JPH02253127A - Method and device for measuring polarized light - Google Patents

Method and device for measuring polarized light

Info

Publication number
JPH02253127A
JPH02253127A JP1074029A JP7402989A JPH02253127A JP H02253127 A JPH02253127 A JP H02253127A JP 1074029 A JP1074029 A JP 1074029A JP 7402989 A JP7402989 A JP 7402989A JP H02253127 A JPH02253127 A JP H02253127A
Authority
JP
Japan
Prior art keywords
light
intensity
incident
plane
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1074029A
Other languages
Japanese (ja)
Inventor
Toshiro Koizumi
俊郎 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amada Co Ltd
Original Assignee
Amada Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amada Co Ltd filed Critical Amada Co Ltd
Priority to JP1074029A priority Critical patent/JPH02253127A/en
Publication of JPH02253127A publication Critical patent/JPH02253127A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To shorten a measuring time and to simplify the constitution of a measuring device itself by almost radially reflecting light made incident from the top side of a cone at a specified incident angle and detecting the intensity of the reflected light at plural specified spots. CONSTITUTION:The light is made incident from the top side of the circular cone 3 at the incident angle 80 deg. and light made incident on each incident surface is reflected corresponding to the incident surface. As a result, the light made incident on the circular one 3 is almost radially reflected. An (xy) plane is irradiated with the reflected light and a part irradiated with the light on the (xy) plane becomes nearly circumferential. When the intensity of the light on the (xy) plane is comparatively low, a thermosensitive paper is used as a light intensity detection member 5 and when the intensity of the light is comparatively high, an acrylic plate is used as the member 5, so that the intensity of the light which irradiates the (xy) plane is detected and the polarized state of the light is measured. Thus, the polarized state is measured in a comparatively short time and the constitution of the polarized light measuring device 1 is comparatively simplified.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は光の偏光状態を測定することができる偏光測定
方法及び偏光測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a polarization measuring method and a polarization measuring method capable of measuring the polarization state of light.

(従来の技術) 光の偏光状態には大別して直線偏光、円偏光、だ円偏光
があり、従来、偏光状態を測定する装置としては、入射
する光のうち所定方向へ振動している光のみ透過するポ
ラライザを設けると共に、上記ポラライザを透過した光
の強度を検出するため光強度検出装置を設けていた。上
記ポラライザは回転装置を介して360°回転すること
ができるものである。
(Prior art) The polarization state of light can be broadly classified into linear polarization, circular polarization, and elliptical polarization. Conventionally, devices for measuring the polarization state only measure incident light that is vibrating in a predetermined direction. In addition to providing a transmitting polarizer, a light intensity detection device was also provided to detect the intensity of the light that passed through the polarizer. The above polarizer can be rotated 360° via a rotation device.

したがって、回転装置を適宜に操作してポラライザを適
宜に回転させて、適宜に回転角度ことにポラライザを透
過した光の強度を光強度検出装置により検出することに
より、光の偏光状態を測定することができるものである
。すなわち、例えばポラライザが所定角度だけ回転した
とき、また所定角度から180°回転したときに、最も
高い光の強度が検出され、所定角度から9002700
回転したとき光の強度がほぼOになるならば、その光は
直線偏光をなしていることがわかり、また例えばポララ
イザが回転しても光の強度はほぼ一定であるならば、そ
の光は円偏光をなしていることかかるものである。
Therefore, the polarization state of the light can be measured by appropriately operating the rotation device to rotate the polarizer appropriately, and detecting the intensity of the light transmitted through the polarizer at an appropriate rotation angle using a light intensity detection device. It is something that can be done. That is, for example, when the polarizer is rotated by a predetermined angle, or when it is rotated by 180 degrees from the predetermined angle, the highest intensity of light is detected, and 9002700
If the intensity of the light becomes approximately O when it rotates, we know that the light is linearly polarized, and for example, if the intensity of the light remains approximately constant even when the polarizer rotates, then the light is circular. All it takes is that the light is polarized.

(発明が解決しようとする課題) しかし、ポラライザを回転させて適宜に回転角度ごとに
、ポラライザを透過した光の強度を検出して光の偏光状
態を測定しているために、偏光状態の測定に時間かかか
ると共に手間がかかるという問題があった。
(Problem to be Solved by the Invention) However, since the polarization state of the light is measured by rotating the polarizer and detecting the intensity of the light transmitted through the polarizer at each rotation angle, it is difficult to measure the polarization state. There was a problem that it was time consuming and labor intensive.

