JPH02258058A - Adsorbent and method for removal of nitrogen oxide - Google Patents

Adsorbent and method for removal of nitrogen oxide

Info

Publication number
JPH02258058A
JPH02258058A JP1077993A JP7799389A JPH02258058A JP H02258058 A JPH02258058 A JP H02258058A JP 1077993 A JP1077993 A JP 1077993A JP 7799389 A JP7799389 A JP 7799389A JP H02258058 A JPH02258058 A JP H02258058A
Authority
JP
Japan
Prior art keywords
adsorbent
nitrogen oxides
removal
nox
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1077993A
Other languages
Japanese (ja)
Inventor
Akira Kato
明 加藤
Takahiro Tate
隆広 舘
Yoshio Kishida
岸田 美穂
Hisao Yamashita
寿生 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP1077993A priority Critical patent/JPH02258058A/en
Publication of JPH02258058A publication Critical patent/JPH02258058A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To obtain a solid adsorbent of nitrogen oxide for removal by adsorption of NOx with a high degree of efficiency by using a multiple oxide shown by the general formula Bi2SrmCanCo3Ox. CONSTITUTION:The subject adsorbent consists of a multiplex oxide of the composition shown by the general formula Bi2SrmCanCo3Ox (wherein m and n are the positive integer satisfying m+n=4 and x is an integer of 6-13). This multiple oxide basically has a perovskite structure having oxygen deficient layers, thereby permitting the removal by adsorption of nitrogen oxides with a high degree of efficiency and it is suitable for the removal of nitrogen oxides from gas discharges in a densely populated district where ammonia reduction process is less applicable.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野] 本発明は窒素酸化物(以下、N Oxと言うことがある
。)の吸着剤およびその窒素酸化物の吸着剤をもちいる
排ガスの脱硝法に関するものである。
(Industrial Application Field) The present invention relates to an adsorbent for nitrogen oxides (hereinafter sometimes referred to as NOx) and a method for denitrifying exhaust gas using the adsorbent for nitrogen oxides.

【従来の技術】[Conventional technology]

