JPH02251122A - Conductive paste for electrode of ceramic capacitor - Google Patents

Conductive paste for electrode of ceramic capacitor

Info

Publication number
JPH02251122A
JPH02251122A JP7219189A JP7219189A JPH02251122A JP H02251122 A JPH02251122 A JP H02251122A JP 7219189 A JP7219189 A JP 7219189A JP 7219189 A JP7219189 A JP 7219189A JP H02251122 A JPH02251122 A JP H02251122A
Authority
JP
Japan
Prior art keywords
mol
ceramic capacitor
conductive paste
weight
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7219189A
Other languages
Japanese (ja)
Inventor
Koichi Chazono
広一 茶園
Mutsumi Fujibayashi
藤林 むつみ
Hiroshi Kishi
弘志 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP7219189A priority Critical patent/JPH02251122A/en
Publication of JPH02251122A publication Critical patent/JPH02251122A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a ceramic capacitor having high dielectric strength and reliability by forming an electrode of a ceramic capacitor by means of specific conductive paste. CONSTITUTION:The subject paste contains metal powder 80 to 90wt.% and glass powder 1 to 20wt.%. Then, glass powder has a composition within the range surrounded by six straight lines connecting the first to sixth points A to F of a triangular diagram showing a composition of B2O3, SiO2 and MO (provided that MO is at least one kind of metal oxides of BaO, MgO, ZnO, SrO and CaO. Thereby, a ceramic capacitor having little insulation deterioration due to high-temperature and high-moisture environment.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、積層磁器コンデンサの内部電極を形成するの
に好適な導電性ペーストに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a conductive paste suitable for forming internal electrodes of a multilayer ceramic capacitor.

[従来の技術] 積層磁器コンデンサを製造する際には、グリーンシート
(未焼結磁器シート)に導電性ペーストを内部電極が得
られるように所定パターンに印刷し、印刷済のグリーン
シートを複数枚積層し、この積層体を所定寸法に切断し
て生チップを得、この生チップを焼成する。なお、外部
電極は生チップの焼成前又は後に設ける。この方法によ
れば、グリーンシートと共に導電性ペーストか同時焼成
されるので、内部電極を容易に形成することか可能にな
る。
[Conventional technology] When manufacturing multilayer ceramic capacitors, conductive paste is printed on green sheets (unsintered ceramic sheets) in a predetermined pattern to form internal electrodes, and multiple printed green sheets are then printed. The raw chips are laminated, the laminated body is cut into a predetermined size to obtain raw chips, and the raw chips are fired. Note that the external electrode is provided before or after firing the raw chip. According to this method, since the conductive paste is fired simultaneously with the green sheet, it becomes possible to easily form the internal electrodes.

ところで、積層磁器コンデンサを同時焼成で形成する際
に、内部電極用の導電性ペーストと磁器材料(グリーン
シート)との焼成工程における熱収縮特性が大幅に相違
すると、磁器層及び/又は内部電極にクラックが生じた
り、内部電極の磁器層からの剥離(デラミネーション)
が生じたりする。この種の問題を解決するために、内部
電極用導電性ペーストに、熱収縮を磁器に近づけるため
のガラスフリットを添加することか特開昭54−140
958号公報に開示されている。また、グリーンシート
と同一又は類似の磁器材料粉末(共材)を導電性ペース
トに添加することが特開昭54−140960号公報に
開示されている。
By the way, when forming a multilayer ceramic capacitor by simultaneous firing, if the heat shrinkage characteristics of the conductive paste for internal electrodes and the ceramic material (green sheet) in the firing process are significantly different, the ceramic layer and/or internal electrodes may Cracks occur or the internal electrode peels off from the porcelain layer (delamination)
may occur. In order to solve this kind of problem, it was proposed to add glass frit to the conductive paste for internal electrodes in order to make the heat shrinkage similar to that of porcelain.
It is disclosed in Japanese Patent No. 958. Further, Japanese Patent Application Laid-open No. 140960/1984 discloses that a porcelain material powder (common material) that is the same as or similar to the green sheet is added to the conductive paste.