また、ポラライザを回転させるためには回転装置を用い
る必要があり、偏光測定装置自体の構成が複雑化すると
いう問題点があった。
Furthermore, it is necessary to use a rotation device to rotate the polarizer, which poses a problem in that the configuration of the polarization measuring device itself becomes complicated.

そこで、本発明は上記の問題点を解決するために比較的
短時間に光の偏光状態を測定することができると共に、
かつ構成が比較的簡単である偏光測定方法及び偏光測定
装置を提供することを目的とする。
Therefore, in order to solve the above problems, the present invention can measure the polarization state of light in a relatively short time, and
It is an object of the present invention to provide a polarization measurement method and a polarization measurement device that have a relatively simple configuration.

[発明の構成] (課題を解決するための手段) 前述のごとき従来の問題点を解決するために、本発明に
おいては、光の偏光状態を測定する偏光測定方法にして
、光を所定の入射角のもとで錐体の頂部側から入射させ
、入射した光をほぼ放射状に反射させて、複数の所定箇
所でほぼ放射状に反射した光の強度を検出して光の偏光
状態の測定を行うものである。
[Structure of the Invention] (Means for Solving the Problems) In order to solve the conventional problems as described above, the present invention provides a polarization measurement method that measures the polarization state of light, and The polarization state of the light is measured by entering the light from the top side of the cone at the corner, reflecting the incident light almost radially, and detecting the intensity of the almost radially reflected light at multiple predetermined locations. It is something.

また、光の偏光状態を測定する偏光測定装置にして、光
を所定の入射角のもの入射させて、入射した光をほぼ放
射状に反射するための錐体を設け、複数の所定箇所でほ
ぼ放射状に反射された光の強度を検出するための光強度
検出手段を設けてなるものである。
In addition, the polarization measuring device measures the polarization state of light, and the light is incident at a predetermined angle of incidence, and a cone is provided to reflect the incident light almost radially. A light intensity detection means is provided for detecting the intensity of light reflected by the light.

(作用) 前記の構成において、光を所定の入射角度のもとで錐体
の頂部側から入射させる。入射した光をほぼ放射状に反
射させる。そして、複数の所定箇所で反射された光の強
度を光強度検出手段により検出し、複数の所定箇所で検
出された光の強度の状態から光の測定状態を測定する。
(Function) In the above configuration, light is made to enter from the top side of the cone at a predetermined angle of incidence. Reflects incident light almost radially. Then, the intensity of the light reflected at the plurality of predetermined locations is detected by the light intensity detection means, and the measurement state of the light is measured from the state of the intensity of the light detected at the plurality of predetermined locations.

(実施例) 純鉄等の金属の円錐体に光を照射した場合において、入
射面に対して入射角θで入射する光のP成分(光の振幅
の入射面に対して平行な成分)をApとし、S成分(光
の振幅の入射面に対して垂直な成分)をAsとし、また
反射する光のP成分をRpとし、S成分をRsとすると
、P成分のの式のようになる。
(Example) When a cone made of metal such as pure iron is irradiated with light, the P component (the component of the amplitude of the light parallel to the plane of incidence) of the light that is incident at an angle of incidence θ with respect to the plane of incidence is calculated. Let Ap, the S component (the component perpendicular to the plane of incidence of the light amplitude) be As, the P component of the reflected light be Rp, and the S component be Rs, then the formula for the P component is as follows. .

・・・・・ (1) ・・・・(2) ここで、n2は複屈折率とし、光の波長は]−071m
で旧算している。
... (1) ... (2) Here, n2 is the birefringence, and the wavelength of light is ]-071m
This is an old calculation.

そして、入射角θとP成分の反射率、S成分の反射率と
の関係を、」1記式(+>  (2)に基づいてグラフ
化すると第3図に示すようになる。入射角800の場合
にはS成分の反射率はαてあり、P成分の反射率はβで
あり、反射率α、βとの間にはαβ−約025の関係が
ある。
Then, the relationship between the incident angle θ, the reflectance of the P component, and the reflectance of the S component is graphed based on the formula 1 (+> (2)) as shown in FIG. 3. In this case, the reflectance of the S component is α, the reflectance of the P component is β, and there is a relationship of αβ−025 between the reflectances α and β.