石炭、石油などの化石燃料をエネルギー源に用いるボイ
ラ、自動車等の排ガス中には有害な窒素酸化物が含まれ
大気汚染源となっている。多量の排ガスを大気中に放出
する事業用大型ボイラは大気汚染を防止するため、まず
燃焼方法の改善によって窒素酸化物の発生を抑制し、次
いで残りの窒素酸化物を排ガス脱硝装置によって処理し
ている。 排ガスを少量しか発生しない自家発電、暖房用ボイラで
は従来、脱硝装置まで設置する例は稀であった。ところ
が近年都市部における大気汚染が問題となっており、窒
素酸化物排出規制が益々厳しく、しかも、より小規模の
排ガス発生源にまで適用される傾向にあり、窒素酸化物
をいままで以上に低減させるI;めに小型の脱硝装置が
必要となっている。 排ガス脱硝装置で窒素酸化物を処理するには排ガスにア
ンモニアを添加し、窒素酸化物と選択的に反応させて無
害な窒素に還元する方法が発電所、工場で使用されてい
る。ところが、小型の脱硝装置でアンモニアを用いる方
法は問題がある。アンモニアは刺激臭を有し、有害で空
気と混合すれば爆発するので毒劇物取締法、高圧ガス法
、消防法などの法規で使用が制限されている。したがっ
て、広大な敷地内で十分な施設と管理のもとで使用する
には問題がなくても、主に人家密集地に存在する自家発
電、暖房、コージェネレーションプラントから発生する
排ガス用の小型脱硝装置にアンモニアを使用するには困
難を伴う。つまり官公庁の諸規制を遵守するためには相
応の設備投資と保守人員、体制が必要であり、しかも集
合ビル、商店街等でアンモニアの流出事故を起こした場
合、その被害は容易には回復できないものとなる。また
、自動車等移動発生源の窒素酸化物をアンモニアで処理
する場合、アンモニア携帯のための設備が重く嵩ぼるた
め、さらに燃料消費量が多くなり、貨物の積載量が減る
という欠点もある。 そこでこの方法に代わる脱硝方法が望まれているが、そ
の解決方法の一つとしては取り扱いおよび保管に便利な
常温で固体の吸着剤によるNotの除去法が挙げられる
。従来、NOxの固体吸着剤としては、活性炭、ゼオラ
イト、含水酸化鉄などが知られている(平井英史、浅沼
浩之、表面、公、40−49 (1987)参照)。
BACKGROUND OF THE INVENTION Exhaust gas from boilers and automobiles that use fossil fuels such as coal and oil as energy sources contains harmful nitrogen oxides and is a source of air pollution. In order to prevent air pollution from large commercial boilers that emit large amounts of exhaust gas into the atmosphere, we first suppress the generation of nitrogen oxides by improving combustion methods, and then treat the remaining nitrogen oxides with exhaust gas denitrification equipment. There is. In the past, boilers for private power generation and heating, which generate only a small amount of exhaust gas, rarely had a denitrification device installed. However, in recent years, air pollution in urban areas has become a problem, and nitrogen oxide emission regulations are becoming increasingly strict, and are also being applied to smaller exhaust gas generation sources, making it easier to reduce nitrogen oxides than ever before. Therefore, a small denitrification device is required. To treat nitrogen oxides with exhaust gas denitrification equipment, power plants and factories use a method in which ammonia is added to the exhaust gas, and the ammonia is selectively reacted with the nitrogen oxides to reduce them to harmless nitrogen. However, there are problems with using ammonia in small-sized denitrification equipment. Ammonia has a pungent odor, is harmful, and explodes when mixed with air, so its use is restricted by laws such as the Poisonous and Deleterious Substances Control Law, the High Pressure Gas Law, and the Fire Service Law. Therefore, even if there is no problem in using it on a vast site with sufficient facilities and management, it is possible to use a small-scale denitrification system for exhaust gas generated from private power generation, heating, and cogeneration plants that mainly exist in densely populated areas. Using ammonia in equipment is fraught with difficulties. In other words, in order to comply with various government regulations, appropriate capital investment, maintenance personnel, and systems are required.Moreover, if an ammonia spill accident occurs in an apartment complex, shopping district, etc., the damage will not be easily recovered. Become something. Furthermore, when nitrogen oxides from mobile sources such as automobiles are treated with ammonia, the equipment for transporting the ammonia is heavy and bulky, which further increases fuel consumption and reduces cargo carrying capacity. Therefore, there is a need for a denitrification method to replace this method, and one solution to this problem is a method for removing Not using a solid adsorbent at room temperature, which is convenient for handling and storage. Conventionally, activated carbon, zeolite, hydrated iron oxide, and the like are known as solid adsorbents for NOx (see Hirai Hirai, Hiroyuki Asanuma, Kamen, Ko, 40-49 (1987)).

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかし、吸着剤には数百ppmという低濃度で迅速にN
Oxを吸着することができる高いi着能力が必要である
にもかかわらず、上記の固体吸着剤はいずれも吸着性能
の面で不充分であった。 本発明は上記した従来技術の欠点をなくし、高い効率で
NOxを吸着することかでさる窒素酸化物用固体吸着剤
を提供することにある。
However, adsorbents can rapidly absorb N at concentrations as low as several hundred ppm.
Although a high adsorption capacity capable of adsorbing Ox is required, all of the solid adsorbents described above are insufficient in terms of adsorption performance. The object of the present invention is to eliminate the above-mentioned drawbacks of the prior art and provide a solid adsorbent for nitrogen oxides that adsorbs NOx with high efficiency.

【課題を解決するための手段】[Means to solve the problem]

