JPH02259323A - Low temperature igniting method for methane gas fuels - Google Patents

Low temperature igniting method for methane gas fuels

Info

Publication number
JPH02259323A
JPH02259323A JP8046089A JP8046089A JPH02259323A JP H02259323 A JPH02259323 A JP H02259323A JP 8046089 A JP8046089 A JP 8046089A JP 8046089 A JP8046089 A JP 8046089A JP H02259323 A JPH02259323 A JP H02259323A
Authority
JP
Japan
Prior art keywords
combustion
methane
laser
porous body
ultraviolet laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8046089A
Other languages
Japanese (ja)
Other versions
JP2686313B2 (en
Inventor
Akio Nakashiba
中芝 明雄
Shoji Doi
祥司 土肥
Ichiro Sugimoto
一郎 杉本
Koji Moriya
守家 浩二
Itsuro Tamura
田村 逸郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP8046089A priority Critical patent/JP2686313B2/en
Publication of JPH02259323A publication Critical patent/JPH02259323A/en
Application granted granted Critical
Publication of JP2686313B2 publication Critical patent/JP2686313B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a low temperature ignition, restrict any incomplete combus tion and promote a low NOx by a method wherein an ultraviolet laser beam is radiated against methane gas fuels just before combustion to dissociate CH4 into CH2 and H2, respectively. CONSTITUTION:Methane gas fuels from a fuel supply passage 1 and combustion air from a blower B are mixed with each other and sent to a mixture gas supply chamber 3 within a casing, mixture gas is supplied through an inner porous body 4 into an outer porous body 5 and then a surface combustion is carried out at a surface of the outer porous body 5. An ultraviolet laser from a laser oscillation device 7 is reflected at heat-resistant mirrors 8 and 9 oppositely arranged at a clearance 6 formed between both porous bodies 4 and 5, and the gas fuel of methane just before combustion, i.e. CH4 is dissociat ed into CH2 and H2 under an action of ultraviolet laser. That is, CH2 and H2 having more superior combustion characteristics than that of CH4 are surface ignited to realize the stable low temperature combustion, resulting in that a sufficient low NOx can be attained while any incomplete combustion or flame lift is being prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば天然ガスなどのメタン系ガス燃料を低
温燃焼させる方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement in a method for low-temperature combustion of a methane-based gas fuel such as natural gas.

〔従来の技術〕[Conventional technology]

従来、二段燃焼法、濃淡燃焼法、水蒸気噴霧法、均一燃
焼法、触媒燃焼法などによって燃焼温度を低下させ、低
NOx化を図っていた。
Conventionally, combustion temperatures have been lowered by a two-stage combustion method, a concentrated combustion method, a steam spray method, a homogeneous combustion method, a catalytic combustion method, etc. to reduce NOx.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、燃焼温度を低下していくと、燃焼が不安定にな
って不完全燃焼を生じ、CD発生量が増大したり、火炎
のリフトや消火を生じたりする。
However, when the combustion temperature is lowered, combustion becomes unstable and incomplete combustion occurs, resulting in an increase in the amount of CD generation, and flame lift and extinguishing.

したがって、燃焼を安定させるためには燃焼温度の低下
に限界があり、低NO,化の面でさらに改良の余地があ
った。
Therefore, there is a limit to the reduction in combustion temperature in order to stabilize combustion, and there is still room for further improvement in terms of lower NO.

本発明の目的は、メタン系ガス燃料を低温燃焼させ、か
つ、不完全燃焼を抑制できるようにし、低NO,化を一
層十分に実現できるようにする点にある。
An object of the present invention is to burn a methane-based gas fuel at a low temperature and to suppress incomplete combustion, thereby making it possible to more fully realize a reduction in NO.

〔課題を解決するための手段〕[Means to solve the problem]

本第1発明の特徴手段は、メタン系ガス燃料を低温燃焼
させる直前に、メタン系ガス燃料に紫外光レーザを照射
して、紫外光レーザの作用でCH,をCH,とH2に解
離させることにあり、その作用は次の通りである。
The characteristic means of the first invention is to irradiate the methane-based gas fuel with an ultraviolet laser immediately before low-temperature combustion of the methane-based gas fuel, and dissociate CH, into CH, and H2 by the action of the ultraviolet laser. Its function is as follows.