本実施例では入射角80′の場合にS成分の反射率αと
P成分の反射率βの差が約0.25あることを利用する
ために、xy平面上に第1図に示すような偏光測定装置
]−の一部構成する頂角20゜[(90°−80°)X
2]の円錐体3を設け、光の光軸をZ軸と一致させる。
In this example, in order to take advantage of the fact that the difference between the reflectance α of the S component and the reflectance β of the P component is approximately 0.25 when the incident angle is 80', the polarization measuring device]
2] is provided, and the optical axis of the light is made to coincide with the Z axis.

なお、」二足円錐体3は純鉄のごとき金属であり、円錐
体3の底面の中心はX軸、y軸、Z軸上の共通原点位置
に位置している。
The bipedal cone 3 is made of metal such as pure iron, and the center of the bottom surface of the cone 3 is located at a common origin position on the X, y, and Z axes.

上記構成により、光を入射角80’のもとで円錐体3の
頂部側から入射させる。このときxy平面に垂直かつZ
軸を中心として放射状に無数に存する入射面に、光を入
射させて、各入射面に入射した光をそれぞれ入射面に応
じて反射させて、結果として円錐体3に入射した光をほ
ぼ放射状に反射させることができる。はぼ放射状に反射
した光はxy平面に照射され、xy平面における光の照
射部分はほぼ周状をなすものである。
With the above configuration, light is made to enter the cone 3 from the top side at an incident angle of 80'. At this time, perpendicular to the xy plane and Z
Light is incident on a countless number of incident surfaces radially around the axis, and the light incident on each incident surface is reflected according to the incident surface, resulting in the light incident on the cone 3 being almost radial. It can be reflected. The radially reflected light is irradiated onto the xy plane, and the irradiated portion of the light on the xy plane is approximately circumferential.

上記xy平面に照射された光の強度を検出するために、
第1図に示すようにX37平面上には感熱紙又はアクリ
ル板のごとき光強度検出部材5が設けである。ここで、
光の強度が比較的低い場合には感1熱紙を光強度検出部
材5として用い、光の強度が比較的高い場合にはアクリ
ル板を光強度検出部材5として用いる。
In order to detect the intensity of the light irradiated on the xy plane,
As shown in FIG. 1, a light intensity detection member 5 such as thermal paper or an acrylic plate is provided on the X37 plane. here,
When the intensity of light is relatively low, thermal paper is used as the light intensity detection member 5, and when the intensity of light is relatively high, an acrylic plate is used as the light intensity detection member 5.

また、はぼ放射状に反射した光の強度を検出するために
、第2図に示すように、光センサ7をy軸、y軸、Z軸
の共通の原点を中心としてxy平面上を公転自在に設け
ても差し支えないものである。
In addition, in order to detect the intensity of the light reflected radially, the optical sensor 7 is rotated freely on the xy plane around the common origin of the y-axis, y-axis, and Z-axis, as shown in FIG. There is no problem even if it is provided in

前述の構成に基づいて本実施例の作用について説明する
The operation of this embodiment will be explained based on the above-described configuration.

光を入射角80°のもとで円錐体3の頂部側から入射さ
せる。入射した光をほぼ反射状に反射させ、反射した光
はxy平面を照射し、xy平面における光の照射部分は
ほぼ周状をなす。xy平面を照射する光の強度を、光強
度検出部材5または光センサ7により検出することによ
り光の偏光状態を測定する。
Light is made to enter the cone 3 from the top side at an incident angle of 80°. The incident light is reflected in a substantially reflective manner, and the reflected light illuminates the xy plane, and the irradiated portion of the light on the xy plane forms a substantially circumferential shape. The polarization state of the light is measured by detecting the intensity of the light irradiating the xy plane with the light intensity detection member 5 or the optical sensor 7.

