosity [eta] is melted and spun by a melt blowing spinning method to form ultrafine fiber streams (A) having $8mu average fiber diameter. On the other band, a polymer consisting essentially of a polyurethane with 45-75wt.% soft segment content, prepared by using a chain extender consisting essentially of a diol and having 0. 05-0.10l/g intrinsic viscosity [eta] is melted and spun by a melt blowing spinning method to form ultrafine fiber streams (B) having <=8mu average fiber diameter. The above-mentioned fiber streams (A) and (B) are combined so as to provide 95-30wt.% fiber streams (A) and 5-70wt.% fiber streams (B) and the combined streams are collected into the form of a sheet to afford the objective nonwoven fabric.

Description

【発明の詳細な説明】 〈産業上の利用分計〉 本発明は弾性を有する新規な不縁布に関するものである
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application> The present invention relates to a novel elastic non-woven fabric.

〈従来の技術〉 従来、メルトプローン紡糸法で作られたメルトプローン
極細繊維不織布には多くの提案がなされ、それらの不織
布は様々な用途に使用されつつある。
<Prior Art> Conventionally, many proposals have been made for melt-prone ultrafine fiber nonwoven fabrics made by the melt-prone spinning method, and these nonwoven fabrics are being used for various purposes.

例えば、ポリウレタン弾性繊維不織布に関しては、熱可
塑性ポリウレタン弾性体をメルトプローン法でポリウレ
タン弾性繊維不織布を製造するに際し、ポリウレタン弾
性体にポリイソシアネート化合物を添加することが特公
昭64−8746号公報、特公昭64−8747号公報
に、エーテル系熱可塑性ポリウレタン弾性体よりなる不
織布に刻印したエンボスロールと弾性ロールとの間で加
熱、加圧して網状シートを製造することが特開昭63−
282362号公報に提案されている。一方、メルトプ
ローン法で得たポリウレタン弾性繊維不織布を手袋に使
用することが特公昭64−8724号公報に、また、本
発明者らは特定の組成のポリウレタンをメルトプローン
法で得たポリウレタン繊維不織布を布状物と積層した添
付布について特開昭64−40655号公報に提案して
いる。
For example, regarding polyurethane elastic fiber nonwoven fabrics, when producing polyurethane elastic fiber nonwoven fabrics using a thermoplastic polyurethane elastic body by the melt-prone method, it is recommended to add a polyisocyanate compound to the polyurethane elastic body, as described in Japanese Patent Publication No. 8746/1987, 64-8747 discloses that a reticulated sheet is manufactured by heating and pressurizing a nonwoven fabric made of an ether-based thermoplastic polyurethane elastic body with an emboss roll and an elastic roll.
This is proposed in Japanese Patent No. 282362. On the other hand, Japanese Patent Publication No. 64-8724 discloses that polyurethane elastic fiber non-woven fabric obtained by the melt-prone method is used for gloves, and the present inventors also reported that polyurethane elastic fiber non-woven fabric obtained by the melt-prone method using polyurethane with a specific composition. JP-A-64-40655 proposes an attached cloth which is laminated with a cloth-like material.

〈発明が解決しようとする課題〉 従来のメルトプローン紡糸法で得たポリウレタン弾性繊
維不織布は、柔軟で伸縮性に富むものであり、一方、エ
チレン−酢酸ビニル共重合体鹸化物の繊維は吸湿性があ
り、摩擦帯電性が小さく、ヤング率が大きく、衣料用と
しても優れたものであるが、その繊維で作られた不織布
は腰のある風合いのものであり、それらはそれぞれの特
長を生かした用途展開がなされている。
<Problems to be Solved by the Invention> The polyurethane elastic fiber nonwoven fabric obtained by the conventional melt-prone spinning method is flexible and highly elastic, whereas the fibers made of saponified ethylene-vinyl acetate copolymer are hygroscopic. It has low triboelectrification, high Young's modulus, and is excellent for clothing.However, nonwoven fabrics made from this fiber have a firm texture, and they are unique in that they take advantage of their respective characteristics. Applications are being expanded.

しかし、従来のポリウレタンあるいはエチレン−酢酸ビ
ニル共重合体鹸化物を変成したり、それらの重合体混合
紡糸では、それぞれの重合体のもつ物性上の特長を生か
した不織布を製造することは困難である。
However, by modifying conventional saponified polyurethane or ethylene-vinyl acetate copolymers, or by spinning a mixture of these polymers, it is difficult to produce nonwoven fabrics that take advantage of the physical properties of each polymer. .

また、従来の溶融紡糸に使用されているエチレン−酢酸
ビニル共重合体鹸化物やポリウレタンでは、溶融押出物
を高圧気体噴射流で繊維流を形成し、搬送してシート状
に捕集して不織布とするメルトプローン法の不織布製造
では、均一性の良好な繊維流を形成することができない
ために、十分に細化、配向した繊維が得られず、繊維の
太さ、繊維長が不均一になり、地合いの良い不織布を得
ることができない。特に、メルトプローン法で幅が1m
を越える広幅の不織布を、均一性の良いメルトプローン
不織布とすることは困難である。
In addition, in the saponified ethylene-vinyl acetate copolymer and polyurethane used in conventional melt spinning, the melt extrudate is formed into a fiber stream with a high-pressure gas jet stream, which is then conveyed and collected in a sheet form to create a nonwoven fabric. When manufacturing nonwoven fabrics using the melt-prone method, it is not possible to form a fiber flow with good uniformity, so it is not possible to obtain sufficiently thinned and oriented fibers, resulting in non-uniform fiber thickness and fiber length. Therefore, it is not possible to obtain a nonwoven fabric with good texture. In particular, the melt-prone method has a width of 1 m.
It is difficult to make a melt-prone nonwoven fabric with good uniformity from a nonwoven fabric with a width exceeding 1.

本発明は、柔軟で伸縮性があり、吸湿性、湿潤性、親油
性のある、広範囲の用途指向に適する新規な不織布を、
均一性の良い広幅のメルトプローン極細繊維不織布とし
て提供するにある。
The present invention provides a novel nonwoven fabric that is flexible, stretchable, hygroscopic, wettable, and oleophilic, and is suitable for a wide range of application orientations.
It is provided as a wide-width melt-prown microfiber nonwoven fabric with good uniformity.

く課題を解決するための手段〉 本発明は、エチレン含有量40〜60モル%、固有粘度
〔η〕が0.055〜0.0852/gにあるエチレン
−酢酸ビニル共重合体鹸化物を主体とした重合体でなる
平均繊維直径8ミクロン以下のメルトプローン極細繊維
95〜30重量%、およびソフトセグメント含有量45
〜75重量%であって、ジオールを主体とした鎖伸長剤
でなる固有粘度〔マ〕が0.05〜0.1 OL’gj
:あるポリウレタンを主体とした重合体でなる平均繊維
直径8ミクロン以下のメルトプローン極細繊115〜7
0重量%の極細繊維混繊不織布であることを特徴とする
不織布である。
Means for Solving the Problems> The present invention mainly uses a saponified ethylene-vinyl acetate copolymer having an ethylene content of 40 to 60 mol% and an intrinsic viscosity [η] of 0.055 to 0.0852/g. 95 to 30% by weight of melt-prone ultrafine fibers with an average fiber diameter of 8 microns or less, and a soft segment content of 45% by weight.
~75% by weight, and has an intrinsic viscosity [ma] of 0.05 to 0.1 OL'gj, which is composed of a chain extender mainly composed of diol.
: Melt-prone ultrafine fibers 115 to 7 with an average fiber diameter of 8 microns or less made of a certain polyurethane-based polymer
This nonwoven fabric is characterized by being a nonwoven fabric containing 0% by weight of ultrafine fibers.