〔作 用〕[For production]

つまり、常温のCH4に適度の波長の紫外光レーザを適
度の強度で照射することによって、CH。
In other words, by irradiating CH4 at room temperature with an ultraviolet laser of a suitable wavelength and with a suitable intensity, CH4.

をそれよりも燃焼性の優れたH2とC12に解離でき、
CH4を燃焼させる従来技術よりもH2とCH2を燃焼
させる本発明法が、より低温で完全燃焼を十分に維持で
きる。
can be dissociated into H2 and C12, which have better flammability,
The method of the present invention that burns H2 and CH2 can sufficiently maintain complete combustion at a lower temperature than the conventional technique that burns CH4.

したがって、例えばCO/CO2<0.005というよ
うにCO発生を十分に抑制した良好燃焼を安定維持しな
がら、燃焼温度を十分に低下させ、低NOx化を一段と
効果的に図れる。
Therefore, while stably maintaining good combustion in which CO generation is sufficiently suppressed, such as CO/CO2<0.005, for example, the combustion temperature can be sufficiently lowered, and NOx can be further effectively reduced.

〔課題を解決するための手段〕[Means to solve the problem]

本第2発明の特徴手段は、メタン系ガス燃料を低温燃焼
させる直前に、メタン系ガス燃料に増感剤を混入すると
共に赤外光レーザを照射して、赤外光レーザの作用で一
部のCH,と0□を反応させると共に、その反応に伴っ
て増感剤の作用により発振光を生じさせ、かつ、その発
振光の作用で残部のC11,をCH2とH2に解離させ
ることにあり、その作用は次の通りである。
The characteristic means of the second invention is to mix a sensitizer into the methane gas fuel and irradiate it with an infrared laser immediately before burning the methane gas fuel at a low temperature. The purpose is to react CH, with 0□, generate oscillated light by the action of a sensitizer along with the reaction, and dissociate the remaining C11 into CH2 and H2 by the action of the oscillated light. , its action is as follows.

〔作 用〕[For production]

つまり、例えばN01He、 SFsなどの増感剤Xと
0□の共存下で常温のCH,に適度の波長の赤外光レー
ザを適度の強度で照射することによって、下記CH4の
一部の酸化反応で発振光hvを生じさせることができる
In other words, by irradiating CH at room temperature with an infrared laser beam of an appropriate wavelength at an appropriate intensity in the coexistence of a sensitizer can generate oscillation light hv.

CI(4+02+X −+co2 +)12o +x 
+hvそして、発振光hvの作用で残部のCH,をH2
とCH2に解離でき、本第1発明と同様に燃焼を安定維
持しながら低温燃焼による低NOx化を一段と効果的に
実現できる。
CI (4+02+X −+co2 +)12o +x
+hv Then, by the action of the oscillation light hv, the remaining CH, becomes H2
and CH2, and similarly to the first invention, it is possible to more effectively achieve lower NOx through low-temperature combustion while stably maintaining combustion.

〔発明の効果〕〔Effect of the invention〕

その結果、従来実現できなかった極低温完全燃焼が可能
でNOXやCOの発生量が極めて少ないクリーンな燃焼
法を確立できた。
As a result, we were able to establish a clean combustion method that enables complete combustion at extremely low temperatures, which was previously impossible, and generates extremely low amounts of NOX and CO.

殊に、天然ガスが多用されている都市ガスの燃焼機器に
おいて室内空気の清浄化に極めて有効である。
In particular, it is extremely effective in purifying indoor air in city gas combustion equipment where natural gas is extensively used.

〔実施例〕〔Example〕

次に実施例を示す。 Next, examples will be shown.

実施例1 (第1図及び第2図参照) 燃料供給路(1)からのメタン系ガス燃料と、ブロワ(
B)からの燃焼用空気を、混合して、ケース(12)内
の混合気供給室(3)に送る。
Example 1 (See Figures 1 and 2) Methane-based gas fuel from the fuel supply path (1) and blower (
Combustion air from B) is mixed and sent to the mixture supply chamber (3) in the case (12).