本発明の上記目的は、一般式Bi、SrmCanCo、
Ox (式中、m、nはm+n=4の条件を滴たす正の
整数を表し、Xは6〜13の整数を表す。)で表される
組成の複合酸化物から実質的になる窒素酸化物吸着剤お
よび一ヒ記一般式で表される組成の複合酸化物から実質
的になる窒素酸化物吸着剤にNOxを含有するガスを接
触させるガス中の窒素酸化物除去方法により達成される
。 すなわち、本発明者らは、各種の化合物のNOx吸着性
能を調べたところ、上記一般式で表される複合酸化物が
高いNOx吸着性能を示すことを見いだした。 本発明で用いる複合酸化物は、基本的には酸素欠損型層
状ペロブスカイト構造を示すものである。 上記一般式で表される複合酸化物はビスマス2モルに対
してストロンチウムとカルシウムの合計が4モルであれ
ば、それぞれストロンチウムとカルシウムの含有比率は
特に限定されない。この場合のコバルトはビスマス2モ
ルに対して3モルになる。 この一般式の組成のものがNOx吸着性能が一番高く好
ましいが、厳密にこの組成でなくても少し位の組成のず
れであれば差しつかえない。組成成分のずれの許容範囲
は、いずれもそれぞれの成分について基準値の±20%
程度である。例えば、ビスマスの場合2モル±(2X0
.2)モル、即ち1.6〜2.4モルの範囲にあれば差
しつかえない。 ストロンチウム、カルシウムの場合も同様にして3.2
〜4.8モルの範囲内に、また、コバルトの場合には2
.4〜3.6モルの範囲にあれば差しつかえない。 上記一般式中のXは酸素の原子数を表すが、上記組成物
の調整法、反応ガス雰囲気などの影響を微妙に受け、か
つ、正確な分析も困難であり、概に決められない。しか
し、基本的には、金属成分の組成により定まる。 本発明になる吸着剤の調整法は含浸法、混練法、共沈法
などいずれも使用でき、特に限定されない。 すなわち、本発明の吸着剤は酸化物、炭酸塩、水酸化物
などの粉末を混合し、焼成しても良いし、酢酸塩、硝醜
塩などの混合水溶液を蒸発乾固し、分解、焼成する方法
でも良い。また混合水溶液に沈澱剤を加え、沈澱物とし
て回収した後、焼成する方法で得ることもできる。もち
ろん、アルコキシドを出発原料とする、いわゆるゾル−
ゲル法やガス状の出発原料を熱分解してつくるCVD法
などでも得ることができる。 本発明の吸着剤は、表面積を向上させるため、あるいは
焼結防止などの目的で担体へ担持したり、担体と混合し
て成型することも可能である。 本発明になる吸着剤を用いてガス中に含まれる窒素酸化
物を除去する場合には吸着温度は200〜400°Cが
好ましく、空間速度は2.000〜so、ooo hが
好ましい。
The above object of the present invention is to achieve the general formula Bi, SrmCanCo,
Ox (where m and n represent positive integers satisfying the condition of m+n=4, and X represents an integer of 6 to 13). Achieved by a method for removing nitrogen oxides in a gas, in which a gas containing NOx is brought into contact with an oxide adsorbent and a nitrogen oxide adsorbent consisting essentially of a composite oxide having a composition represented by the following general formula. . That is, the present inventors investigated the NOx adsorption performance of various compounds and found that the composite oxide represented by the above general formula exhibits high NOx adsorption performance. The composite oxide used in the present invention basically exhibits an oxygen-deficient layered perovskite structure. In the composite oxide represented by the above general formula, the content ratio of strontium and calcium is not particularly limited as long as the total of strontium and calcium is 4 moles per 2 moles of bismuth. In this case, the amount of cobalt is 3 moles per 2 moles of bismuth. The composition according to this general formula has the highest NOx adsorption performance and is preferred, but it does not have to be exactly this composition as long as there is a slight difference in composition. The allowable range for deviations in composition is ±20% of the standard value for each component.
That's about it. For example, in the case of bismuth, 2 moles ± (2X0
.. 2) moles, ie, in the range of 1.6 to 2.4 moles, there is no problem. Similarly, in the case of strontium and calcium, 3.2
~4.8 mol, and in the case of cobalt 2
.. Any amount within the range of 4 to 3.6 moles is acceptable. Although X in the above general formula represents the number of oxygen atoms, it is delicately influenced by the method of preparing the composition, the reaction gas atmosphere, etc., and accurate analysis is also difficult, so it cannot be generally determined. However, it is basically determined by the composition of the metal components. The method for preparing the adsorbent according to the present invention is not particularly limited, and any method such as an impregnation method, a kneading method, or a coprecipitation method can be used. That is, the adsorbent of the present invention may be prepared by mixing powders of oxides, carbonates, hydroxides, etc. and baking the mixture, or by evaporating a mixed aqueous solution of acetates, nitric salts, etc. to dryness, decomposing it, and baking it. The method of doing so is also fine. Alternatively, it can be obtained by adding a precipitant to a mixed aqueous solution, collecting the precipitate, and then firing the precipitate. Of course, the so-called sol that uses alkoxide as a starting material
It can also be obtained by a gel method or a CVD method in which gaseous starting materials are thermally decomposed. The adsorbent of the present invention can be supported on a carrier or mixed with a carrier and molded for the purpose of increasing the surface area or preventing sintering. When removing nitrogen oxides contained in gas using the adsorbent of the present invention, the adsorption temperature is preferably 200 to 400°C, and the space velocity is preferably 2.000 to so, ooo h.

