JPH02259535A - Temperature measuring method - Google Patents

Temperature measuring method

Info

Publication number
JPH02259535A
JPH02259535A JP1081981A JP8198189A JPH02259535A JP H02259535 A JPH02259535 A JP H02259535A JP 1081981 A JP1081981 A JP 1081981A JP 8198189 A JP8198189 A JP 8198189A JP H02259535 A JPH02259535 A JP H02259535A
Authority
JP
Japan
Prior art keywords
temperature
measured
emissivity
photoresist
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1081981A
Other languages
Japanese (ja)
Inventor
Hidekazu Shirakawa
英一 白川
Masafumi Nomura
野村 雅文
Kimiharu Matsumura
松村 公治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Kyushu Ltd
Kokusai Gijutsu Kaihatsu Co Ltd
Original Assignee
Tokyo Electron Kyushu Ltd
Kokusai Gijutsu Kaihatsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Kyushu Ltd, Kokusai Gijutsu Kaihatsu Co Ltd filed Critical Tokyo Electron Kyushu Ltd
Priority to JP1081981A priority Critical patent/JPH02259535A/en
Priority to KR1019900004397A priority patent/KR0151150B1/en
Publication of JPH02259535A publication Critical patent/JPH02259535A/en
Priority to US07/864,185 priority patent/US5249142A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/60Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To eliminate the need for the setting of emissivity and to accurately measure the temp. of a body in a non-contact state by respectively measuring the radiant quantities in the plural absorption peak wavelengths obtained from the absorptivity of the body to be measured. CONSTITUTION:IR detectors 11 and 12 for detecting the IR emitted from the photoresist 2a coating the surface of a semiconductor wafer 2 placed on a heating plate 3 are provided. The filters 11a and 12a selectively transmitting the wavelengths lambda1 and lambda2 different from each other are provided to the detectors. The outputs of the detectors 11 and 12 are inputted to a temp. calculator 13 through amplifiers 11c and 12c respectively having gains K1 and K2. The monochromatic emissivities Elambda1 and Elambda2 at the wavelengths lambda1 and lambda2 are obtained by the gains K1 and K2 from the previously measured absorption spectrum of the body to be measured, and the setting is controlled to K1/K2 Elambda2/Elambda1. Since the emissivity of a body is equal to the absorptivity, a measurement with a little effect of the IR radiation from the background of the body to be measured can be realized by measuring the high-absorptivity wavelength of the body.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、温度測定方法に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a temperature measuring method.

(従来の技術) 一般に、物体の温度を測定する方法としては、従来から
温度計あるいは熱電対等の温度センサーを被測定体に接
触させて測定する方法と、例えば被測定体から放射され
る赤外線等を測定してその放射量から被mj定休の温度
を算出する方法とがある。
(Prior Art) In general, there are two methods for measuring the temperature of an object: a method in which a temperature sensor such as a thermometer or a thermocouple is brought into contact with the object to be measured; There is a method of measuring the amount of radiation and calculating the temperature of the subject mj regular holiday from the amount of radiation.

これらの方法のうち、後者の方法は、ステファン・ボル
ツマンの法則を利用したもので、温度Tと射出能Eおよ
び放射率εとの関係を表わす次式、T−(E/σ0ε)
1/4 を用いて被測定体の温度を算出するものであるが、実際
の測定においては、射出能Eおよび放射率εを正確に知
る手段がないためこれらの推定値E゛ε′を用いて、次
式によって温度T−を推定する。
Of these methods, the latter method utilizes the Stefan-Boltzmann law, and is expressed by the following equation, T-(E/σ0ε), which expresses the relationship between temperature T, injection power E, and emissivity ε.
1/4 is used to calculate the temperature of the object to be measured, but in actual measurements, these estimated values E゛ε' are used because there is no way to accurately know the emissivity E and emissivity ε. Then, estimate the temperature T- using the following equation.