また、本発明はエチレン含有量40〜60モル%、固有
粘度〔マ〕が0.055〜0.085g/gにあるエチ
レン−酢酸ビニル共重合体鹸化物を主体とした重合体で
なる平均繊維直径8ミクロン以下のメルトプローン極細
繊維95〜30重量%、およびソフトセグメント含有量
45〜75重量%であって、ジオールを主体とした鎖伸
長剤でなる固有粘度〔マ〕が0.05〜0.10Q/g
にあるポリウレタンを主体とした重合体でなる平均繊維
直径8ミクロン以下のメルトプローン極細繊維5〜70
重量%の極細繊維混繊不織布で構成され、少なくとも片
面は一面にあるいは模様状に繊維の接触部の大部分が接
着した面であることを特徴とする不織布である。
Further, the present invention provides an average fiber made of a polymer mainly composed of a saponified ethylene-vinyl acetate copolymer having an ethylene content of 40 to 60 mol% and an intrinsic viscosity of 0.055 to 0.085 g/g. Melt-prone ultrafine fibers with a diameter of 8 microns or less, 95 to 30% by weight, soft segment content of 45 to 75% by weight, and an intrinsic viscosity [ma] of 0.05 to 0, consisting of a chain extender mainly composed of diol. .10Q/g
Melt-prone ultrafine fibers with an average fiber diameter of 8 microns or less made of a polyurethane-based polymer 5 to 70
This nonwoven fabric is composed of a nonwoven fabric mixed with ultrafine fibers of % by weight, and is characterized in that at least one surface is a surface where most of the fiber contact areas are adhered to one side or in a pattern.

更に、本発明はエチレン含有量40〜60モル%、固有
粘度〔マ〕が0.055〜0.085L’gにあるエチ
レン−酢酸ビニル共重合体鹸化物を主体とした重合体を
溶融し、メルトプローン紡糸法で紡糸して平均繊維直径
8ミクロン以下の極細繊維流Iを形成し、一方、ソフト
セグメント含有量45〜75重量%であって、ジオール
を主体とした鎖伸長剤でなる固有粘度〔η〕が0.05
〜0.IQ/gにあるポリウレタンを主体とした重合体
を溶融し、メルトプローン紡糸法で紡糸して平均繊維直
径8ミクロン以下の極細繊維流IIを形成し、該繊維流
IおよびIIを重量比で繊維流Iを95〜30重量%お
よび繊維流IIを5〜70重量%の範囲で極細繊維を混
繊し、シート状に捕集して極細繊維混繊不織布とし、必
要に応じて不織布の少なくとも片面を緻密化および一面
にあるいは模様状に繊維の接触部の大部分が接着する処
理を行うことを特徴とする不織布の製造法である。
Furthermore, the present invention melts a polymer mainly composed of a saponified ethylene-vinyl acetate copolymer having an ethylene content of 40 to 60 mol% and an intrinsic viscosity of 0.055 to 0.085 L'g, The melt-prone spinning method is used to form ultrafine fiber stream I with an average fiber diameter of 8 microns or less, while the soft segment content is 45 to 75% by weight, and the intrinsic viscosity is composed of a chain extender mainly composed of diol. [η] is 0.05
~0. IQ/g of a polymer mainly composed of polyurethane is melted and spun using a melt-prone spinning method to form an ultrafine fiber stream II with an average fiber diameter of 8 microns or less, and the fiber streams I and II are divided into fibers by weight ratio. Stream I is mixed with ultrafine fibers in a range of 95 to 30% by weight and fiber stream II is mixed in a range of 5 to 70% by weight, collected in a sheet form to obtain an ultrafine fiber-mixed nonwoven fabric, and if necessary, at least one side of the nonwoven fabric. This is a method for producing a nonwoven fabric, which is characterized by carrying out a treatment in which the fibers are densified and most of the contact areas of the fibers are adhered to one side or in a pattern.

そして、本発明のエチレン−酢酸ビニル共重合体鹸化物
を主体とした重合体の極細繊維とポリウレタンを主体と
した重合体の極細繊維とを混繊した極細繊維混繊不織布
は、■別々の紡糸用ダイで紡糸して得た極細繊維を繊維
流においであるいは捕集時または捕集シート上で混繊し
て極細繊維混繊不織布とする方法、■同一の紡糸用ダイ
に、交互にあるいはブロック状に設けられた2系統のノ
ズルより、それぞれの重合体の溶融物を吐出させて極細
繊維に紡糸し、その極細繊維は混繊した極細繊維流を形
成する。その混繊した極細繊維流をシート状に捕集して
極細繊維混繊不織布とする方法で製造することができる
The ultrafine fiber mixed fiber nonwoven fabric of the present invention, which is a mixture of ultrafine fibers made of a saponified ethylene-vinyl acetate copolymer and ultrafine fibers made of a polymer mainly made of polyurethane, is made of A method of making an ultrafine fiber-mixed nonwoven fabric by mixing ultrafine fibers obtained by spinning with a spinning die in a fiber stream, during collection, or on a collection sheet; The melt of each polymer is discharged from two systems of nozzles arranged in a shape and spun into ultrafine fibers, and the ultrafine fibers form a mixed ultrafine fiber stream. It can be produced by collecting the mixed ultrafine fiber stream in a sheet form to produce a nonwoven fabric mixed with ultrafine fibers.

すなわち、本発明の不織布は特定の物性範囲にあるエチ
レン−酢酸ビニル共重合体鹸化物およびポリウレタンを
用い、それぞれ均一性の良好なメルトプローン極細繊維
を形成し、極細繊維を混繊した弾性挙動、機械的性質の
斑の少ない不織布を製造することにある。
That is, the nonwoven fabric of the present invention uses a saponified ethylene-vinyl acetate copolymer and polyurethane having specific physical properties to form melt-prone ultrafine fibers with good uniformity, and has elastic behavior in which the ultrafine fibers are mixed. The objective is to produce a nonwoven fabric with less uneven mechanical properties.