【作用】[Effect]

本発明になる吸着剤はNOxの吸着に対し、優れた性能
を示すが、その理由は現状では明らかではない。恐らく
層状ペロブスカイト構造中の遷移金属イオンの酸化還元
挙動、格子酸素の空孔の形成が重要な役割を果している
と考えられる。
Although the adsorbent of the present invention exhibits excellent performance in adsorbing NOx, the reason for this is not clear at present. It is thought that the redox behavior of transition metal ions in the layered perovskite structure and the formation of lattice oxygen vacancies play important roles.

【実施例】【Example】

以下、本発明の実施例を示す。 実施例1 硝酸ストロンチウム42.3g、硝酸カルシウム47.
2 g 、硝酸コバルト87.3 gに蒸留水100m
I!を加え、ライカイ機で一時間混練する。混練生成物
を300℃で二時間予備焼成した後、粉砕を充分行い、
さらに900℃で二時間焼成する。次いでこの粉末に硝
酸ビスマス97.0 gと蒸留水150mj!を加え、
ライカイ機で一時間混練する。混練生成物を300℃で
二時間予備焼成した後、粉砕を充分行い、860〜87
0℃で二時間焼成する。次に、得られた粉末を直径30
口、高さ2m+nの円板状にプレス成型し、これを破砕
して16〜32メツシユの粒状に整粒して実施例触媒l
を得た。本触媒は式Bi、Sr、Ca、Co、0x(x
=6〜13)で表される複合酸化物の組成を有する。 本触媒4m1を内径201TII111長さ80cmの
石英ガラス製円筒管の中央部に充填し、以下の条件でN
Ox含有ガスの九理を行った。なお、吸着温度は吸着剤
中に装入した熱電対により測定した。 第1re  NOx吸着試験条件 NOx除去率は次式に従って算出した。 NOx除去率(%) =100X(人口ガス中のN0x−ttfllガス中の
NOり/(人口ガス中のN0x)第1図にガス通過−時
間後の吸着温度とNOx除去率の関係を示す。 実施例2 硝酸ストロンチウムと硝酸カルシウムの配合比を変えた
以外は実施例1と同様の方法で、式Bi 、5rCa、
Co30x (x =6−13)で表される複合酸化物
の組成を有する触媒を調整し、実施例1と同様の方法で
NOx吸着試験を行った。第1図に吸着温度とNOx除
去率の関係を示す。 実施例3 硝酸ストロンチウムと硝酸カルシウムの配合比を変えた
以外は実施例1と同様の方法で、式Bi、S、rCaC
o、Ox (x =6〜13)で表される複合酸化物の
組成を有する触媒を調整し、実施例1と同様の方法でN
Ox吸着試験を行った。第1図に吸着温度とNOx除去
率の関係を示す。 比較例1 市販のA型ゼオライト5Aタイプ、10〜20メツシユ
を用いて実施例1と同様の方法でNOxの吸着試験を行
い、第1図に示す結果を得た。
Examples of the present invention will be shown below. Example 1 Strontium nitrate 42.3g, calcium nitrate 47.
2 g, 87.3 g of cobalt nitrate and 100 m of distilled water.
I! Add and knead for one hour using a Laikai machine. After preliminarily calcining the kneaded product at 300°C for two hours, it was thoroughly pulverized.
It is further baked at 900°C for two hours. Next, add 97.0 g of bismuth nitrate and 150 mj of distilled water to this powder! Add
Knead for one hour in a Raikai machine. After preliminarily calcining the kneaded product at 300°C for two hours, it was sufficiently pulverized to give a powder of 860 to 87
Bake at 0°C for 2 hours. Next, the obtained powder was
The example catalyst was press-molded into a disk shape with a height of 2m+n, crushed and sized into particles of 16 to 32 meshes.
I got it. This catalyst has the formula Bi, Sr, Ca, Co, 0x(x
=6 to 13). 4 ml of this catalyst was filled in the center of a cylindrical tube made of quartz glass with an inner diameter of 201 TII 111 and a length of 80 cm, and N
The theory of Ox-containing gas was performed. Note that the adsorption temperature was measured using a thermocouple inserted into the adsorbent. 1st re NOx adsorption test conditions NOx removal rate was calculated according to the following formula. NOx removal rate (%) = 100X (NOx in artificial gas - NOx in ttfl gas/(NOx in artificial gas) Figure 1 shows the relationship between adsorption temperature and NOx removal rate after gas passage time. Example 2 Formulas Bi, 5rCa,
A catalyst having a composite oxide composition represented by Co30x (x = 6-13) was prepared, and a NOx adsorption test was conducted in the same manner as in Example 1. Figure 1 shows the relationship between adsorption temperature and NOx removal rate. Example 3 The formula Bi, S, rCaC was prepared in the same manner as in Example 1 except that the blending ratio of strontium nitrate and calcium nitrate was changed.
A catalyst having a composite oxide composition represented by o, Ox (x = 6 to 13) was prepared, and N
An Ox adsorption test was conducted. Figure 1 shows the relationship between adsorption temperature and NOx removal rate. Comparative Example 1 A NOx adsorption test was conducted in the same manner as in Example 1 using commercially available A-type zeolite 5A type, 10 to 20 meshes, and the results shown in FIG. 1 were obtained.