光の偏光状態の測定について具体的に説明すると、 (a)  偏光状態が直線偏光(例えばX方向へ振動)
である場合 X軸上を照射する光は、xz平面を入射面として入射し
、反射した光である。すなわち入射した光は、入射面(
この場合xz平面)に対して水平方向(X軸方向)にの
み振動しており、P成分の反射率がβであるために、X
軸上を照射する光の強度は入射した光の強度のβ倍とな
る。
To specifically explain the measurement of the polarization state of light: (a) The polarization state is linearly polarized light (for example, oscillation in the X direction).
In this case, the light that irradiates on the X-axis is the light that enters the xz plane as the incident plane and is reflected. In other words, the incident light is transmitted to the incident surface (
In this case, it vibrates only in the horizontal direction (X-axis direction) with respect to the xz plane), and the reflectance of the P component is β, so the
The intensity of the light irradiated on the axis is β times the intensity of the incident light.

同様に、y軸上を照射する光は、yz平面を入射面とし
て入射し、反射した光である。すなわち、入射面(この
場合yz平面)に対して垂直方向(X軸方向)にのみ振
動しており、S成分の反射率がαであるために、y軸上
を照射する光の強度は入射した光の強度のα倍となる。
Similarly, the light that irradiates on the y-axis is light that enters the yz plane as the incident plane and is reflected. In other words, it vibrates only in the direction perpendicular to the incident plane (in this case, the yz plane) (X-axis direction), and the reflectance of the S component is α, so the intensity of the light irradiated on the y-axis is equal to the incident It is α times the intensity of the light.

したがって、y軸上を照射した光の強度が、X軸上に照
射された光の強度より入射した光の強度の約0,25倍
だけ大きくなる場合には、円錐体3に入射した光の偏光
状態は直線偏光(X軸方向へ振動)であることが測定す
ることができるものである。
Therefore, if the intensity of the light irradiated on the y-axis is approximately 0.25 times greater than the intensity of the light irradiated on the X-axis, then the light incident on the cone 3 will be The polarization state can be determined to be linearly polarized light (vibrating in the X-axis direction).

なお、X軸方向へ振動した直線偏光のみ測定することが
できるものではなく、所定方向へ振動した直線偏光につ
いて同様に測定することができるものである。
Note that it is not possible to measure only linearly polarized light vibrating in the X-axis direction, but it is also possible to measure linearly polarized light vibrating in a predetermined direction.

(b)  偏光状態が円偏光である場合円偏光状態をな
す光は、光の進行方向に対して垂直な面において任意の
直交する2方向に同一の振幅をもって振動している光で
あると考えることができる。そのため、任意の入射面に
おいてそれぞれ同一の光のS成分とP成分が存在するも
のであり、xy平面を照射する光の強度はほぼ等しいも
のである。
(b) When the polarization state is circularly polarized light, consider that circularly polarized light is light that oscillates with the same amplitude in two arbitrary orthogonal directions in a plane perpendicular to the direction in which the light travels. be able to. Therefore, the same S component and P component of light exist on any incident plane, and the intensity of the light irradiating the xy plane is almost equal.

したがって、xy平面上の照射部分の光の強度が、はぼ
同一である場合には、円錐体3に入射した光は円偏光で
あることが測定することができるものである。
Therefore, if the intensity of the light on the irradiated portion on the xy plane is approximately the same, it can be determined that the light incident on the cone 3 is circularly polarized light.

なお、ランダム偏光においても同様に測定することがで
きる。
Note that random polarized light can also be measured in the same way.

(C)  偏光状態が楕円偏光である場合だ円偏光を状
態をなす光は、光の進行方向に対して垂直な面において
所定の直交する2方向に異った振幅をもって振動してい
る光であると考えることができる。
(C) When the polarization state is elliptically polarized light, elliptically polarized light is light that vibrates with different amplitudes in two predetermined orthogonal directions in a plane perpendicular to the direction in which the light travels. It can be considered that there is.

そのため、所定の入射面また所定入射面から2軸を中心
として180°回転した位置にある入射面において、S
成分が大きい方の振幅と一致すると共にP成分が小さい
方の振幅と一致する。そして、上記所定の入射面または
所定の入射面からZ軸を中心として180°回転した位
置にある入射面に入射すると共に反射し、xy平面を照
射した光の強度がxy平面における照射部分の中で最大
となる。
Therefore, the S
The component matches the larger amplitude, and the P component matches the smaller amplitude. Then, the light enters the predetermined entrance plane or the entrance plane located at a position rotated 180 degrees around the Z-axis from the predetermined entrance plane, and is reflected, and the intensity of the light that irradiates the xy plane is within the irradiated area on the xy plane. Maximum at .