多孔質セラミックスなどの内側多孔体(4) から外側
多孔体(5) に混合気を供給し、混合気を外側多孔体
(5) の表面で表面燃焼させる。
A mixture is supplied from an inner porous body (4) such as porous ceramics to an outer porous body (5), and the mixture is burned on the surface of the outer porous body (5).

内側多孔体(4) と外側多孔体(5)の間に形成した
隙間(6)において、レーザ発振装置(7〉からの紫外
光レーザを対向配置した耐熱性のミラー(8)、 (9
)で反射させて、燃焼直前のメタン系ガス燃料に紫外光
レーザを照射し、紫外光レーザの作用でCH4を下記反
応式のようにCH2とH2に解離させる。
In the gap (6) formed between the inner porous body (4) and the outer porous body (5), heat-resistant mirrors (8), (9) are arranged to face the ultraviolet laser from the laser oscillation device (7).
), the methane-based gas fuel just before combustion is irradiated with an ultraviolet laser, and by the action of the ultraviolet laser, CH4 is dissociated into CH2 and H2 as shown in the reaction formula below.

CH,→CH2+82 つまり、CH4よりも燃焼性の優れたC)+2とH2を
表面燃焼させることによって、低温燃焼を安定して実現
し、不完全燃焼や炎のリフトを防止した状態で十分な低
NOx化を図るのである。
CH,→CH2+82 In other words, by surface combustion of C)+2, which has better combustibility than CH4, and H2, stable low-temperature combustion is achieved, and sufficient low-temperature combustion is achieved while preventing incomplete combustion and flame lift. The aim is to reduce NOx.

レーザ発振装置(7) としては、例えばYAGレーザ
−、エキシマレーザ−1Ar+レーザーN2レーザー、
色素レーザーなど、適当なものを利用できる。
Examples of the laser oscillation device (7) include YAG laser, excimer laser 1Ar+laser N2 laser,
Any suitable device can be used, such as a dye laser.

紫外光レーザの波長は一般に60〜390 nmであり
、望ましくは150〜355 nmである。
The wavelength of the ultraviolet laser is generally 60 to 390 nm, preferably 150 to 355 nm.

紫外光レーザの強度は一般に1mJ以上であり、望まし
くは10mJ以上である。
The intensity of the ultraviolet laser is generally 1 mJ or more, preferably 10 mJ or more.

実施例2 実施例1と同様にメタン系ガス燃料と燃焼用空気を混合
し、さらに、例えばN01fleSSF、等の増感剤を
、メタン系ガス燃料や燃焼用空気への予混合、あるいは
空燃混合に対して同時混合又は後混合により混合する。
Example 2 Methane-based gas fuel and combustion air are mixed in the same manner as in Example 1, and a sensitizer such as N01fleSSF is premixed with the methane-based gas fuel and combustion air, or air-fuel mixture is added. Mix by simultaneous mixing or post-mixing.

メタン系ガス燃料、燃焼用空気、増感剤の混合気を、実
施例1と同様に内側多孔体から外側多孔体に供給して外
側多孔体の表面で表面燃焼させる。
A mixture of methane-based gas fuel, combustion air, and sensitizer is supplied from the inner porous body to the outer porous body in the same manner as in Example 1, and is subjected to surface combustion on the surface of the outer porous body.

レーザ発振装置からの赤外光レーザを、実施例1と同様
に内外の多孔体の間の隙間でミラーで反射させて燃焼直
前のメタン系ガス燃料に照射し、下記反応式のように、
CH,の一部と0□を反応させると共に、増感剤Xの作
用により発振光hvを生じさせる。
As in Example 1, the infrared laser from the laser oscillator was reflected by a mirror in the gap between the inner and outer porous bodies and irradiated the methane gas fuel just before combustion, as shown in the reaction formula below.
A part of CH, is reacted with 0□, and oscillation light hv is generated by the action of the sensitizer X.