本発明で使用するエチレン−酢酸ビニル共重合体鹸化物
は、エチレン含有量が40〜60モル%の範囲であり、
重合体を溶液として測定した固有粘度〔り〕が0.05
5〜0.085ff/gの範囲である重合体を使用する
ことである。この重合体のエチレン含有量が40モル%
未満である場合には、重合体の熱安定性が悪くなり、溶
融粘度が上昇し、不溶融性物(ゲル状物)が発生して安
定なメルトプローン法紡糸ができなくなり、良好な繊維
流の形成が得られないとか、不織布中に未溶粒物などの
粒状物の混入が多くなる。一方、エチレン含有量が60
モル%を越えて多くなると、ポリビニルアルコール特有
の剛性、51張特性、染色性、吸湿性、耐熱性が低下し
、不織布の触感がポリオレフィン様あるいはワックス様
の好ましくないものとなる。また重合体の固有粘度〔η
〕が0.055〜0.085L’gの範囲外になり、固
有粘度〔1〕が小さくなると溶融粘度が小さくて、十分
な曳糸性が得られず、十分に細化した良好な繊維流を形
成することができないため、均一性の良い不織布が得ら
れないとか、不織布中に微小な玉状物が多数混入すると
か、不織布の強力が低く、腰がなくなるとか、耐熱性が
低下するなどの好ましくない不織布となる。一方、固有
粘度(v)が0.085l/gを越えて高粘度になると
、メルトプローン法では十分に細化、配向した繊維の繊
維流を形成することができないため、均一性の良い極細
繊維不織布を得ることができず、得られた不織布は強力
が弱く、風合いの粗硬なものとなる。更に、酢酸ビニル
の酸化度は80モル%以上、好ましくは90モル%以上
である。鹸化度が高くなると繊維の吸湿性、耐熱性など
の性能が向上し、風合いの良好な不織布となる。
The saponified ethylene-vinyl acetate copolymer used in the present invention has an ethylene content in the range of 40 to 60 mol%,
The intrinsic viscosity measured as a solution of the polymer is 0.05
5 to 0.085 ff/g. The ethylene content of this polymer is 40 mol%
If it is less than 20%, the thermal stability of the polymer will deteriorate, the melt viscosity will increase, and infusible matter (gel-like matter) will be generated, making stable melt-prone spinning impossible, resulting in poor fiber flow. may not be formed, or a large amount of particulate matter such as undissolved particulate matter may be mixed into the nonwoven fabric. On the other hand, the ethylene content is 60
When the amount exceeds mol%, the rigidity, tensile properties, dyeability, moisture absorption, and heat resistance characteristic of polyvinyl alcohol decrease, and the nonwoven fabric becomes undesirably polyolefin-like or wax-like in feel. Also, the intrinsic viscosity of the polymer [η
] is outside the range of 0.055 to 0.085 L'g and the intrinsic viscosity [1] is small, the melt viscosity is small and sufficient stringability cannot be obtained, resulting in a sufficiently thin and good fiber flow. As a result, it is not possible to obtain a nonwoven fabric with good uniformity, a large number of minute beads are mixed into the nonwoven fabric, the strength of the nonwoven fabric is low, it loses its elasticity, and its heat resistance decreases. This results in an undesirable non-woven fabric. On the other hand, if the intrinsic viscosity (v) exceeds 0.085 l/g and the viscosity becomes high, the melt-prone method will not be able to form a fiber flow of sufficiently thinned and oriented fibers. It is not possible to obtain a nonwoven fabric, and the obtained nonwoven fabric is weak in strength and has a rough and hard texture. Furthermore, the degree of oxidation of vinyl acetate is 80 mol% or more, preferably 90 mol% or more. As the degree of saponification increases, the performance of the fibers such as hygroscopicity and heat resistance improves, resulting in a nonwoven fabric with a good texture.

また、本発明で使用するポリウレタンは、平均分子量5
00〜3000のポリマージオール、例えば、ポリエス
テルジオール、ポリエーテルジオール、ポリエステルエ
ーテルジオール、ポリカプロラクトンジオール、ポリカ
ーボネートジオールなどの群から選ばれた少なくとも1
種類のポリマージオールと、有機ポリイソシアネート、
例えば、トリレンジイソシアネート、キシリレンジイソ
シアネート、ジフェニルメタンジイソシアネート、水添
ジフェニルメタンジイソシアネート、イソホロンジイソ
シアネートなどの芳香族系ジイソシアネート、環状基を
有する脂肪族系ジイソシアネート、脂環族系ジイソシア
ネートなどの群から選ばれた少なくとも1種類の有機ジ
イソシアネートと、鎖伸長剤として活性水素原子を少な
くとも2個有する分子量400以下の低分子化合物、例
えば、ジオール、アミノアルコール、ジアミンなどの群
から選ばれた少なくとも1種類の化合物とを反応させて
得たポリウレタンである。また、より柔軟性、伸縮性を
得るのに好ましいソフトセグメントとしては、ポリマー
ジオールの構成が、ジオールの少なくとも40重量%が
側鎖を有する炭素数5〜lの脂肪族ジオールとジカルボ
ン酸から重合された平均分子量500〜3000のポリ
エステルジオールを主体としたポリマージオールであり
、鎖伸長剤が低分子ジオールを主体とした鎖伸長剤であ
る。そして、ポリウレタンの製造方法はポリマージオー
ルと有機ジイソシアネートと鎖伸長剤を所望の組成比で
選び、溶融重合法、塊状重合法あるいは溶液重合法など
で重合してポリウレタンとする。また、均一性が良く、
弾性挙動の良い不織布を得るためにはポリウレタン製造
時の組成において、ソフトセグメントとなるポリマージ
オールの含有量が45〜75重量%であり、鎖伸長剤が
ジオールを主体とした鎖伸長剤を用いて重合する。そし
て、ペレット化して使用するポリウレタンの場合には、
ポリウレタンの溶融紡糸時の粘度低下を考慮して、ベレ
ット化後の固有粘度〔η〕が0.06〜0.ll/gの
範囲と、高めの粘度になるように重合で調整する。また
、溶融重合法で重合し、ペレット化することなく直接メ
ルトプローン紡糸法で極細繊維とする場合には、紡糸時
の粘度低下を考慮しなくてもよいため、紡糸後の固有粘
度〔り〕が0.05〜0.10(1/gf)範囲ニアル
ヨうに重合で調整する。また、ポリウレタン中のソフト
セグメント含有量は45〜75重量%の範囲であり、ソ
フトセグメント含有量が45重量%に満たない場合は、
紡糸性や極細繊維化の点では良いが、不織布の柔軟化、
伸縮性、形態の安定化、面の平滑性、肌添え性、型添え
性などの点で好ましくない。一方、ソフトセグメント含
有量が75重量%を越えて多くなると、不織布としての
柔軟性の点では良いが、紡糸性、極細繊維化が悪くなり
、地合の良い極細繊維不織布が得られなくなる。
Furthermore, the polyurethane used in the present invention has an average molecular weight of 5
00 to 3000 polymer diols, for example, at least one selected from the group of polyester diols, polyether diols, polyester ether diols, polycaprolactone diols, polycarbonate diols, etc.
types of polymer diols and organic polyisocyanates,
For example, at least one selected from the group of aromatic diisocyanates such as tolylene diisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, and isophorone diisocyanate, aliphatic diisocyanates having a cyclic group, and alicyclic diisocyanates. A type of organic diisocyanate is reacted with a low molecular weight compound having at least two active hydrogen atoms as a chain extender and having a molecular weight of 400 or less, for example, at least one type of compound selected from the group of diols, amino alcohols, diamines, etc. This is polyurethane obtained by In addition, as a preferable soft segment to obtain more flexibility and stretchability, the composition of the polymer diol is such that at least 40% by weight of the diol is polymerized from an aliphatic diol having a side chain of 5 to 1 carbon atoms and a dicarboxylic acid. It is a polymer diol mainly composed of a polyester diol having an average molecular weight of 500 to 3000, and the chain extender is a chain extender mainly composed of a low molecular weight diol. The method for producing polyurethane is to select a polymer diol, an organic diisocyanate, and a chain extender in a desired composition ratio, and polymerize it by a melt polymerization method, a bulk polymerization method, a solution polymerization method, or the like to obtain a polyurethane. In addition, the uniformity is good,
In order to obtain a nonwoven fabric with good elastic behavior, the content of polymer diol, which becomes a soft segment, should be 45 to 75% by weight in the composition during polyurethane production, and the chain extender should contain a chain extender mainly composed of diol. Polymerize. In the case of polyurethane that is used in the form of pellets,
Considering the decrease in viscosity during melt spinning of polyurethane, the intrinsic viscosity [η] after pelletizing is 0.06 to 0. Polymerization is performed to obtain a higher viscosity within the range of 1/g. In addition, when polymerizing by the melt polymerization method and producing ultrafine fibers directly by the melt-prone spinning method without pelletizing, there is no need to take into account the decrease in viscosity during spinning, so the intrinsic viscosity after spinning is reduced. is adjusted by polymerization to a range of 0.05 to 0.10 (1/gf). In addition, the soft segment content in polyurethane is in the range of 45 to 75% by weight, and if the soft segment content is less than 45% by weight,
Although it is good in terms of spinnability and ultra-fine fiber formation, it is difficult to soften the nonwoven fabric,
It is unfavorable in terms of elasticity, stability of form, smoothness of the surface, adhesion to the skin, adhesion to shape, etc. On the other hand, if the soft segment content exceeds 75% by weight, the nonwoven fabric will have good flexibility, but the spinnability and formation of ultrafine fibers will deteriorate, making it impossible to obtain an ultrafine fiber nonwoven fabric with good texture.