T”−(E−/σ。ε−)1/4 なお、これらの式において、σ0はステファン・ボルツ
マン定数[4,88X10−8(Kcal/ m2hK
’ ) ]を示している。
T"-(E-/σ.ε-)1/4 In these equations, σ0 is the Stefan-Boltzmann constant [4,88X10-8(Kcal/m2hK
' ) ] is shown.

この方法によれば、被測定体に非接触で温度をfill
定することができる。
According to this method, the temperature can be filled without contacting the object to be measured.
can be determined.

(発明が解決しようとする課題) しかしながら、上記説明の従来の温度t−1定方法のう
ち、熱電対等の温度センサーを被測定体に接触させて測
定する方法では、温度センサーを接触させることができ
ない部位の温度を測定することができないという問題が
ある。
(Problem to be Solved by the Invention) However, among the conventional temperature t-1 determination methods described above, in the method of measuring by bringing a temperature sensor such as a thermocouple into contact with the object to be measured, it is difficult to bring the temperature sensor into contact. There is a problem in that it is not possible to measure the temperature of areas that cannot be measured.

例えば加熱板上に半導体ウェハを載置して、この半導体
ウニ八表面に塗布されたフォトレジストのベーキングを
行うベーキング装置では、フォトレジストの温度を検出
して加熱温度を制御することが好ましい。しかしながら
、半導体ウェハ表面に塗布されたフォトレジストに温度
センサーを接触させることができない(フォトレジスト
膜を破損させてしまう)ため、例えば加熱板内に熱電対
等の温度センサーを埋設しておき加熱板の温度からフォ
トレジストの温度を推定するという方法により温度測定
を行っているが、この方法では正確なフォトレジストの
温度を測定することができないという問題がある。
For example, in a baking device that places a semiconductor wafer on a heating plate and bakes a photoresist coated on the surface of the semiconductor wafer, it is preferable to control the heating temperature by detecting the temperature of the photoresist. However, since it is not possible to bring a temperature sensor into contact with the photoresist coated on the surface of a semiconductor wafer (this would damage the photoresist film), for example, a temperature sensor such as a thermocouple is buried inside the heating plate. Temperature is measured by estimating the temperature of the photoresist from the temperature, but this method has a problem in that it is not possible to accurately measure the temperature of the photoresist.

また、被測定体から放射される赤外線等を7111定し
てその放射量からステファン・ボルツマンの法則を利用
して被all定休の温度を算出する従来の温度測定方法
では、被測定体に非接触で温度を測定することができる
ため、上述したベーキング装置の場合でも直接フォトレ
ジストの温度を■1定することができるが、この場合例
えばシリコンウェハおよびフォトレジストは、赤外線に
対する透過率が高いので、加熱板からの赤外線を主とし
て測定し、この加熱板の温度を測定することになり、正
確なシリコンウェハおよびフォトレジストの温度は測定
することができないという問題がある。また、この方法
では正確に知ることのできない放射率の設定を行う必要
が有るという問題もある。
In addition, in the conventional temperature measurement method of determining the infrared rays emitted from the object to be measured and calculating the temperature of all the objects using the Stefan-Boltzmann law from the amount of radiation, there is no contact with the object to be measured. The temperature of the photoresist can be directly determined even in the case of the above-mentioned baking equipment because the temperature can be measured with Infrared rays from the heating plate are mainly measured to measure the temperature of the heating plate, and there is a problem in that the temperature of the silicon wafer and photoresist cannot be accurately measured. Another problem with this method is that it is necessary to set the emissivity, which cannot be accurately known.

本発明は、かかる従来の事情に対処してなされたもので
、放射率の設定が不要で、かつ、非接触で正確に被測定
物の温度を測定することのできる温度測定方法を提供し
ようとするものである。
The present invention has been made in response to such conventional circumstances, and aims to provide a temperature measurement method that does not require setting of emissivity and can accurately measure the temperature of a measured object without contact. It is something to do.