[発明が解決しようとする課題] しかし、積層磁器コンデンサにおいては、上記のデラミ
ネーションの問題の他に、誘電体磁器層と内部電極との
間に0.2μm以下の僅かな間隙が生じ、ここに高温高
湿下で水分が浸入したり、又は外部電極形成時にメツキ
液が浸入し、内部電極相互間の絶縁不良か発生ずるとい
う問題がある。
[Problems to be Solved by the Invention] However, in multilayer ceramic capacitors, in addition to the problem of delamination described above, a small gap of 0.2 μm or less is created between the dielectric ceramic layer and the internal electrode. There is a problem in that moisture enters under high temperature and high humidity conditions, or plating liquid enters during the formation of external electrodes, resulting in poor insulation between internal electrodes.

そこで、本発明の目的は、磁器層と電極との間隙を少な
くすることか可能な磁器コンデンサ用導電性ペーストを
提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a conductive paste for a ceramic capacitor that can reduce the gap between the ceramic layer and the electrode.

[課題を解決するための手段] 上記目的を達成するための本発明は、80〜99重量%
の金属粉末と1〜20重景%重量ラス粉末とを含み、前
記カラス粉末かB2O3と5i02とMO(但し、MO
はBaO1Mg05ZnO1SrO及びCaOの内の少
なくとも1種の金属酸化物)との組成を示す三角図にお
ける前記B2O3が1モル%、前記S io 2が80
モル%、前記M2O3が19モル%の点(A)と、前記
B2O3が1モル%、前記S I O2か39モル%、
前記M2O3が60モル%の点(B)と、前記B2Q3
が29モル%、前記S iO2か1モル%、前記M2O
3が70モル%の点(C)と、前記B2O3が90モル
%、前記S iO2が1モル%、前記M2O3が9モル
%の点(D)と、前記B2O3か90モル%、前記S 
102が9モル%、前記M2O3が1モル%の点(E)
と、前記B2O3が19モル%、前記5i02が80モ
ル%、前記M2O3が1モル%の点(F)とを順に結ぶ
6本の直線で囲まれた領域内のものである磁器コンデン
サの電極用導電性ペーストに係わるものである。
[Means for Solving the Problems] The present invention for achieving the above-mentioned object has the following features:
metal powder and 1 to 20 weight% lath powder, and the lath powder contains B2O3, 5i02, and MO (however, MO
In the triangular diagram showing the composition of at least one metal oxide of BaO1Mg05ZnO1SrO and CaO, the B2O3 is 1 mol% and the Sio2 is 80%.
mol%, the point (A) where the M2O3 is 19 mol%, the B2O3 is 1 mol%, the S I O2 is 39 mol%,
Point (B) where the M2O3 is 60 mol% and the B2Q3
is 29 mol%, the SiO2 is 1 mol%, the M2O
3 is 70 mol%, point (D) is 90 mol% of B2O3, 1 mol% of SiO2, and 9 mol% of M2O3, and 90 mol% of B2O3 and 90 mol% of S
Point (E) where 102 is 9 mol% and the above M2O3 is 1 mol%
and the point (F) where the B2O3 is 19 mol%, the 5i02 is 80 mol%, and the M2O3 is 1 mol%. It is related to conductive paste.

[作用] 本発明の導電性ペーストによって磁器コンデンサの電極
を形成すると、磁器コンデンサの高温高湿環境試験によ
る不良の発生が少なくなり、信頼性の高い磁器コンデン
サを提供することが可能になる。これは次の様な理由に
よるものと考えられる。本発明に係わるガラス粉末は焼
成中に低粘度状態になり、冷却過程において誘電体磁器
層と電極とめ間に析出する。これにより、誘電体磁器層
と電極との間が密な状態になり、両者の間及び誘電体磁
器層内部への水分やメツキ液の浸入が防止される。また
、上記析出によって形成された薄いガラス層は高絶縁性
を有する。従って、本発明によれば、絶縁耐力及び信頼
性の高い磁器コンデンサを提供することができる。
[Function] When the electrodes of a ceramic capacitor are formed using the conductive paste of the present invention, the occurrence of defects in the ceramic capacitor in a high temperature and high humidity environment test is reduced, making it possible to provide a highly reliable ceramic capacitor. This is considered to be due to the following reasons. The glass powder according to the present invention becomes a low viscosity state during firing, and precipitates between the dielectric ceramic layer and the electrode gap during the cooling process. As a result, the space between the dielectric ceramic layer and the electrode becomes dense, and moisture and plating liquid are prevented from penetrating between the two and into the inside of the dielectric ceramic layer. Furthermore, the thin glass layer formed by the above precipitation has high insulation properties. Therefore, according to the present invention, a ceramic capacitor with high dielectric strength and reliability can be provided.