また、ポリウレタンの固有粘度〔マ〕が小さい場合には
十分に細化した繊維が得られないし、不均一な太さの繊
維の不織布になる。また、ポリウレタンの固有粘度(ワ
)が大きい場合には溶融粘度が高くなり良好な極細繊維
の繊維流の形成が得られない。
Furthermore, if the intrinsic viscosity of the polyurethane is small, sufficiently fine fibers cannot be obtained, and a nonwoven fabric with fibers of non-uniform thickness will result. Furthermore, if the intrinsic viscosity (wa) of the polyurethane is high, the melt viscosity will be high, making it impossible to form a good fiber flow of ultrafine fibers.

そして、本発明ではエチレン−酢酸ビニル共重合体鹸化
物の極細繊維とポリウレタンの極細繊維とを混繊して極
細繊維混繊不織布とする。この混繊比は指向する用途に
よって異なるが、一般にはエチレン−酢酸ビニル共重合
体鹸化物の極細繊維が95〜30重量%、ポリウレタン
の極細繊維が5〜70重量%の範囲である。吸湿性、染
色性、剛性(こわさ)等を望む場合にはエチレン−酢酸
ビニル共重合体鹸化物の繊維量を多くし、弾性、柔軟性
、を添え性等を望む場合にはポリウレタンの繊維量を多
くする。
In the present invention, the ultrafine fibers of a saponified ethylene-vinyl acetate copolymer and the ultrafine fibers of polyurethane are mixed to form an ultrafine fiber mixed nonwoven fabric. The blending ratio varies depending on the intended use, but is generally in the range of 95 to 30% by weight of ultrafine fibers of saponified ethylene-vinyl acetate copolymer and 5 to 70% by weight of ultrafine fibers of polyurethane. If you want hygroscopicity, dyeability, rigidity (stiffness), etc., increase the fiber amount of saponified ethylene-vinyl acetate copolymer, and if you want elasticity, flexibility, added properties, etc., increase the fiber amount of polyurethane. increase.

次に、極細繊維不織布を製造する重合体のメルトプロー
ン紡糸法は、紡糸温度250〜300℃、搬送気体圧力
(ゲージ圧力)0.5〜5 Kg/ cm2の条件下で
紡糸することによって、平均繊維直径8ミクロン以下の
極細繊維が得られ、均一性の良好な繊維流を形成するこ
とができる。本発明で極細繊維混繊不織布を製造する方
法は、■エチレンー酢酸ビニル共重合体鹸化物とポリウ
レタンとを別々の溶融系で溶融し、それぞれのメルトプ
ローン紡糸用ダイで紡糸してそれぞれの極細繊維流を形
成し、この極細繊維流を合流して一つの極細繊維混繊流
を形成し、コンベアーネット状捕集機あるいはドラム状
捕集機にシート状に捕集するあるいはそれぞれの極細繊
維流を捕集機上で混繊することによって極細繊維混繊不
織布を製造する。■同一のメルトプローン紡糸用ダイに
、交互にあるいはブロック状に2系統のノズルを設け、
それぞれの重合体を別々の溶融系で溶融し、その溶融物
をそれぞれの系統に供給して紡糸し、極細繊維を形成し
て極細繊維が混繊した極細繊維流とし、捕集機にシート
状に捕集することによって極細繊維混繊不織布を製造す
る。それによって、広幅であっても均一性の良好な極細
繊維混繊不織布を得ることができる。得られた不織布は
少なくとも片面を緻密化と一面にあるいは模様状に繊維
の接触部の大部分が接着する処理を行う。すなわち、捕
集した極細繊維不織布の一面あるいは両面を、プレスロ
ールあるいは繊維を軟化する温度に加熱したプレスロー
ルあるいはエンドレスベルトでプレス地理することによ
って不織布面を緻密化し、繊維の接触部を接着させる。
Next, in the melt-prone spinning method of polymers for producing microfiber nonwoven fabrics, the average Ultrafine fibers with a fiber diameter of 8 microns or less can be obtained, and a fiber flow with good uniformity can be formed. The method of producing the ultrafine fiber mixed nonwoven fabric in the present invention is as follows: (1) Melt the saponified ethylene-vinyl acetate copolymer and polyurethane in separate melt systems, and spin them using respective melt-prone spinning dies to obtain the respective ultrafine fibers. The ultrafine fiber streams are combined to form a single ultrafine fiber mixed stream, which is then collected in a sheet form by a conveyor net type collector or drum type collector, or each ultrafine fiber stream is A microfiber-mixed nonwoven fabric is produced by mixing the fibers on a collector. ■ Two systems of nozzles are installed alternately or in blocks on the same melt-prone spinning die,
Each polymer is melted in a separate melting system, and the melt is fed to each system and spun to form ultrafine fibers, which are mixed into an ultrafine fiber stream and sent to a collector in the form of a sheet. A nonwoven fabric containing ultrafine fibers is produced by collecting the ultrafine fibers. Thereby, it is possible to obtain an ultrafine fiber mixed nonwoven fabric with good uniformity even if it has a wide width. The obtained nonwoven fabric is subjected to a treatment such that at least one side thereof is densified and most of the fiber contact areas are bonded to one side or in a pattern. That is, one or both sides of the collected ultrafine fiber nonwoven fabric is pressed with a press roll or an endless belt heated to a temperature that softens the fibers, thereby making the surface of the nonwoven fabric dense and bonding the contact areas of the fibers.

また、プレスに使用するロールあるいはエンドレスベル
トの少なくとも一方は深い凹凸模様またはビンポイント
のエンボスロールあるいはエンドレスベルトを使用する
ことが柔軟性、風合い、伸縮性などの点で好ましい方法
である。
In addition, it is preferable to use an embossed roll or endless belt with a deep uneven pattern or bin points as at least one of the rolls and endless belt used in the press in terms of flexibility, texture, elasticity, etc.

また、本発明のエチレン−酢酸ビニル共重合体鹸化物ま
たは/およびポリウレタンを紡糸するに際し、他の熱可
塑性重合体、例えば、ポリエチレン、エチレンプロピレ
ン共重合体、エチレンブテン共重合体、エチレンオクテ
ン共重合体、ポリプロピレン、ポリブテンなどのポリオ
レフィン、ポリビニルアルコール、ナイロン−6、ナイ
ロン−66、ナイロン−610などのポリアミド、ポリ
エチレンテレフタレート、ホリブチレンチレフタレート
などのポリエステルから選ばれた重合体を混合してもよ
い。重合体の混合比率は40〜5重量%である。また、
顔料あるいは顔料をあらかじめ熱可塑性重合体に分散さ
せたマスターバッチや、繊維の膠着性を防止するための
添加剤、例えば、酸化チタン、微細酸化ケイ素などの添
加剤を添加混合することもよい。
In addition, when spinning the saponified ethylene-vinyl acetate copolymer and/or polyurethane of the present invention, other thermoplastic polymers, such as polyethylene, ethylene propylene copolymer, ethylene butene copolymer, ethylene octene copolymer, etc. Polymers selected from polyolefins such as polypropylene, polybutene, polyvinyl alcohol, polyamides such as nylon-6, nylon-66, and nylon-610, and polyesters such as polyethylene terephthalate and polybutylene ethylene phthalate may be mixed. The mixing ratio of the polymer is 40 to 5% by weight. Also,
It is also possible to add and mix a pigment or a masterbatch in which the pigment is previously dispersed in a thermoplastic polymer, and additives for preventing fiber stickiness, such as titanium oxide and fine silicon oxide.