【発明の効果】【Effect of the invention】

以上、発明の実施例からも明らかなように、本発明にな
る吸着剤は高い効率で窒素酸化物の吸着除去が可能であ
り、アンモニア還元法を適用しにくい場合人口密集地に
おける自家発電、暖房、コージェネレーシコンプラント
から発生する排ガスの窒素酸化物の除去プロセスに特に
有効である。 また、本発明の吸着剤は固体であるので取り扱いおよび
保管が容易な上に、粉状体をいかなる形状にでも成型し
うるので適用箇所に応じた形状にして使用できる。
As is clear from the above embodiments of the invention, the adsorbent of the present invention can adsorb and remove nitrogen oxides with high efficiency, and can be used for private power generation and heating in densely populated areas when it is difficult to apply the ammonia reduction method. It is particularly effective in the process of removing nitrogen oxides from exhaust gas generated from cogeneration plants. Furthermore, since the adsorbent of the present invention is solid, it is easy to handle and store, and since the powder can be molded into any shape, it can be used in any shape depending on the location of application.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明になる吸着剤および比較例の吸着剤の
吸着温度とNOx除去率との関係を示すグラフである。 代表人 弁理士 松永孝義 はか1名
FIG. 1 is a graph showing the relationship between adsorption temperature and NOx removal rate of the adsorbent according to the present invention and the adsorbent of a comparative example. Representative: Patent attorney Takayoshi Matsunaga (1 person)

Claims (2)

【特許請求の範囲】[Claims] (1)一般式Bi_2SrmCanCo_3Ox(式中
、m、nはm+n=4の条件を満たす正の整数を表し、
xは6〜13の整数を表す。)で表される組成の複合酸
化物から実質的になる窒素酸化物吸着剤。
(1) General formula Bi_2SrmCanCo_3Ox (in the formula, m and n represent positive integers satisfying the condition of m+n=4,
x represents an integer from 6 to 13. ) A nitrogen oxide adsorbent consisting essentially of a composite oxide having a composition represented by:
(2)請求項1記載の窒素酸化物吸着剤に、窒素酸化物
を含有するガスを接触させることよりなる該ガス中の窒
素酸化物除去方法。
(2) A method for removing nitrogen oxides from a gas containing nitrogen oxides, which comprises contacting the nitrogen oxide adsorbent according to claim 1 with a gas containing nitrogen oxides.
JP1077993A 1989-03-31 1989-03-31 Adsorbent and method for removal of nitrogen oxide Pending JPH02258058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1077993A JPH02258058A (en) 1989-03-31 1989-03-31 Adsorbent and method for removal of nitrogen oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1077993A JPH02258058A (en) 1989-03-31 1989-03-31 Adsorbent and method for removal of nitrogen oxide