[実施例] 本発明の実施例及び比較例に係わる導電性ペーストとこ
れを使用した積層磁器コンデンサを説明する。
[Example] Conductive pastes according to examples and comparative examples of the present invention and multilayer ceramic capacitors using the same will be described.

本実施例の導電性ペーストは、第1図に示す積層磁器コ
ンデンサ1の作製に使用される。即ち、積層磁器コンデ
ンサ1は、誘電体磁器層2と多数の内部電極3と一対の
外部電極4とから成り、内部電極3の形成に本実施例の
導電性ペーストか使用される。なお、一対の外部室1f
f14は、それぞれNi層4aと銅層4bとPb−3n
半田層4Cとから成る。
The conductive paste of this example is used for manufacturing a multilayer ceramic capacitor 1 shown in FIG. That is, the multilayer ceramic capacitor 1 consists of a dielectric ceramic layer 2, a large number of internal electrodes 3, and a pair of external electrodes 4, and the conductive paste of this embodiment is used to form the internal electrodes 3. In addition, a pair of external rooms 1f
f14 are the Ni layer 4a, the copper layer 4b, and the Pb-3n layer, respectively.
It consists of a solder layer 4C.

内部電極3を形成するための導電性ペーストは、金属粉
末としてのニッケル(Ni)粉末と共材(誘電体磁器粉
末)とガラス粉末とから成る6表の試料No、 1に示
す内部電極形成用導電性ペーストのガラス粉末を得る際
には、 B2O30,99g(1モル%) SiO68,38g <80モル%) B a CO310,67g (3,8モル%)MgO
2,18g (3,8モル%) ZnO4,40g (3,8モル%) SrCO7,98g (3,8モル%)CaC05,4
1g <3.8モル%)を秤量し、これ等にアルコール
を300cc加え、ポリエチレンポットにてアルミナボ
ールを用いて10時間撹拌した後、大気中1000℃で
2時間仮焼し、これを300ccの水と共にアルミナポ
ットに入れ、アルミナボールで15時間粉砕し、しかる
後、150℃で4時間乾燥させてB2O3が1モル%、
S iO2が80モル%、M2O3が19モル%(Ba
2O3が3.8モル%、Mg2O3が3.8モル%、Z
n2O3が3.8モル%、Sr2O3が3.8モル%、
Ca2O3が3.8モル%)の組成の粉末を得な。なお
、MOは表のMOの内容の欄に示すようにそれぞれ20
モル%のBaOlMgO,ZnO,5rO1Ca2O3
がら成る。
The conductive paste for forming the internal electrodes 3 is made of nickel (Ni) powder as a metal powder, a co-material (dielectric ceramic powder), and glass powder, and is shown in Sample No. 1 in Table 6 for forming the internal electrodes. When obtaining glass powder for conductive paste, B2O30,99g (1 mol%) SiO68,38g <80 mol%) B a CO310,67g (3,8 mol%) MgO
2.18g (3.8 mol%) ZnO4.40g (3.8 mol%) SrCO7.98g (3.8 mol%) CaC05.4
1g <3.8 mol%) was weighed, 300cc of alcohol was added to this, stirred for 10 hours using an alumina ball in a polyethylene pot, and then calcined in the air at 1000°C for 2 hours. It was placed in an alumina pot with water, crushed with an alumina ball for 15 hours, and then dried at 150°C for 4 hours, resulting in a B2O3 content of 1 mol%.
SiO2 is 80 mol%, M2O3 is 19 mol% (Ba
2O3 is 3.8 mol%, Mg2O3 is 3.8 mol%, Z
n2O3 is 3.8 mol%, Sr2O3 is 3.8 mol%,
Obtain a powder having a composition of 3.8 mol% Ca2O3. In addition, each MO is 20 as shown in the MO content column of the table.
Mol% BaOlMgO, ZnO, 5rO1Ca2O3
consists of.