本発明のメルトプローン極細繊維不織布の目付けは、指
向する用途によって決められるが、一般に、30〜50
0g/m”の範囲である。
The basis weight of the melt-prown microfiber nonwoven fabric of the present invention is determined depending on the intended use, but is generally 30 to 50.
0g/m'' range.

本発明のメルトプローン極細繊維混繊不織布は、吸湿性
、親水性、親油性を有し、良好な耐薬品性であって、伸
縮性あるいは伸長性に優れ、・透気性、透湿性が高く、
柔軟で肌添え性、型添え性、触感に優れた不織布であり
、かつ、繊維の混繊比を変えることによって広範囲の風
合い、触感を有する不織布が得られる。この不織布は単
独で医療用、衣料用、中綿などに使用できるが、樹脂含
浸および/または塗布して皮革様シート用の基材などに
も使用できるものである。また、本発明の不織布は他の
繊維で作られた不織布、編織布と繊維絡合あるいは接着
した積層体として衣料用、産業資材用として使用するこ
とができる。
The melt-prone microfiber mixed nonwoven fabric of the present invention has hygroscopicity, hydrophilicity, and lipophilicity, good chemical resistance, excellent elasticity or extensibility, and high air permeability and moisture permeability.
It is a flexible nonwoven fabric with excellent skin adhesion, shaping ability, and feel, and by changing the blending ratio of fibers, nonwoven fabrics with a wide range of textures and textures can be obtained. This nonwoven fabric can be used alone for medical purposes, clothing, batting, etc., but it can also be impregnated with resin and/or coated to be used as a base material for leather-like sheets. Furthermore, the nonwoven fabric of the present invention can be used as a laminate in which the fibers are entangled or bonded with nonwoven fabrics or knitted fabrics made of other fibers for clothing or industrial materials.

〈実施例〉 次に、本発明の実施態様を具体的な実施例で説明するが
、本発明はこれら実施例に限定されるものではない。な
お、実施例中の部および%はことわりのない限り、重量
に関するものである。
<Examples> Next, embodiments of the present invention will be described using specific examples, but the present invention is not limited to these examples. Note that parts and percentages in the examples are by weight unless otherwise specified.

また、本発明の重合体の固有粘度(1)は、エチレン−
酢酸ビニル共重合体鹸化物の場合、フェノール85%、
水15%の混合溶媒に溶解し、またポリウレタンの場合
、N、N’−ジメチルホルムアミドに溶解し、毛細管粘
度計を用いて温度30°Cで測定し、固有粘度〔1〕を
次式で求めた。
Further, the intrinsic viscosity (1) of the polymer of the present invention is ethylene-
In the case of saponified vinyl acetate copolymer, phenol 85%,
Dissolved in a mixed solvent containing 15% water, or in the case of polyurethane, dissolved in N,N'-dimethylformamide, measured using a capillary viscometer at a temperature of 30°C, and determined the intrinsic viscosity [1] using the following formula. Ta.

v、e−(t−to)/lo−(t/1o)−1〔り〕
−!i■Way/C ただし、t は溶液の流下時間(秒) toは溶媒の流下時間(秒) Cは重合2体の濃度(g/α) 実施例1 エチレン含有量45モル%、鹸化度98モル%、固有粘
度(v)=0.062l/gのエチレン−酢酸ビニル共
重合体鹸化物をエクストルーダーで溶融し、直径0.3
av+の吐出孔をi n+m間隔で一列に配列したノズ
ル部と、その両側に幅0−25mmの気体噴出用スリッ
トを設けたメルトプローン用ダイを用い、溶融紡糸温度
280℃、孔当たりの吐出量0.2g/分で吐出させ、
搬送空気温度280℃、空気ゲージ圧1 、5 Kg/
 cm”の条件でメルトプローン法で紡糸し、メルトプ
ローン極細繊維流(1)を形成した。一方、3−メチル
1.5−ベンタンジオールとアジピン酸とを縮合重合し
て得た平均分子量1500のポリ3−メチル1.5−ペ
ンタンアジペートグリコール1モル(54%)、4.4
’−ジフェニルメタンジイソシアネート4モル、ブチレ
ングリコール3モルの組成を溶融重合法で重合し、固有
粘度〔マ〕・O,104ff/gのポリウレタンを得た
。このポリウレタンは溶融重合後、ストランドとして取
り出してペレタイザーで切断し、ベレットとした。この
ポリウレタンペレットを同じメルトプローン装置で、紡
糸温度285℃、搬送空気温度290℃、空気ゲージ圧
2.5Kg/cがの条件で、かつポリウレタンの吐出量
は計量ギヤーポンプの制御によって調節して紡糸し、メ
ルトプローン極細繊維流(II)を形成した。紡出極細
繊維流は所定量を混繊して極細繊維混繊流とした後、グ
イより約25cmの位置に設置した、一定速度で走行す
るベルトコンベアーネット捕集機のネット上に捕集して
、平均目付105g/m”のメルトプローン極細繊維混
繊不織布を得た。この極細繊維混繊不織布は緻密な集積
状態ではあるが柔軟な風合いを有していた。
v, e-(t-to)/lo-(t/1o)-1 [ri]
-! i ■ Way/C where t is the solution flow time (seconds) to is the solvent flow time (seconds) C is the concentration of the polymer 2 (g/α) Example 1 Ethylene content 45 mol%, saponification degree 98 A saponified ethylene-vinyl acetate copolymer with mole% and intrinsic viscosity (v) = 0.062 l/g was melted with an extruder, and a diameter of 0.3
Using a melt spinning die with a nozzle part in which av+ discharge holes were arranged in a row at intervals of i n + m and gas jetting slits with a width of 0 to 25 mm on both sides, the melt spinning temperature was 280 °C, and the discharge amount per hole was used. Discharge at 0.2g/min,
Conveying air temperature 280℃, air gauge pressure 1, 5 kg/
cm" by the melt-prone method to form a melt-prone ultrafine fiber stream (1). Poly 3-methyl 1,5-pentane adipate glycol 1 mole (54%), 4.4
A composition of 4 moles of '-diphenylmethane diisocyanate and 3 moles of butylene glycol was polymerized by a melt polymerization method to obtain a polyurethane having an intrinsic viscosity of [ma].O and 104 ff/g. After melt polymerization, this polyurethane was taken out as a strand and cut with a pelletizer to form pellets. These polyurethane pellets were spun using the same melt proning device under the conditions of a spinning temperature of 285°C, a conveying air temperature of 290°C, and an air gauge pressure of 2.5 kg/c, with the polyurethane discharge rate adjusted by controlling the metering gear pump. , a melt-prone microfiber stream (II) was formed. The spun ultrafine fiber stream is mixed in a predetermined amount to form an ultrafine fiber mixed stream, and then collected on the net of a belt conveyor net collection machine that is installed at a position approximately 25 cm from the guide and runs at a constant speed. As a result, a melt-prone ultrafine fiber mixed nonwoven fabric with an average basis weight of 105 g/m'' was obtained. Although this ultrafine fiber mixed nonwoven fabric was in a dense accumulation state, it had a soft texture.