Publications (1)

Publication Number Publication Date
JPH02258058A true JPH02258058A (en) 1990-10-18

Family

ID=13649345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1077993A Pending JPH02258058A (en) 1989-03-31 1989-03-31 Adsorbent and method for removal of nitrogen oxide

Country Status (1)

Country Link
JP (1) JPH02258058A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995009047A1 (en) 1993-09-29 1995-04-06 Honda Giken Kogyo Kabushiki Kaisha Adsorption material for nitrogen oxides and exhaust emission control catalyst
JP2004358333A (en) * 2003-06-04 2004-12-24 Nippon Shokubai Co Ltd Nitrogen oxide adsorbent, its manufacturing and regenerating method, method of removing nitrogen oxide and method of cleaning nitrogen oxide-containing gas

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995009047A1 (en) 1993-09-29 1995-04-06 Honda Giken Kogyo Kabushiki Kaisha Adsorption material for nitrogen oxides and exhaust emission control catalyst
EP0671208A4 (en) * 1993-09-29 1996-10-23 Honda Motor Co Ltd Adsorption material for nitrogen oxides and exhaust emission control catalyst.
US5804526A (en) * 1993-09-29 1998-09-08 Honda Giken Kogyo Kabushiki Kaisha Adsorbent for nitrogen oxides and exhaust emission control catalyst
JP2004358333A (en) * 2003-06-04 2004-12-24 Nippon Shokubai Co Ltd Nitrogen oxide adsorbent, its manufacturing and regenerating method, method of removing nitrogen oxide and method of cleaning nitrogen oxide-containing gas

Similar Documents

Publication Publication Date Title
US5500198A (en) Composite catalyst for carbon monoxide and hydrocarbon oxidation
Wang et al. Catalytic oxidation of Hg0 by MnOx–CeO2/γ-Al2O3 catalyst at low temperatures
CN101602018B (en) Method for preparing rare-earth element doped composite metal oxide mercury removal catalyst
CN107456981B (en) A kind of exhaust gas denitration composite catalyst and preparation method thereof
US3947380A (en) Oxidation catalyst
US7875102B2 (en) Method for managing the use of flow-through monolithic sorbents for the sorption of a trace contaminant from a fluid stream
WO1995028220A1 (en) Aerogel materials and system for the capture and separation of gases and vapors with aerogel materials
US8821818B1 (en) Cleaning stack gas
JPH05317715A (en) Catalyst for removing gaseous hydrogenation product and method for removing gaseous hydrogenation product from gaseous steam
CN108136326B (en) Ozone oxidation decomposition treatment method for VOC and/or gas phase inorganic reducing compound in gas
CA2914389C (en) Cleaning stack gas
US5898015A (en) Material for absorbing nitrogen oxides comprising hollandite-type complex oxide
US4980137A (en) Process for NOx and CO control
EP2864022B1 (en) Means for purifying fluids, method of its preparation and its use
US9919269B2 (en) Clean coal stack
CN107376893A (en) A kind of composite catalyst for handling the waste gas containing NO and preparation method thereof
JPH02258058A (en) Adsorbent and method for removal of nitrogen oxide
CN110605092B (en) Iron-based rare earth oxygen storage type composite solid solution adsorbent and application thereof in flue gas dearsenification and demercuration
CN106984319A (en) It is a kind of to be used to remove iron-based composite catalyst of nitrogen oxides in effluent and organic pollution and preparation method thereof simultaneously
WO1992004967A1 (en) Reduction of nitrogen oxide and carbon monoxide in effluent gases
AU2017267474A1 (en) Clean gas stack
US20090038297A1 (en) Ceramic Catalyst for NOx Oxidation and NOx Conversion in Emission Control Systems
US4151124A (en) Sorbent composition and process for preparing it
CN102430383A (en) Preparation method of adsorbing agent simultaneously removing H2S and Hg in middle temperature coal gas
Zhang et al. Promotion effect of Cu doping on mercury removal properties of magnetic MnFe2O4 materials with high adsorption capacity