[発明の構成] (課題を解決するための手段) すなわち本発明は、被Δ―1定休の吸収特性から求めた
複数の吸収ピーク波長における放射量をそれぞれ測定し
、これらの測定値から前記被測定体の温度を算出するこ
とを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) That is, the present invention measures radiation amounts at a plurality of absorption peak wavelengths obtained from the absorption characteristics of the Δ-1 regular holiday, and calculates the amount of radiation from these measured values. It is characterized by calculating the temperature of the measuring object.

(作 用) 本発明の温度測定方法では、被n1定体の吸収特性から
求めた複数の吸収ピーク波長における放射量をそれぞれ
測定し、これらのaPj定値から被測定体の温度を算出
する。すなわち、被測定体の放射率と吸収率は等しいの
で、吸収率の高い波長(吸収ピーク波長)、すなわち放
射率の高い波長における放射量を測定することにより、
非接触で正確に被測定物の温度を3−1定することがで
き、かつ、放射率の設定も不要、とすることができる。
(Function) In the temperature measurement method of the present invention, the amount of radiation at a plurality of absorption peak wavelengths determined from the absorption characteristics of the n1 constant is measured, and the temperature of the object is calculated from these aPj constant values. In other words, since the emissivity and absorption rate of the object to be measured are equal, by measuring the amount of radiation at the wavelength with high absorption rate (absorption peak wavelength), that is, the wavelength with high emissivity,
The temperature of the object to be measured can be accurately determined 3-1 without contact, and there is no need to set the emissivity.

(実施例) 以下、本発明の温度測定方法を半導体ウェハのベーキン
グ工程における温度測定に適用した実施例を図面を参照
して説明する。
(Example) Hereinafter, an example in which the temperature measurement method of the present invention is applied to temperature measurement in a baking process of semiconductor wafers will be described with reference to the drawings.

ベーキング装置1には、上面に半導体ウェハ2を載置可
能に構成された発熱板3が設けられている。この発熱板
3には、加熱手段として例えば抵抗加熱ヒータ4が設け
られており、この抵抗加熱ヒータ4には、温度制御器5
によって抵抗加熱ヒータ4に供給する電力を制御可能に
構成された電源6が接続されている。なお、発熱板3の
半導体ウェハ2載置面には、例えばスパッタリング等で
金属薄膜を形成する等の方法で、鏡面仕上を施しである
。これは、発熱板3からの赤外線が後述する温度測定に
与える影響を軽減するためである。
The baking apparatus 1 is provided with a heat generating plate 3 on which a semiconductor wafer 2 can be placed. This heating plate 3 is provided with a resistance heater 4 as a heating means, for example, and this resistance heater 4 is equipped with a temperature controller 5.
A power source 6 configured to be able to control the electric power supplied to the resistance heater 4 is connected thereto. Note that the surface of the heat generating plate 3 on which the semiconductor wafer 2 is placed is given a mirror finish by, for example, forming a metal thin film by sputtering or the like. This is to reduce the influence of infrared rays from the heat generating plate 3 on temperature measurement, which will be described later.

このように発熱板3表面から放射される赤外線を減少さ
せても、半導体ウェハ2は赤外線の透過率が高く、もと
もと放射による加熱ではなく主として熱伝導による加熱
が行われているので、加熱効率の減少は僅かである。
Even if the infrared rays emitted from the surface of the heat generating plate 3 are reduced in this way, the semiconductor wafer 2 has a high transmittance of infrared rays, and heating is primarily performed by thermal conduction rather than by radiation, so the heating efficiency is reduced. The decrease is slight.