このメルトプローン不織布繊維を走査型電子顕微鏡(以
下SEMと略記する)で500倍に拡大して観察したと
ころ、不織布構成繊維の平均直径は極細繊維CI)が約
4.5ミクロン、極細繊維(I[)が約6.6ミクロン
であった。
When this melt-prown nonwoven fabric fiber was observed with a scanning electron microscope (hereinafter abbreviated as SEM) at a magnification of 500 times, the average diameter of the nonwoven fabric constituent fibers was approximately 4.5 microns for the ultrafine fibers (CI), and approximately 4.5 microns for the ultrafine fibers (I). [) was approximately 6.6 microns.

このメルトプローン極細繊維混繊不織布に圧着部面積2
0%、線圧力5 Kg/cm、ロール温度100℃、処
理速度10m/分でプレス処理を行い、表面の繊維の大
部分を接合した。得られた不織布は強力が高く、伸長性
があり、型添い性が良く、透気性、透湿性が高く、肌触
りが良く、更に耐薬品性ニ優れているものであった。
The area of the crimped part on this melt-prone microfiber mixed nonwoven fabric is 2.
0%, a linear pressure of 5 Kg/cm, a roll temperature of 100° C., and a processing speed of 10 m/min to bond most of the fibers on the surface. The obtained nonwoven fabric had high strength, extensibility, good form conformability, high air permeability and moisture permeability, good feel to the touch, and excellent chemical resistance.

次に、メルトプローン極細繊維混繊率と風合い、用途の
関係を表1に示した。
Next, Table 1 shows the relationship between melt-prone ultrafine fiber blending ratio, texture, and usage.

以下余白 表1 すなわち、極細繊維の混繊比を変えることによって多様
な用途に適する不織布が得られる。
Table 1 below: By changing the blending ratio of ultrafine fibers, nonwoven fabrics suitable for various uses can be obtained.

比較例1 実施例1のメルトプローン極細繊維混繊不織布の製造に
おいて、エチレン−酢酸ビニル共重合体鹸化物をエチレ
ン含有量49モル%、鹸化度98%、固有粘度(7)−
0,092Q/gのエチレン−酢酸ビニル共重合体鹸化
物に変えて、実施例1と同じメルトプローン紡糸を行っ
た。しかし、実施例1と同一条件では十分な紡糸性が得
られないため、紡糸温度を300℃、搬送空気温度30
0℃、空気ゲージ圧5Kg/c■8に変更して紡糸した
。しかし、溶融粘度が高くて十分に細化した繊維が得ら
れず、繊維の太さは不揃いで、細い繊維でも平均直径が
約lミクロンもあり、しかも均一性の良い極細繊維流は
得られなかった。また、得られた不織布は粗硬であって
、強力も弱いものとなった。
Comparative Example 1 In the production of the melt-prone ultrafine fiber mixed nonwoven fabric of Example 1, the saponified ethylene-vinyl acetate copolymer was used with an ethylene content of 49 mol%, a degree of saponification of 98%, and an intrinsic viscosity of (7)-
Melt prone spinning was carried out in the same manner as in Example 1, except that the saponified ethylene-vinyl acetate copolymer was used at 0,092 Q/g. However, sufficient spinnability could not be obtained under the same conditions as in Example 1, so the spinning temperature was set at 300°C and the conveying air temperature was set at 30°C.
Spinning was carried out at 0° C. and at an air gauge pressure of 5 kg/c×8. However, due to the high melt viscosity, it was not possible to obtain sufficiently fine fibers, the thickness of the fibers was uneven, and even thin fibers had an average diameter of about 1 micron, and it was not possible to obtain a highly uniform ultrafine fiber flow. Ta. In addition, the obtained nonwoven fabric was coarse and hard, and its strength was weak.

比較例2 実施例1のメルトプローン極細繊維混繊不織布の製造に
おいて、ポリウレタンの固有粘度〔l〕−0,161/
gの高粘度のポリウレタンに変えて、実施例1と同じ条
件でメルトプローン紡糸を行ったところ、2時間程度の
短時間では紡糸性に異常がなかったが、それ以上の長時
間になるとメルトプローンによる曳糸性が急速に低下し
、断糸が多発し、未溶粒物が付着した切断繊維片がメル
トプローン極細繊維流に混在してきて安定に紡糸するこ
とができなくなり、使用できる不織布ではなかった。
Comparative Example 2 In the production of the melt-prone ultrafine fiber mixed nonwoven fabric of Example 1, the intrinsic viscosity of polyurethane [l] -0,161/
When melt-prone spinning was performed under the same conditions as in Example 1 by replacing the high-viscosity polyurethane (g) with polyurethane, there was no abnormality in the spinnability for a short time of about 2 hours, but when the time was longer than that, the melt-prone spinning The spinnability of the yarn rapidly deteriorates, yarn breakage occurs frequently, and cut fiber pieces with undissolved particles adhering to them become mixed in the flow of melt-prone ultrafine fibers, making stable spinning impossible, making the nonwoven fabric unusable. Ta.

実施例2 エチレン含有量49モル%、鹸化度98%、固有粘度(
v )=0.062 (1/gのエチレン−酢酸ビニル
共重合体鹸化物93部、黄茶色の顔料20%含有するポ
リプロピレン7部とを混練して実施例1と同じ装置で紡
糸条件を同じくしてメルトプローン紡糸を行って、メル
トプローン極細繊維流(III)を形成した。一方、平
均分子量2000のポリエチレンアジペートグリコール
1モル(55%)、4.4′−ジフェニルメタンジイソ
シアネート5モル%、ブチレングリコール4モル%の組
成で溶融重合法で重合して得た固有粘度Cv )=0.
92l部gのポリウレタン95部と、黄茶色の顔料20
%含有するポリプロピレン5部とをエクストルーダーで
溶融混練し、実施例1と同じ装置で、紡糸温度285℃
、搬送空気温度290℃、空気ゲージ圧2Kg/ Cm
”の条件で紡糸を行って、メルトプローン極細繊維流(
IV)を形成した。
Example 2 Ethylene content 49 mol%, degree of saponification 98%, intrinsic viscosity (
v ) = 0.062 (93 parts of saponified ethylene-vinyl acetate copolymer (1/g) and 7 parts of polypropylene containing 20% yellow-brown pigment were kneaded and spun using the same equipment as in Example 1 under the same spinning conditions. Melt prone ultrafine fiber stream (III) was formed by melt prone spinning.Meanwhile, 1 mol (55%) of polyethylene adipate glycol having an average molecular weight of 2000, 5 mol% of 4.4'-diphenylmethane diisocyanate, and butylene glycol. Intrinsic viscosity (Cv) obtained by polymerization using a melt polymerization method with a composition of 4 mol% = 0.
92 l parts g of 95 parts of polyurethane and 20 parts of yellow-brown pigment.
5 parts of polypropylene containing
, conveying air temperature 290℃, air gauge pressure 2Kg/Cm
The spinning was carried out under the conditions of ``melt prone ultrafine fiber flow (
IV) was formed.

各メルトプローン極細繊維流は繊維流(DI)が55部
、繊維流(IV)が45部の極細繊維混繊流とし、捕集
機上にシート状に捕集してメルトプローン極細繊維混繊
不織布を得た。この不織布は色の濃淡床のない肌色に着
色された平均目付85g/m”の均一性の良いメルトプ
ローン極細繊維混繊不織布が得られた。
Each melt-prone ultrafine fiber stream is made into an ultra-fine fiber mixed flow containing 55 parts of the fiber stream (DI) and 45 parts of the fiber stream (IV), and is collected in a sheet form on a collector to become the melt-prone ultrafine fiber mixture. A nonwoven fabric was obtained. This nonwoven fabric was a melt-prone ultrafine fiber mixed nonwoven fabric with good uniformity and an average basis weight of 85 g/m'', which was colored in flesh color without any color shading.