また、上記所定の入射面から2軸を中心として90°ま
たは270°回転した位置にある入射面においてはS成
分が小さい方の振幅と一致すると共に、P成分が大きい
方の振幅と一致する。そして、上記所定の入射面から9
0°または270゜回転した位置にある入射面に入射す
ると共に反射し、Xy平面を照射した光の強度がxy平
面における照射部分の中で最小となる。
Further, at the entrance plane located at a position rotated by 90° or 270° around two axes from the above-mentioned predetermined entrance plane, the S component matches the smaller amplitude, and the P component matches the larger amplitude. Then, 9
The intensity of the light incident on the incident surface at a position rotated by 0° or 270° and reflected, and irradiating the Xy plane, is the minimum among the irradiated portions on the xy plane.

したがって、xy平面上のほぼ周状の照射部分において
90°間隔に最大、最小の光の強度か検出される場合に
は、円錐体3に入射した光はだ円偏光であることが測定
することができるものである。
Therefore, if the maximum and minimum light intensities are detected at 90° intervals in a substantially circumferential irradiated area on the xy plane, it can be determined that the light incident on the cone 3 is elliptical polarized light. It is something that can be done.

前述のごとき、本実施例によれば、光を所定の入射角度
(本実施例において例えば80°)のもとで円錐体3の
頂部側から入射させて、xy平面に照射した光の強度を
光強度検出部材5或は光センサ7により検出することに
よりほぼ放射状に反射した光の強度を検出して、光の偏
光状態を測定を行っているために、従来のごときポララ
イザを適宜に回転させて、所定の回転角ごとにポラライ
ザを透過した光の強度を検出して光の偏光状態を測定す
る場合に比較して、比較的短時間で偏光状態を測定する
ことができるものである。
As described above, according to this embodiment, light is incident from the top side of the cone 3 at a predetermined incident angle (for example, 80° in this embodiment), and the intensity of the light irradiated onto the xy plane is Since the polarization state of the light is measured by detecting the intensity of the almost radially reflected light by the light intensity detection member 5 or the optical sensor 7, the conventional polarizer is rotated as appropriate. Therefore, the polarization state can be measured in a relatively short time compared to the case where the polarization state of the light is measured by detecting the intensity of the light transmitted through the polarizer at every predetermined rotation angle.

また偏光測定装置1においては、従来のようにポラライ
ザ、ポラライザを回転させるための回転装置を設けてい
ないために、偏光測定装置]自体の構成が複雑化するこ
とが比較的少なくなるものである。
Furthermore, since the polarization measuring device 1 does not include a polarizer and a rotation device for rotating the polarizer as in the conventional case, the configuration of the polarization measuring device itself is relatively less complicated.

第2の実施例について、第4図、第5図を参照して説明
する。
A second embodiment will be described with reference to FIGS. 4 and 5.

本実施例については第4図に示すように、例えばセレン
化亜鉛のごとき透過特性をもつ材質により構成される円
錐体3をxy平面に設けると共に、光を円錐体3にブリ
ュースタ角で入射させるために、円錐体3の頂角は(9
0°−ブリュースタ角)×2になる。
In this embodiment, as shown in FIG. 4, a cone 3 made of a material with transmission characteristics, such as zinc selenide, is provided in the xy plane, and light is incident on the cone 3 at Brewster's angle. Therefore, the apex angle of cone 3 is (9
0° - Brewster's angle) x 2.

ここで、ブリュースタ角について第5図を参照するに、
第5図はセレン化亜鉛の円錐体3に波長10μmの光を
入射させた場合における入射角とS成分、P成分の反射
率の関係を示したものであり、所定の入射角のときにP
成分の反射率はほぼ0になりS成分の反射のみ存在する
。上記所定の入射角をブリュースタ角といい、本実施例
の場合にはブリュースタ角は67.4°である。なお、
この場合P成分の反射率はγである。
Now, referring to Figure 5 regarding Brewster's angle,
Figure 5 shows the relationship between the angle of incidence and the reflectance of the S and P components when light with a wavelength of 10 μm is incident on the zinc selenide cone 3.
The reflectance of the component becomes almost 0, and only the reflection of the S component exists. The above-mentioned predetermined angle of incidence is called the Brewster's angle, and in the case of this embodiment, the Brewster's angle is 67.4°. In addition,
In this case, the reflectance of the P component is γ.