また、このベーキング装置1には、温度ハ1定装置10
が設けられている。この温度Δ―l定装置10には、発
熱板3の上に載置された半導体ウェハ2の表面に被着さ
れたフォトレジスト2aあるいは半導体ウェハ2自身か
ら放射される電磁波例えば赤外線を検出可能に構成され
た複数例えば2つの赤外線検出器11.12が設けられ
ており、これらの赤外線検出器11.12には、それぞ
れ異なった波長(後述するλ1とλ2)の赤外線を選択
的に透過するよう構成されたフィルタlla、12aが
設けられている。そして、これらの赤外線検出器11.
12の出力は、それぞれゲインに1、K2を調整可能に
構成された増幅器11c、12Cを介して温度算出器1
3に入力されるよう構成されている。
The baking device 1 also includes a temperature constant device 10.
is provided. The temperature Δ-l determining device 10 is capable of detecting electromagnetic waves, such as infrared rays, emitted from the photoresist 2a deposited on the surface of the semiconductor wafer 2 placed on the heat generating plate 3 or from the semiconductor wafer 2 itself. A plurality of infrared detectors 11.12, for example, two infrared detectors 11.12, are provided, and each of these infrared detectors 11.12 has an infrared detector configured to selectively transmit infrared rays of different wavelengths (λ1 and λ2, which will be described later). A structured filter lla, 12a is provided. And these infrared detectors 11.
The outputs of 12 are sent to the temperature calculator 1 through amplifiers 11c and 12C, each of which has a gain of 1 and a gain of 1 and is configured to be able to adjust K2.
3.

さらに、上記温度測定装置10の温度算出器13によっ
て算出された温度測定結果は、温度制御器5にフィード
バックされるよう構成されており、この温度allll
定結基づいて温度制御器5により電源6が制御され、半
導体ウェハ2あるいはフォトレジスト2aが所定温度と
なるように抵抗加熱ヒータ4に供給される電力を調節さ
れるよう構成されている。
Further, the temperature measurement result calculated by the temperature calculator 13 of the temperature measuring device 10 is configured to be fed back to the temperature controller 5, and this temperature
The power supply 6 is controlled by the temperature controller 5 based on the fixation, and the power supplied to the resistance heater 4 is adjusted so that the semiconductor wafer 2 or the photoresist 2a reaches a predetermined temperature.

上記構成のこのベーキング装置1において、この実施例
では温度測定装置10により次のようにしてフォトレジ
スト2aあるいは半導体ウェハ2の温度の測定を行う。
In this baking apparatus 1 having the above configuration, in this embodiment, the temperature of the photoresist 2a or the semiconductor wafer 2 is measured by the temperature measuring device 10 in the following manner.

周知のように、ブランクの法則では、黒体からの電磁波
(主に赤外線)の単色射出能E  は、b λ E   −CI−λ−5/ [exp  (C2/λT
)−11b λ ただし λ :波長(m) T :ケルビン温* (K) C1:定数−3,2179X 10−”  (Kcal
 ・m 2/ h )C2:定数−1,438a XI
G−” (m IK)と表すことができる。
As is well known, according to Blank's law, the monochromatic emission power E of electromagnetic waves (mainly infrared rays) from a black body is b λ E −CI−λ−5/[exp (C2/λT
)-11b λ where λ: Wavelength (m) T: Kelvin temperature* (K) C1: Constant -3,2179X 10-" (Kcal
・m2/h)C2: Constant -1,438a XI
G-” (m IK).

そこで、上記ブランクの法則を用いて波長λ1、λ2に
おける単色射出能の推定値E  ′およびλ 1 E  ゛を表すと、η1とη2をそれぞれ受光素λ2 子11.12の効率として、 E  −ε  参に1拳η1φC1・λ1−5λ1  
 λ1 / [exp  (C2/λ1T) −11−ελ1・
K1 ・f (λ1.T) E  −ε  争に2・η2φC1争λ2−5λ2  
 λ2 /  [exp  (C2/λ2T)−1コーελ2φ
に2中f(λ2.T) となる。ここで、ε  ・K1 ・η1−ελ2λ1 に2・η2どなるように増幅器11 C% 12 cの
ゲインに1、K2を較正しておき、両式の比をとると、 E   −/E    −f(λ1.T)λ1    
λ2 /f(λ2.T) となる。
Therefore, if we express the estimated monochromatic output power E' and λ 1 E ゛ at wavelengths λ1 and λ2 using Blank's law mentioned above, E - ε where η1 and η2 are the efficiencies of the light-receiving element λ2 and 11.12, respectively. 1 fist η1φC1・λ1−5λ1
λ1 / [exp (C2/λ1T) −11−ελ1・
K1 ・f (λ1.T) E −ε 2・η2φC1 λ2−5λ2
λ2/[exp (C2/λ2T)-1corελ2φ
becomes f(λ2.T) in 2. Here, 1 and K2 are calibrated for the gain of the amplifier 11 C% 12 c so that ε ・K1 ・η1 − ελ2 λ1 is 2・η2, and taking the ratio of both equations, E − /E − f λ1.T)λ1
λ2 /f(λ2.T).