次に、前記のガラス粉末10gと、平均粒径1゜0μm
、純度99.9%以上のNi粉末85gと、共材5gと
、エチルセルローズ9gをブチルカルピトール91gに
溶解さぜなものを攪拌機に入れ、5時間粗混合した後ロ
ールミルで1時間混合し、導電性ペーストを調製した。
Next, add 10 g of the above glass powder and an average particle size of 1°0 μm.
, 85 g of Ni powder with a purity of 99.9% or more, 5 g of common materials, and 9 g of ethyl cellulose dissolved in 91 g of butyl calpitol were placed in a stirrer, roughly mixed for 5 hours, and then mixed for 1 hour in a roll mill. A conductive paste was prepared.

なお、エチルセルローズとブチルカルピトールとから成
るビヒクル(Vehicle)の量は、ガラス粉末とN
i粉末と共材との合計を100重量部とした時に同一の
100重量部と成る。また、試料No、 1の共材は、
後述する積層磁器コンデンサの誘電体磁器と同一材料の
粉末から成る。
Note that the amount of vehicle consisting of ethyl cellulose and butyl calpitol is the same as that of glass powder and N.
When the total of i-powder and common material is 100 parts by weight, they are the same 100 parts by weight. In addition, the common materials of sample No. 1 are:
It is made of powder of the same material as the dielectric ceramic of the laminated ceramic capacitor, which will be described later.

次に、この導電性ペーストを使用して積層磁器コンデン
サを作製するために、 (Ca   Sr   Ba   O)(Zro4gT
lO,80,1,0,1 St   )0 0.2  0.01  2 から成る100重量部の基本成分と、L i 20とS
 102とMOとから成る1重量部の添加成分とから成
る誘電体磁器原料を用意した。なお、添加成分の組成は
、 L 120が1モル%、 S 102が80モル%、 M2O3が19モル% であり、MOの内容はそれぞれ20モル%のBaO1M
g01ZnO1SrO,CaOである。
Next, in order to fabricate a multilayer ceramic capacitor using this conductive paste, (CaSrBaO)(Zro4gT
100 parts by weight of the basic component consisting of lO,80,1,0,1 St )0 0.2 0.01 2 and L i 20 and S
A dielectric porcelain raw material consisting of 102 and 1 part by weight of an additive component consisting of MO was prepared. The composition of the additive components is 1 mol% of L120, 80 mol% of S102, 19 mol% of M2O3, and the content of MO is 20 mol% of each BaO1M.
g01ZnO1SrO, CaO.

次に、上記の誘電体磁器原料に有機バインダを加えてよ
く混練してスラリーを得た。次に、このスラリーを厚さ
30μmの複数枚のグリーンシートに成形し、ここに試
料No、 1に従う導電性ペーストを所定パターンにス
クリーン印刷し、乾燥した。
Next, an organic binder was added to the above dielectric ceramic raw material and thoroughly kneaded to obtain a slurry. Next, this slurry was formed into a plurality of green sheets having a thickness of 30 μm, on which a conductive paste according to sample No. 1 was screen printed in a predetermined pattern and dried.

次に、導電性ペーストの印刷面を−1にすると共に、内
部電極3が第1図の配置になるように交互に方向を反対
にしてグリーンシートを30枚積層し、更にこの積層物
の上下両面に厚さ60μmのグリーンシートを4枚ずつ
それぞれ積層して圧着しな後、個々のチップに裁断した
Next, while setting the printed side of the conductive paste to -1, 30 green sheets were stacked alternately in opposite directions so that the internal electrodes 3 were arranged as shown in Figure 1, and then the top and bottom of this stack were stacked. Four green sheets each having a thickness of 60 μm were laminated on both sides and pressed together, and then cut into individual chips.