次に第2の実施例の作用について説明する。Next, the operation of the second embodiment will be explained.

本実施例においても、前述の第1の実施例と同様に、x
y平面の照射部分の光の強度を、光強度検出部材部材5
または光センサ7により検出することにより、光の偏光
状態を測定する。
In this embodiment as well, x
The light intensity detection member 5 detects the intensity of the light at the irradiated portion on the y plane.
Alternatively, the polarization state of the light is measured by detecting it with the optical sensor 7.

(a)  偏光状態が直線偏光(例えばX方向へ振動)
である場合 X軸上を照射する光はxz平面を入射面として入射し、
反射した光であり、S成分の反射率がOであるために、
X軸上の照射部分の光強度はほぼ0になり、X軸上を照
射する光はyz平面を入射面として入射し、反射した光
であり、S成分の反射率がγであるために、y輔」二を
照射する光の強度は入射してくる光の強度のγ倍になる
(a) The polarization state is linearly polarized light (for example, vibration in the X direction)
If , the light irradiating on the X-axis enters the xz plane as the incident plane,
Since it is reflected light and the reflectance of the S component is O,
The light intensity of the irradiated part on the X-axis becomes almost 0, and the light that irradiates on the X-axis enters the yz plane as the incident plane and is reflected light, and the reflectance of the S component is γ, so The intensity of the light irradiating the lens is γ times the intensity of the incident light.

したがって、X輔」二を照射した光の強度がほぼ0で、
y軸」二を照射した光の強度が入射した光の強度のγ倍
である場合には、円錐体3に入射した光の偏光状態は直
線偏光(X軸方向へ振動)であることがalll定する
ことかできるものである。
Therefore, the intensity of the light irradiating X-suke'2 is almost 0,
If the intensity of the light irradiating the y-axis 2 is γ times the intensity of the incident light, then the polarization state of the light incident on the cone 3 is linearly polarized (vibrating in the X-axis direction). It is possible to determine the

(b)  偏光状態が円偏光の場合 第1の実施例と同様に、X3’平而をほぼ周状に照射す
る光の強度はほぼ等しいものである。したがって、xy
平面上の照射部分の光の強度か、はぼ同一である場合に
は、円錐体3に入射した光が偏光状態が円偏光であると
いうことか測定することかできるものである。ただし、
P成分の反射がほぼ0となるために、第1の実施例に比
較して光の強度は小さくなるものである。
(b) When the polarization state is circularly polarized light As in the first embodiment, the intensities of the light irradiating the X3' plane in a substantially circumferential manner are substantially equal. Therefore, xy
If the intensity of the light on the irradiated portion on the plane is almost the same, it can be determined whether the polarization state of the light incident on the cone 3 is circularly polarized light. however,
Since the reflection of the P component is almost zero, the intensity of light is smaller than in the first embodiment.

なお、ランダム偏光の場合も同様である。Note that the same applies to the case of randomly polarized light.

(C)  偏光状態がだ円 第1の実施例と同様に、xy平而面ほぼ周状に照する光
の強度は、90°間隔に最大と最小となる。
(C) Polarization state is elliptical Similar to the first embodiment, the intensity of the light shining on the xy plane substantially circumferentially reaches its maximum and minimum at 90° intervals.

したがって、xy平面上の照射部分の光の強度か、90
℃間隔に最大、最小の光の強度が検出される場合には、
円錐体3に入射した光はだ円偏光であることが測定する
ことができるものである。
Therefore, the intensity of the light on the irradiated part on the xy plane is 90
If the maximum and minimum light intensity is detected in the °C interval,
It can be determined that the light incident on the cone 3 is elliptically polarized.

以上のことく第2の実施例においても第1の実施例と同
様の効果を奏するものである。
As described above, the second embodiment also provides the same effects as the first embodiment.