温度算出器13は、例えばNEWTON −RAPII
SON法等の数値解析によって上式から温度Tを算出す
る。
The temperature calculator 13 is, for example, NEWTON-RAPII.
The temperature T is calculated from the above equation by numerical analysis such as the SON method.

なお、上記のゲインに、、K2の較正は以下のようにし
て容易に達成することができる。
Note that the above gain and the calibration of K2 can be easily achieved as follows.

例えば、まず実用上71−1定対象とする放射の波長範
囲においてη1Φη2なるような、すなわち受光素子1
1.12の効率η1とη2とが十分の精度で等しくなる
ような受光素子を選択する。次に、予め測定した被測定
体の吸収スペクトルからおのおの波長λ1、λ2におけ
る単色放射率ε17、ελ2を求める。これらのελ1
   λ2を用い、  ε てゲインに1とに2の比が、 K+ /に2 *ε  /ε λ2  λ1 となるようにに1とに2を設定する。この場合に1とに
2の比は受光素子の種類とは無関係に被測定体の光物性
のみから定まるという大きなメリッ、トがある。
For example, first of all, in practice, 71-1 constant is set to η1Φη2 in the target radiation wavelength range, that is, the light-receiving element 1
A light receiving element is selected such that efficiency η1 and η2 of 1.12 are equal with sufficient accuracy. Next, monochromatic emissivities ε17 and ελ2 at wavelengths λ1 and λ2 are determined from the previously measured absorption spectrum of the object to be measured. These ελ1
Using λ2, set the gain to 1 and 2 so that the ratio of 1 to 2 for ε becomes K+/2*ε/ε λ2 λ1. In this case, there is a great advantage that the ratio of 1 to 2 is determined only from the optical properties of the object to be measured, regardless of the type of light receiving element.

また、効率η1、η2がともに既知の場合には、K1/
に2−ε  η2/ελ、η1 λ2 のように、K1とに2を設定してもよい。
Furthermore, if both efficiencies η1 and η2 are known, then K1/
K1 and K1 may be set to 2, such as 2-ε η2/ελ, η1 λ2 .

一方、キルヒホッフの法則によれば、全ての物体の射出
能と吸収率の比は等しく、その値は黒体の射出能に等し
い。すなわち、いろいろな物体の射出能をE、、K2.
・・・・・・Efi、吸収率をφ1φ2.・・・・・・
φ、とし、黒体の射出能をE、吸収率をφとすると、次
式が成立つ。
On the other hand, according to Kirchhoff's law, the ratio of emission power and absorption rate of all objects is equal, and its value is equal to the emission power of a black body. That is, the ejection powers of various objects are expressed as E, , K2.
...Efi, absorption rate φ1φ2.・・・・・・
Let φ be the emission power of the black body, and let the absorption rate be φ, then the following equation holds true.

E、/φI−E2/φ2−・・・・・・・・・−E/φ
−Eこれを変形すると、 El/E−φ、、E2/E−φ2゜ ・・・・・・、、EO/E−φ。
E, /φI-E2/φ2-・・・・・・・・・-E/φ
-EIf you transform this, you get El/E-φ, E2/E-φ2゜..., EO/E-φ.

となるが、 E、/E−εa(放射率) で−あるから、 ε1閣φ1.C2””φ2.・・・・・・、εユ■φ。However, E, /E-εa (emissivity) Because there is, ε1kakuφ1. C2””φ2. ......,εyu■φ.