この不織布をSEMで観察すると、繊維の平均直径は約
5〜6ミクロンであり、この極細繊維混繊不織布は弾性
があり、木綿で作られた布帛の触感と風合いを有してい
た。
When this nonwoven fabric was observed with a SEM, the average diameter of the fibers was about 5 to 6 microns, and this ultrafine fiber mixed nonwoven fabric was elastic and had the feel and feel of a fabric made of cotton.

この極細繊維混繊不織布に織り目模様の深い彫刻ヲ施し
たエンボスロールを用いて、ロール温度l0℃、線圧力
3Kg/Cmでエンボスを行った。
Embossing was carried out on this ultrafine fiber mixed nonwoven fabric using an embossing roll with deep texture engravings at a roll temperature of 10° C. and a line pressure of 3 Kg/Cm.

得られた不織布は伸長切断強力が高く、柔軟で伸長性が
あって肌添い性が良く、着用時の違和感のない貼付用基
材であった。
The obtained nonwoven fabric had high stretching and cutting strength, was flexible and extensible, had good skin adhesion, and was a base material for application that did not feel uncomfortable when worn.

実施例 3 1つのメルトプローン紡糸用ダイに2系統の溶融物の供
給系統を設け、それぞれの溶融物を吐出させるための直
径0.31III11の吐出孔を交互に配置した紡糸用
ダイを用い、紡糸温度280℃、搬送空気温度290℃
、空気ゲージ圧2− OKg/ cm”の条件で、重合
体の混繊比率はそれぞれの溶融重合体の供給ギヤーポン
プの制御によって調節して、実施例1で用いたエチレン
−酢酸ビニル共重合体鹸化物(A)とポリウレタン(B
)とを別々の溶融系で溶融し、それぞれの溶融重合体を
それぞれの系統に(A ):(B ’)が60:40の
比率で供給して紡糸した。
Example 3 One melt-prone spinning die was provided with two melt supply systems, and spinning was carried out using a spinning die in which discharge holes each having a diameter of 0.31III11 for discharging the respective melts were arranged alternately. Temperature 280℃, conveying air temperature 290℃
, air gauge pressure 2-OKg/cm'', the mixing ratio of the polymers was adjusted by controlling the supply gear pump of each molten polymer, and the ethylene-vinyl acetate copolymer used in Example 1 was saponified. material (A) and polyurethane (B
) were melted in separate melting systems, and the respective molten polymers were fed to each system at a ratio of (A):(B') of 60:40 for spinning.

紡糸した極細繊維流はダイより約25cmの位置に設置
した一定速度で走行するベルトコンベアーネット捕集機
のネット上に捕集して、平均目付75g/+o”のメル
トプローン極細繊維混繊不織布を得た。この極細繊維混
繊不織布は均一性の極めて良い混繊状態であり、伸縮性
のある柔軟な風合いであった。
The spun ultrafine fiber flow is collected on the net of a belt conveyor net collection machine installed at a position approximately 25 cm from the die and running at a constant speed, and a melt-prone ultrafine fiber mixed nonwoven fabric with an average basis weight of 75 g/+o'' is produced. This ultrafine fiber-mixed nonwoven fabric was in a highly uniform mixed fiber state and had a stretchable and soft texture.

〈発明の効果〉 本発明のメルトプローン極細繊維混繊不織布は伸長切断
強力が高く、柔軟で伸縮性あるいは伸長性に優れ、透気
性、透湿性が高く、吸湿性、親水性、親油性、耐薬品性
、耐熱性であって、肌添え性、を添え性が良く、繊維の
混繊比を変えることによって広範囲の風合い、触感のを
有する不織布が得られる。この不織布は単独で衣料用、
医療用、中綿などに使用できるが、樹脂含浸および/ま
たは塗布して皮革様シート用の基材などにも使用できる
<Effects of the Invention> The melt-prone ultrafine fiber blended nonwoven fabric of the present invention has high stretch-cutting strength, is flexible, has excellent elasticity or extensibility, has high air permeability and moisture permeability, and has hygroscopicity, hydrophilicity, lipophilicity, and resistance. Nonwoven fabrics are chemical-resistant, heat-resistant, and have good adhesion to the skin, and have a wide range of textures and textures by changing the blending ratio of fibers. This non-woven fabric can be used alone for clothing,
It can be used for medical purposes and as batting, but it can also be used as a base material for leather-like sheets by impregnating and/or coating with resin.

特許出願人 株式会社 り ラ しPatent applicant RiRashi Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] (1) エチレン含有量40〜60モル%、固有粘度〔
η〕が0.055〜0.085l/gにあるエチレン−
酢酸ビニル共重合体鹸化物を主体とした重合体でなる平
均繊維直径8ミクロン以下のメルトプローン極細繊維9
5〜30重量%、およびソフトセグメント含有量45〜
75重量%であつて、ジオールを主体とした鎖伸長剤で
なる固有粘度〔η〕が0.05〜0.10l/gにある
ポリウレタンを主体とした重合体でなる平均繊維直径8
ミクロン以下のメルトプローン極細繊維5〜70重量%
の極細繊維混繊不織布であることを特徴とする不織布。
(1) Ethylene content 40-60 mol%, intrinsic viscosity [
Ethylene with a η] of 0.055 to 0.085 l/g
Melt-prone ultrafine fibers with an average fiber diameter of 8 microns or less made of a polymer mainly composed of saponified vinyl acetate copolymer 9
5-30% by weight, and soft segment content 45-30% by weight.
75% by weight, an average fiber diameter of 8 which is made of a polyurethane-based polymer with an intrinsic viscosity [η] of 0.05 to 0.10 l/g and is made of a chain extender based on a diol.
5-70% by weight of melt-prone ultrafine fibers below microns
A nonwoven fabric characterized by being a nonwoven fabric made of ultrafine fibers.
(2) エチレン−酢酸ビニル共重合体鹸化物を主体と
した重合体のメルトプローン極細繊維およびポリウレタ
ンを主体とした重合体のメルトプローン極細繊維で構成
された極細繊維混繊不織布の少なくとも片面は一面にあ
るいは模様状に繊維の接触部の大部分が接着した面であ
ることを特徴とする請求項1記載の不織布。
(2) At least one side of the ultrafine fiber mixed nonwoven fabric is composed of melt-prone ultrafine fibers made of a saponified ethylene-vinyl acetate copolymer and melt-prone ultrafine fibers made of a polyurethane-based polymer. 2. The nonwoven fabric according to claim 1, wherein most of the contact portions of the fibers are bonded surfaces.
(3) エチレン含有量40〜60モル%、固有粘度〔
η〕が0.055〜0.085l/gにあるエチレン−
酢酸ビニル共重合体鹸化物を主体とした重合体を溶融し
、メルトプローン紡糸法で紡糸して平均繊維直径8ミク
ロン以下の極細繊維流 I を形成し、一方、ソフトセグ
メント含有量45〜75重量%であつて、ジオールを主
体とした鎖伸長剤でなる固有粘度〔η〕が0.05〜0
.10l/gにあるポリウレタンを主体とした重合体を
溶融し、メルトプローン紡糸法で紡糸して平均繊維直径
8ミクロン以下の極細繊維流IIを形成し、該繊維流 I
およびIIを重量比で繊維流 I を95〜30重量%およ
び繊維流IIを5〜70重量%の範囲で極細繊維を混繊し
、シート状に捕集して極細繊維混繊不織布とし、必要に
応じて不織布の少なくとも片面を緻密化および一面にあ
るいは模様状に繊維の接触部の大部分が接着する処理を
行うことを特徴とする不織布の製造法。
(3) Ethylene content 40-60 mol%, intrinsic viscosity [
Ethylene with a η] of 0.055 to 0.085 l/g
A polymer mainly composed of a saponified vinyl acetate copolymer is melted and spun using a melt-prone spinning method to form an ultrafine fiber stream I with an average fiber diameter of 8 microns or less, while a soft segment content of 45 to 75% by weight. %, and the intrinsic viscosity [η] of the chain extender mainly composed of diol is 0.05 to 0.
.. A polymer mainly composed of polyurethane at 10 l/g is melted and spun using a melt-prone spinning method to form an ultrafine fiber stream II with an average fiber diameter of 8 microns or less, and the fiber stream I
and II in a weight ratio of 95 to 30% by weight of fiber stream I and 5 to 70% by weight of fiber stream II, collected in a sheet form to make an ultrafine fiber mixed nonwoven fabric, and then 1. A method for producing a nonwoven fabric, which comprises densifying at least one side of the nonwoven fabric and adhering most of the fiber contact areas to one side or in a pattern.
(4) エチレン−酢酸ビニル共重合体鹸軌化物を主体
とした重合体の極細繊維流 I と、ポリウレタンを主体
とした重合体の極細繊維流IIとの混繊が、同一紡糸ダイ
に設けられた2系統のノズルより吐出させて得た極細繊
維流で混繊する請求項3記載の不織布の製造法。
(4) A mixture of ultrafine fiber stream I of a polymer mainly composed of a saponified ethylene-vinyl acetate copolymer and ultrafine fiber stream II of a polymer mainly composed of polyurethane is provided in the same spinning die. 4. The method for producing a nonwoven fabric according to claim 3, wherein the fibers are mixed with ultrafine fiber streams discharged from two nozzles.
JP1082106A 1989-03-31 1989-03-31 Nonwoven fabric and production thereof Pending JPH02264057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1082106A JPH02264057A (en) 1989-03-31 1989-03-31 Nonwoven fabric and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1082106A JPH02264057A (en) 1989-03-31 1989-03-31 Nonwoven fabric and production thereof