CH2  Oz+X−4C[lt+1(zo+X+hv
そして、発振光hvの作用でCH,の残部を下記反応式
のようにCH,をH2に解離させる。
CH2 Oz+X-4C[lt+1(zo+X+hv
Then, by the action of the oscillation light hv, the remaining CH is dissociated into H2 as shown in the reaction formula below.

CH,→CH2+L つまり、実施例1と同様に、CH4よりも燃焼性の優れ
たCH2とH2を表面燃焼させることによって、低温燃
焼を安定して実現し、不完全燃焼や炎のリフトを防止し
た状態で十分な低NOx化を図るのである。
CH,→CH2+L In other words, as in Example 1, by surface combustion of CH2 and H2, which have better combustibility than CH4, stable low-temperature combustion was achieved and incomplete combustion and flame lift were prevented. The goal is to achieve a sufficiently low level of NOx.

レーザ発振装置としては、例えばYAGレーザ、CDレ
ーザー、CD、レーザーなど、適当なものを利用できる
As the laser oscillation device, an appropriate one can be used, such as a YAG laser, a CD laser, a CD laser, and the like.

赤外光レーザの波長は一般に1μm以上であり、望まし
くは1〜10.6μmである。
The wavelength of the infrared laser is generally 1 μm or more, preferably 1 to 10.6 μm.

赤外光レーザの強度は一般に10mJ以上であり、望t
しくはパルスレーザ−の場合には100mJ 以上、C
tν(連続発振)レーザーの場合にはIOW以上である
The intensity of the infrared laser is generally 10 mJ or more, and the desired
Or in the case of a pulse laser, 100mJ or more, C
In the case of a tν (continuous wave) laser, it is greater than IOW.

〔別実施例〕[Another example]

次に別実施例を説明する。 Next, another embodiment will be described.

メタン系ガス燃料の種類、メタン濃度、燃焼用空気の過
剰率、バーナの型式は適宜選定自在であり、本発明は工
業用や家庭用などの各種燃焼機器において利用できる。
The type of methane-based gas fuel, methane concentration, excess rate of combustion air, and burner type can be selected as appropriate, and the present invention can be used in various types of combustion equipment for industrial and domestic use.

紫外光レーザや赤外光レーザを照射する具体手段はバー
ナの型式等に見合って適当に変更できる。
The specific means for irradiating the ultraviolet laser or the infrared laser can be changed as appropriate depending on the type of burner.

尚、特許請求の範囲の項に図面との対照を便利にする為
に符号を記すが、該記入により本発明は添付図面の構造
に限定されるものではない。
Incidentally, although reference numerals are written in the claims section for convenient comparison with the drawings, the present invention is not limited to the structure shown in the accompanying drawings.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示し、第1図は表面燃焼バーナ
の概念図、第2図はレーザ照射状態の説明図である。
The drawings show an embodiment of the present invention, and FIG. 1 is a conceptual diagram of a surface combustion burner, and FIG. 2 is an explanatory diagram of a laser irradiation state.

Claims (1)

【特許請求の範囲】 1、メタン系ガス燃料を低温燃焼させる方法であって、
燃焼直前にメタン系ガス燃料に紫外光レーザを照射して
、紫外光レーザの作用でCH_4をCH_2とH_2に
解離させるメタン系ガス燃料の低温燃焼法。 2、メタン系ガス燃料を低温燃焼させる方法であって、
燃焼直前にメタン系ガス燃料に増感剤を混入すると共に
赤外光レーザを照射して、赤外光レーザの作用で一部の
CH_4とO_2を反応させると共に、その反応に伴っ
て増感剤の作用により発振光を生じさせ、かつ、その発
振光の作用で残部のCH_4をCH_2とH_2に解離
させるメタン系ガス燃料の低温燃焼法。
[Claims] 1. A method for low-temperature combustion of methane-based gas fuel, comprising:
A low-temperature combustion method for methane-based gas fuel in which methane-based gas fuel is irradiated with an ultraviolet laser immediately before combustion, and CH_4 is dissociated into CH_2 and H_2 by the action of the ultraviolet laser. 2. A method for low-temperature combustion of methane-based gas fuel, comprising:
Immediately before combustion, a sensitizer is mixed into the methane-based gas fuel and irradiated with an infrared laser to cause a portion of CH_4 and O_2 to react, and as a result of the reaction, the sensitizer is A low-temperature combustion method for methane-based gas fuel in which oscillation light is generated by the action of , and the remaining CH_4 is dissociated into CH_2 and H_2 by the action of the oscillation light.
JP8046089A 1989-03-30 1989-03-30 Low temperature combustion method of methane gas fuel Expired - Lifetime JP2686313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8046089A JP2686313B2 (en) 1989-03-30 1989-03-30 Low temperature combustion method of methane gas fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8046089A JP2686313B2 (en) 1989-03-30 1989-03-30 Low temperature combustion method of methane gas fuel