となり、全ての物体の放射率は同物体の吸収率に等しい
事が導出される。したがって、温度測定を行う場合は、
被測定体の放射率の高い、すなわち吸収率の高い波長(
吸収ピーク波長)の赤外線を測定することにより、被n
1定体の背景からの赤外線放射の影響の少ない精度の良
い温度nj定を実現することができる。
Therefore, it is derived that the emissivity of every object is equal to the absorption rate of the same object. Therefore, when making temperature measurements,
The wavelength at which the measured object has a high emissivity, that is, a high absorption rate (
By measuring infrared rays at peak absorption wavelengths,
It is possible to realize a highly accurate temperature nj constant with little influence of infrared radiation from the background of a constant body.

ここで、縦軸を透過率、横軸を波長とした第2図のグラ
フおよび第3図のグラフは、それぞれシリコンウェハお
よびシリコンウェハ上に厚さ約5μmのフォトレジスト
膜を形成した場合の赤外線に対する吸収特性を示してい
る。第2図のグラフに示されるように、シリコンウェハ
は、波長的9μmと約16μmに吸収ピークを有し、第
3図のグラフに示されるように、この場合のフォトレジ
スト膜(フォトレジストの種類によって異なる)は、例
えば波長的3μmと約7μm等に幾つかの吸収ピークを
有する。
Here, the graphs in Figure 2 and Figure 3, where the vertical axis is the transmittance and the horizontal axis is the wavelength, show the infrared rays when a silicon wafer and a photoresist film with a thickness of approximately 5 μm are formed on the silicon wafer, respectively. It shows the absorption characteristics for As shown in the graph of FIG. 2, the silicon wafer has absorption peaks at wavelengths of 9 μm and 16 μm, and as shown in the graph of FIG. has several absorption peaks at wavelengths of 3 μm and about 7 μm, for example.

そこで、この実施例では、半導体ウェハ(シリコンウェ
ハ)2の温度を測定する場合は、λ1およびλ2を波長
9μmおよび16μmとして温度測定を行う。また、フ
ォトレジスト2aの温度を測定する場合は、λ1および
λ2を3μmおよび7μmとして温度測定を行う。
Therefore, in this embodiment, when measuring the temperature of the semiconductor wafer (silicon wafer) 2, temperature measurement is performed with wavelengths λ1 and λ2 of 9 μm and 16 μm. Further, when measuring the temperature of the photoresist 2a, temperature measurement is performed with λ1 and λ2 set to 3 μm and 7 μm.

なお、前述した増幅器11C%12Cのゲインに、、K
2の較正は、予め半導体ウェハ2の温度を測定する場合
と、フォトレジスト2aの温度をδ−1定する場合とで
、それぞれ別々に行っておく必要がある。
In addition, in the gain of the amplifier 11C%12C mentioned above, K
Calibration 2 needs to be performed separately when measuring the temperature of the semiconductor wafer 2 in advance and when determining the temperature of the photoresist 2a by δ-1.

すなわち、この実施例では、それぞれフィルタ11a、
12aを備えた赤外線検出器11.12によって、半導
体ウェハ2あるいはフオトレジス)2aの赤外線吸収ピ
ーク波長に対応する 2種類の波長λ1、λ2の赤外線
の放射量をそれぞれ測定し、これらのill定値から温
度算出器13により温度を算出する。したがって、放射
率の高い波長における放射量を測定することにより、非
接触で正確に半導体ウェハ2およびフォトレジスト2a
の温度をn1定することができる。また、従来のように
、放射率の設定を行う必要もない。
That is, in this embodiment, the filters 11a,
The infrared detectors 11 and 12 equipped with 12a measure the amount of infrared radiation at two wavelengths λ1 and λ2 corresponding to the infrared absorption peak wavelength of the semiconductor wafer 2 or photoresist 2a, and calculate the temperature from these ill constant values. The temperature is calculated by the calculator 13. Therefore, by measuring the amount of radiation at wavelengths with high emissivity, the semiconductor wafer 2 and the photoresist 2a can be accurately measured without contact.
The temperature of n1 can be fixed. Further, there is no need to set the emissivity as in the conventional case.