なお、本発明は前述の実施例の説明に限るものではなく
、例えば円錐体3の代わり8角錐体、10角錐体等を用
いたりする等の適宜の変更を行うことによりその他種々
の態様で実施可能である。
It should be noted that the present invention is not limited to the description of the above-mentioned embodiments, but can be implemented in various other embodiments by making appropriate changes, such as using an octagonal pyramid, a 10-sided pyramid, etc. instead of the cone 3. It is possible.

[発明の効果] 以上のごとき実施例の説明により理解されるように、本
発明によれば、光を所定の入射角のもとで錐体の頂部側
から入射させて、複数の所定箇所でほぼ放射状に反射し
た光の強度を光強度検出手段を介して検出することによ
り、光の偏光状態を測定しているために、従来のごとく
ポラライザを適宜に回転させて、所定の回転角ごとにポ
ラライザを透過した光の強度を検出して光の偏光状態を
測定する場合と比べて、比較的短時間で偏光状態の測定
することができるものである。
[Effects of the Invention] As can be understood from the above description of the embodiments, according to the present invention, light is incident from the top side of a cone at a predetermined angle of incidence, and light is emitted at a plurality of predetermined locations. Since the polarization state of the light is measured by detecting the intensity of the almost radially reflected light through a light intensity detection means, the polarizer is rotated appropriately as in the conventional method, and the polarization state is measured at each predetermined rotation angle. Compared to measuring the polarization state of light by detecting the intensity of light transmitted through a polarizer, the polarization state can be measured in a relatively short time.

また、偏光測定装置においては、従来のようにポラライ
ザ、ポラライザを回転させるための回転装置を設けてい
ないために、偏光測定装置自体の構成が複雑化すること
が比較的少ないものである。
Furthermore, since the polarization measuring device does not have a polarizer or a rotation device for rotating the polarizer as in the conventional case, the configuration of the polarization measuring device itself is relatively less complicated.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係る実施例を説明するものであり、第1
図は光強度検出部材を備えた偏光測定装置の概略的な図
である。第2図は光センサを備えた偏光測定装置の概略
的な図である。第3図は入射角とP成分、S成分の反射
率の関係を示すグラフであり、円錐体は純鉄であり、光
の波長は10μmである。第4図は第2の実施例に係る
偏光測定装置である。第5図は入射角とP成分、S成分
の反射率との関係を示すグラフであり。円錐体はセレン
化亜鉛であり、光の波長は10μmである。 1・・・偏光測定装置   3・・・円錐体5・・・光
強度検出部材  7・・・光センサ代理人 弁理士  
三 好 秀 和 性へ g!ヤ 匡七 nト S  い O 30゜ 60’ 80°90’ 入射角 第3図 第4図
The drawings are for explaining embodiments according to the present invention.
The figure is a schematic diagram of a polarization measuring device equipped with a light intensity detection member. FIG. 2 is a schematic diagram of a polarization measuring device equipped with an optical sensor. FIG. 3 is a graph showing the relationship between the incident angle and the reflectance of the P component and the S component. The cone is made of pure iron and the wavelength of the light is 10 μm. FIG. 4 shows a polarization measuring device according to a second embodiment. FIG. 5 is a graph showing the relationship between the incident angle and the reflectance of the P component and the S component. The cone is zinc selenide and the wavelength of light is 10 μm. 1... Polarization measuring device 3... Cone 5... Light intensity detection member 7... Optical sensor agent Patent attorney
Miyoshi Hide Kazushie g! 30°60'80°90' Angle of incidence Figure 3 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)光の偏光状態を測定する偏光測定方法にして、光
を所定の入射角のもとで錐体の頂部側から入射させ、入
射した光をほぼ放射状に反射させて、複数の所定箇所で
ほぼ放射状に反射した光の強度を検出して光の偏光状態
の測定を行うことを特徴とする偏光測定方法。
(1) A polarization measurement method that measures the polarization state of light, in which light is incident from the top side of a cone at a predetermined angle of incidence, and the incident light is reflected almost radially at multiple predetermined points. A polarization measurement method characterized by measuring the polarization state of light by detecting the intensity of light reflected almost radially by the light.
(2)光の偏光状態を測定する偏光測定装置にして、光
を所定の入射角のもの入射させて、入射した光、をほぼ
放射状に反射するための錐体を設け、複数の所定箇所で
ほぼ放射状に反射された光の強度を検出するための光強
度検出手段を設けてなることを特徴とする偏光測定装置
(2) A polarization measurement device that measures the polarization state of light, which allows light to enter at a predetermined angle of incidence, and is equipped with a cone to reflect the incident light almost radially, and at multiple predetermined points. 1. A polarization measuring device comprising a light intensity detection means for detecting the intensity of light reflected substantially radially.
JP1074029A 1989-03-28 1989-03-28 Method and device for measuring polarized light Pending JPH02253127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1074029A JPH02253127A (en) 1989-03-28 1989-03-28 Method and device for measuring polarized light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1074029A JPH02253127A (en) 1989-03-28 1989-03-28 Method and device for measuring polarized light