Publications (2)

Publication Number Publication Date
JPH02259323A true JPH02259323A (en) 1990-10-22
JP2686313B2 JP2686313B2 (en) 1997-12-08

Family

ID=13718871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8046089A Expired - Lifetime JP2686313B2 (en) 1989-03-30 1989-03-30 Low temperature combustion method of methane gas fuel

Country Status (1)

Country Link
JP (1) JP2686313B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07127812A (en) * 1993-11-02 1995-05-16 Tadashi Mochizai Method for igniting hydrogen carbide with production of active oxygen species
DE19951000A1 (en) * 1999-10-22 2001-04-26 Bosch Gmbh Robert Ignition method for radiation gas burner uses initial ignition via plasma flame with flame front passing through porous body of gas burner supplied with gas/air mixture
US7618254B2 (en) * 2006-02-02 2009-11-17 Aga Ab Method for igniting a burner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07127812A (en) * 1993-11-02 1995-05-16 Tadashi Mochizai Method for igniting hydrogen carbide with production of active oxygen species
DE19951000A1 (en) * 1999-10-22 2001-04-26 Bosch Gmbh Robert Ignition method for radiation gas burner uses initial ignition via plasma flame with flame front passing through porous body of gas burner supplied with gas/air mixture
DE19951000C2 (en) * 1999-10-22 2001-08-16 Bosch Gmbh Robert Radiant burner with a porous burner
US7618254B2 (en) * 2006-02-02 2009-11-17 Aga Ab Method for igniting a burner

Also Published As

Publication number Publication date
JP2686313B2 (en) 1997-12-08

Similar Documents

Publication Publication Date Title
JP2713627B2 (en) Gas turbine combustor, gas turbine equipment including the same, and combustion method
EP0677707B1 (en) Catalytic gas turbine combustor
US5458481A (en) Burner for combusting gas with low NOx production
US5013236A (en) Ultra-low pollutant emission combustion process and apparatus
US5158445A (en) Ultra-low pollutant emission combustion method and apparatus
US5318436A (en) Low NOx combustion piloted by low NOx pilots
JPH02259323A (en) Low temperature igniting method for methane gas fuels
JPS6284215A (en) Catalyst combustion method
JPS6138961B2 (en)
JP2004537707A (en) Premix burner and its operation method
JPH1073254A (en) Low nox combustion device
JP2000146183A (en) Gas turbine combustor
JPH0893501A (en) Gas turbine combustor for low calorie gas
JP2951620B2 (en) Gas turbine combustor
JPS5888506A (en) Double combustion type burner
JPH03191201A (en) Method of producing reduction gas and burner
JP2005083701A (en) Lean pre-evaporation premixing burner
JPS5924121A (en) Combustion in combustor for gas turbine
JP2759850B2 (en) Method for reducing nitrogen oxides in exhaust gas
SU1270491A1 (en) Method of burning gaseous fuel
JPH0259361B2 (en)
JPH02230916A (en) Combustor system, exhaust gas furnace, burner, and exhaust gas burning method
JPS58138906A (en) Low nox combustion device
JPS62288420A (en) Catalytic burner
JPH01303774A (en) Laser gas supplying method of mixed type carbon dioxide gas laser