さらに、加熱板3に鏡面仕上が施しであるので、加熱板
3から赤外線検出器11.12に入射する赤外線量を減
少させることができ、半導体ウェハ2およびフォトレジ
スト2aのより正確な温度をn1定することができる。
Furthermore, since the heating plate 3 has a mirror finish, the amount of infrared rays incident on the infrared detectors 11 and 12 from the heating plate 3 can be reduced, and more accurate temperatures of the semiconductor wafer 2 and the photoresist 2a can be determined by n1. can be determined.

したがって、フォトレジスト2aあるいは半導体ウェハ
2の正確な温度に基いて、電源6から抵抗加熱ヒータ4
に供給する電力の制御を行うことができ、フォトレジス
ト2aの温度を所望の温度に保持して良好なベーキング
処理を行うことができる。
Therefore, based on the accurate temperature of the photoresist 2a or the semiconductor wafer 2, the resistance heater 4 is connected to the power source 6.
The temperature of the photoresist 2a can be maintained at a desired temperature and a good baking process can be performed.

なお、上記実施例では、被nl定休としてシリコンウェ
ハ、フォトレジストの例について説明したが、他の被測
定体の温度測定にも応用可能で例えば、ポリイミド系お
よびシリコン系絶縁膜、絶縁用フェス、イオン感応用ポ
リ塩化ビニル膜、およびエポキシ、アクリル、ポリウレ
タン樹脂等、吸収ピーク波長を有するものであればいず
れにも適用が可能である。
In the above embodiments, examples of silicon wafers and photoresists were explained as the subject to be measured, but it can also be applied to temperature measurements of other objects to be measured, such as polyimide and silicon insulating films, insulating plates, It can be applied to any material that has an absorption peak wavelength, such as ion-sensitized polyvinyl chloride films, epoxy, acrylic, and polyurethane resins.

[発明の効果] 上述のように、本発明の温度測定方法では、放射率の設
定が不要で、かつ、非接触で正確に被測定物の温度を測
定することができる。
[Effects of the Invention] As described above, the temperature measuring method of the present invention does not require emissivity setting and can accurately measure the temperature of the object without contact.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の温度13)I定方性を説明
するためのベーキンク装置の構成を示す図、第2図はシ
リコンウェハの赤外線に対する吸収特性を示すグラフ、
第3図はシリコンウェハ上に厚さ約5μmのフォトレジ
スト膜を形成した場合の赤外線に対する吸収特性を示す
グラフである。 1・・・・・・ベーキンク装置、2・・・・・・半導体
ウェハ、2a・・・・・・フォトレジスト、3・・・・
・・加熱板、4・・・・・・・抵抗加熱ヒータ、5・・
・・・・温度制御器、6・・・・・・電源、10・・・
・・・温度測定装置、11.12・・・・・・赤外線検
出器、11a112a・・・・・・フィルタ、lie、
12C・・・・・・増幅器、13・・・・・・温度算出
器。 出願人      チル九州株式会社 出願人      国際技術開発株式会社代理人 弁理
士  須 山 佐 − (ほか1名) 第1図
FIG. 1 is a diagram showing the configuration of a baking apparatus for explaining the temperature 13) I orthotropy of an embodiment of the present invention, and FIG. 2 is a graph showing the absorption characteristics of silicon wafers for infrared rays.
FIG. 3 is a graph showing the absorption characteristics for infrared rays when a photoresist film with a thickness of about 5 μm is formed on a silicon wafer. 1...Baking device, 2...Semiconductor wafer, 2a...Photoresist, 3...
...Heating plate, 4...Resistance heater, 5...
...Temperature controller, 6...Power supply, 10...
...Temperature measuring device, 11.12...Infrared detector, 11a112a...Filter, lie,
12C...Amplifier, 13...Temperature calculator. Applicant Chill Kyushu Co., Ltd. Applicant Kokusai Technological Development Co., Ltd. Agent Patent attorney Sa Suyama - (1 other person) Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)被測定体の吸収特性から求めた複数の吸収ピーク
波長における放射量をそれぞれ測定し、これらの測定値
から前記被測定体の温度を算出することを特徴とする温
度測定方法。
(1) A temperature measurement method characterized by measuring the amount of radiation at a plurality of absorption peak wavelengths determined from the absorption characteristics of the object to be measured, and calculating the temperature of the object to be measured from these measured values.
JP1081981A 1989-03-31 1989-03-31 Temperature measuring method Pending JPH02259535A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1081981A JPH02259535A (en) 1989-03-31 1989-03-31 Temperature measuring method
KR1019900004397A KR0151150B1 (en) 1989-03-31 1990-03-31 Indirect temperature-measurement of films formed on semiconductor wafers
US07/864,185 US5249142A (en) 1989-03-31 1992-04-03 Indirect temperature-measurement of films formed on semiconductor wafers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1081981A JPH02259535A (en) 1989-03-31 1989-03-31 Temperature measuring method