Publications (1)

Publication Number Publication Date
JPH02253127A true JPH02253127A (en) 1990-10-11

Family

ID=13535304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1074029A Pending JPH02253127A (en) 1989-03-28 1989-03-28 Method and device for measuring polarized light

Country Status (1)

Country Link
JP (1) JPH02253127A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005078778A1 (en) * 2004-02-12 2005-08-25 Nikon Corporation Lighting optical device, polarization status detector,and exposure system and exposure method
JP2007103563A (en) * 2005-10-03 2007-04-19 Matsushita Electric Ind Co Ltd Laser device
WO2014108528A2 (en) * 2013-01-14 2014-07-17 Carl Zeiss Smt Gmbh Polarization measuring device, lithography apparatus, measuring arrangement, and method for polarization measurement

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005078778A1 (en) * 2004-02-12 2005-08-25 Nikon Corporation Lighting optical device, polarization status detector,and exposure system and exposure method
JP2007103563A (en) * 2005-10-03 2007-04-19 Matsushita Electric Ind Co Ltd Laser device
WO2014108528A2 (en) * 2013-01-14 2014-07-17 Carl Zeiss Smt Gmbh Polarization measuring device, lithography apparatus, measuring arrangement, and method for polarization measurement
WO2014108528A3 (en) * 2013-01-14 2014-10-02 Carl Zeiss Smt Gmbh Polarization measuring device, lithography apparatus, measuring arrangement, and method for polarization measurement
JP2016509687A (en) * 2013-01-14 2016-03-31 カール・ツァイス・エスエムティー・ゲーエムベーハー Polarization measurement device, lithographic apparatus, measurement structure, and polarization measurement method
US10041836B2 (en) 2013-01-14 2018-08-07 Carl Zeiss Smt Gmbh Polarization measuring device, lithography apparatus, measuring arrangement, and method for polarization measurement

Similar Documents

Publication Publication Date Title
JP2021520487A (en) Optical protractor for measuring roll angle on stationary and rotating surfaces
JP4184543B2 (en) Optical image detection method and visual inspection apparatus
JPH0378609A (en) Optical skid-type apparatus for measuring surface roughness
JP5370409B2 (en) Absolute reflection measuring device
US3635552A (en) Optical interferometer
JPH02253127A (en) Method and device for measuring polarized light
CN108225742A (en) A kind of method and device for depolarizer performance detection
US4973152A (en) Method and device for the noncontact optical measurement of paths, especially in the triangulation method
JPH0419522B2 (en)
JP2523830B2 (en) Method and apparatus for determining crystal orientation
KR100247918B1 (en) Dry etching apparatus for manufacturing semiconductors and etch rate monitoring method using the same
JPS58225304A (en) Optical type mechanical quantity measuring apparatus
JPS61140802A (en) Light wave interference device preventing reverse surface reflected light
CA2320850C (en) Linear conoscopic holography
JPH045122B2 (en)
JP2000241143A (en) Angle sensor
Farahi et al. A fibre optic interferometric system for surface profiling
JPH04220535A (en) Monitor device for laser output
JPH10339620A (en) Axis fluctuation measuring device
JPH0474934A (en) Measuring apparatus of characteristics of beam
JP3144798U (en) Absolute reflection measuring device
SU1357705A1 (en) Device for checking roughness of article reflecting surface
JP3136582B2 (en) Reflection point measuring device
JPS5850330Y2 (en) optical measurement device
JP3225551B2 (en) Phase difference measurement method