Publications (1)

Publication Number Publication Date
JPH02264057A true JPH02264057A (en) 1990-10-26

Family

ID=13765156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1082106A Pending JPH02264057A (en) 1989-03-31 1989-03-31 Nonwoven fabric and production thereof

Country Status (1)

Country Link
JP (1) JPH02264057A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0535451A1 (en) * 1991-09-30 1993-04-07 Minnesota Mining And Manufacturing Company Grease-absorbent microwave cooking pad and package
JP2002242069A (en) * 2001-02-15 2002-08-28 Mitsui Chemicals Inc Nonwoven fabric composed of mixed fiber, method for producing the same, and laminate composed of the nonwoven fabric
JP2007009403A (en) * 2006-10-20 2007-01-18 Mitsui Chemicals Inc Nonwoven fabric comprising mixed fiber and method for producing the same
DE102006013170A1 (en) * 2006-03-22 2007-09-27 Irema-Filter Gmbh Foldable nonwoven material useful as air filter element in motor vehicle, comprises form stabilized thicker fiber carrier material and thinner fibers determining the filtering effect
JP2012144840A (en) * 2012-05-07 2012-08-02 Mitsui Chemicals Inc Nonwoven fabric comprising mixed fiber and method for manufacturing the same
US8834762B2 (en) 2006-03-28 2014-09-16 Irema-Filter Gmbh Pleatable nonwoven material and method and apparatus for production thereof
US9168471B2 (en) 2010-11-22 2015-10-27 Irema-Filter Gmbh Air filter medium combining two mechanisms of action
US10668424B2 (en) 2014-11-28 2020-06-02 Irema-Filter Gmbh Filter medium having large fold spacing
US11571645B2 (en) 2013-05-16 2023-02-07 Iremea-Filter Gmbh Fibrous nonwoven and method for the production thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0535451A1 (en) * 1991-09-30 1993-04-07 Minnesota Mining And Manufacturing Company Grease-absorbent microwave cooking pad and package
JP2002242069A (en) * 2001-02-15 2002-08-28 Mitsui Chemicals Inc Nonwoven fabric composed of mixed fiber, method for producing the same, and laminate composed of the nonwoven fabric
DE102006013170A1 (en) * 2006-03-22 2007-09-27 Irema-Filter Gmbh Foldable nonwoven material useful as air filter element in motor vehicle, comprises form stabilized thicker fiber carrier material and thinner fibers determining the filtering effect
US8834762B2 (en) 2006-03-28 2014-09-16 Irema-Filter Gmbh Pleatable nonwoven material and method and apparatus for production thereof
US10273611B2 (en) 2006-03-28 2019-04-30 Irema-Filter Gmbh Pleatable nonwoven material and method and apparatus for production thereof
JP2007009403A (en) * 2006-10-20 2007-01-18 Mitsui Chemicals Inc Nonwoven fabric comprising mixed fiber and method for producing the same
US9168471B2 (en) 2010-11-22 2015-10-27 Irema-Filter Gmbh Air filter medium combining two mechanisms of action
JP2012144840A (en) * 2012-05-07 2012-08-02 Mitsui Chemicals Inc Nonwoven fabric comprising mixed fiber and method for manufacturing the same
US11571645B2 (en) 2013-05-16 2023-02-07 Iremea-Filter Gmbh Fibrous nonwoven and method for the production thereof
US10668424B2 (en) 2014-11-28 2020-06-02 Irema-Filter Gmbh Filter medium having large fold spacing

Similar Documents

Publication Publication Date Title
JP4332627B2 (en) Mixed fiber, stretchable nonwoven fabric comprising the mixed fiber, and method for producing the same
KR100687391B1 (en) Stretch nonwoven fabric and method for production thereof
KR100687390B1 (en) Mixed fiber and, stretch nonwoven fabric comprising said mixed fiber and method for manufacture thereof
EP0496848B1 (en) Microfibers of rigid polyurethane having large amount of hard segment, nonwoven mats of the microfibers and melt-blowing process for the production thereof
US6784127B1 (en) Polyurethane elastic fiber nonwoven fabric and its production and synthetic leather using the same
JP4332626B2 (en) Stretchable nonwoven fabric and method for producing the same
JPH02264057A (en) Nonwoven fabric and production thereof
JP3549587B2 (en) Polyurethane elastic fiber nonwoven fabric and laminated composite nonwoven sheet using the same
JP2642188B2 (en) Adhesive base material and method for producing the same
JPH02242959A (en) Bandage of unwoven fabric and production thereof
JP7343512B2 (en) A nonwoven or woven fabric made stretchable with a large number of closely spaced fiber strands
JP2731597B2 (en) Method for producing polyurethane ultrafine fiber nonwoven fabric
JPH01298259A (en) Production of thermoplastic polyurethane elastic nonwoven fabric
JP2001248055A (en) Method for producing spunbonded elastic nonwoven fabric
JPH02175961A (en) Nonwoven fabric of ethylene-vinyl alcohol copolymer fiber and production thereof
JPS6122855A (en) Medical pressure-sensitive adhesive sheet
JPH0411061A (en) Stretchable nonwoven fabric and production thereof
JPS648747B2 (en)
JP7345055B2 (en) Laminated sheets, sanitary materials, medical materials, and methods for producing laminated sheets
JPH02240014A (en) Substrate for application
JPH0355152B2 (en)
JPH11138727A (en) Film-laminated unwoven fabric and manufacture thereof
JPH05131580A (en) Stretchable fiber sheet and its manufacture
JPS6375108A (en) Multicomponent fiber
JPS6221820A (en) Polyurethane based multicomponent fiber