Publications (1)

Publication Number Publication Date
JPH02259535A true JPH02259535A (en) 1990-10-22

Family

ID=13761661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1081981A Pending JPH02259535A (en) 1989-03-31 1989-03-31 Temperature measuring method

Country Status (2)

Country Link
JP (1) JPH02259535A (en)
KR (1) KR0151150B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103954191B (en) * 2014-05-08 2016-09-14 安徽大昌科技股份有限公司 A kind of crossbeam steering pipe column support of automobile dashboard assembly checking tool

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60129626A (en) * 1983-12-17 1985-07-10 Ishikawajima Harima Heavy Ind Co Ltd Optical temperature distribution measurement

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60129626A (en) * 1983-12-17 1985-07-10 Ishikawajima Harima Heavy Ind Co Ltd Optical temperature distribution measurement

Also Published As

Publication number Publication date
KR900015285A (en) 1990-10-26
KR0151150B1 (en) 1998-12-01

Similar Documents

Publication Publication Date Title
US5249142A (en) Indirect temperature-measurement of films formed on semiconductor wafers
US3539807A (en) Temperature - emissivity separation and temperature independent radiometric analyzer
US2837917A (en) Radiation systems for measuring temperature
US5624590A (en) Semiconductor processing technique, including pyrometric measurement of radiantly heated bodies and an apparatus for practicing this technique
US5597237A (en) Apparatus for measuring the emissivity of a semiconductor wafer
RU2083961C1 (en) Method of measurement of temperature and emissivity of surface
Shi et al. Experimental study of the relationships between the spectral emissivity of brass and the temperature in the oxidizing environment
Li et al. Accuracy improvement for directional polarized spectral emissivity measurement in the wavelength range of 4–20 μm
JPH0666639A (en) Infrared thermometer
CN110207829B (en) Measurement method for simultaneously obtaining material temperature and spectral direction emissivity based on infrared spectrometer
JPH02259535A (en) Temperature measuring method
DeWitt et al. Temperature measurement issues in rapid thermal processing
WO2002075264A1 (en) Temperature measuring method and apparatus and semiconductor heat treatment apparatus
JPH07502821A (en) Heating control method and device
JPS6049246B2 (en) Measured value compensation method in infrared temperature measurement method
JP3093239B2 (en) Semiconductor wafer heat treatment apparatus and heat treatment method
JP3099470B2 (en) Non-contact temperature measurement system for centrifuge
Fiory et al. Optical Fiber Pyrometry with in-Situ Detection of Wafer Radiance and Emittance—Accufiber's Ripple Method
JPH06137953A (en) Method and apparatus for measuring temperature through infrared sensor and method and equipment for measuring emissivity
JPH0367137A (en) Surface temperatude controller
JPS6038627A (en) Temperature measuring apparatus
JPH0456145A (en) Measuring device for substrate temperature in plasma
JPH0618333A (en) Temperature measuring method and device with infrared radiation spectrum
Tesar et al. The influence of emissivity on measured temperature in dependence on spectral range of IR camera detector and its approximate calculation
Maxwell et al. Full field temperature measurement of specular wafers during rapid thermal processing