次に、第1図のチップの一方の端面及び他方の端面に露
出している内部電極3をそれぞれ接続する一対の外部電
極4のNi層4aを得ることができるように、外部電極
用の導電性ペースト(Niペースト)を約50μmの厚
さに塗布し、これを乾燥した。
Next, a conductive layer 4a for a pair of external electrodes 4 connecting the internal electrodes 3 exposed on one end surface and the other end surface of the chip shown in FIG. 1 can be obtained. Ni paste (Ni paste) was applied to a thickness of about 50 μm and dried.

次に、内部電極用導電性ペーストと外部電極用導電性ペ
ーストとを備えた生チップをH2(2体積%)+N2 
(98体積%、)から成る還元性(非酸化性)雰囲気中
において、1160°Cで2時間焼成し、その後、60
0°Cまで降温し、雰囲気を大気雰囲気(酸化性雰囲気
)に置き換えて、600°C130分間の熱処理を行い
、しかる後、室温まで冷却して積層焼結体チップを得た
。更に、N1層4a上に無電解メツキ法で銅層4bを形
成し、更に電気メツキ法でPb−8n半田層4cを形成
し、第1図に示す積層磁器コンデンサ1を完成させた。
Next, the raw chip with the conductive paste for internal electrodes and the conductive paste for external electrodes was mixed with H2 (2% by volume) + N2
(98% by volume) in a reducing (non-oxidizing) atmosphere at 1160°C for 2 hours, then 60%
The temperature was lowered to 0° C., the atmosphere was replaced with an air atmosphere (oxidizing atmosphere), and heat treatment was performed at 600° C. for 130 minutes, followed by cooling to room temperature to obtain a laminated sintered body chip. Further, a copper layer 4b was formed on the N1 layer 4a by electroless plating, and a Pb-8n solder layer 4c was further formed by electroplating, thereby completing the multilayer ceramic capacitor 1 shown in FIG.

この積層磁器コンデンサ1の長さは3.2mI+1、幅
は2.5mm、厚さは0.8mm+である。
This multilayer ceramic capacitor 1 has a length of 3.2 mI+1, a width of 2.5 mm, and a thickness of 0.8 mm+.

この積層磁器コンデンサ1の信頼性試験を行うために、
エポキシ樹脂から成る回路基板上の電極に、200個の
積層磁器コンデンサ1を半田付けし、これ等に直流電圧
50Vをそれぞれ印加した状態で温度85℃、湿度90
%の高温高湿雰囲気中に500時間(h)、1000時
間(h)、2000時間(h)放置した後の絶縁特性を
調べ、一対の外部型@4間の絶縁抵抗が5.0XIO2
MΩ以下のものを不良にした。この結果、表の絶縁不良
数の欄に示すように500h、1000h、2000h
のいずれにおいても200個中の不良数は零であった。
In order to conduct a reliability test of this multilayer ceramic capacitor 1,
200 multilayer ceramic capacitors 1 were soldered to electrodes on a circuit board made of epoxy resin, and a DC voltage of 50 V was applied to each capacitor at a temperature of 85°C and a humidity of 90°C.
The insulation properties after being left in a high temperature and high humidity atmosphere for 500 hours (h), 1000 hours (h), and 2000 hours (h) were investigated, and the insulation resistance between a pair of external molds @4 was 5.0XIO2.
Those with a resistance of less than MΩ were considered defective. As a result, as shown in the column of the number of insulation defects in the table, 500h, 1000h, 2000h
In all cases, the number of defects out of 200 was zero.

試料No、 2〜61についても表に示すように導電性
ペーストの組成及び/又は誘電体磁器材料の組成を変え
た他は試料No、 1と同一方法で導電性ペースト及び
積層磁器コンデンサを作成し、同一の方法で信頼性試験
を行ったところ、表に示す結果か得られた。但し、焼成
温度は誘電体磁器材料の種類に応じて1100〜128
0°Cの範囲で変えた。
For samples Nos. 2 to 61, conductive pastes and multilayer ceramic capacitors were prepared in the same manner as for samples No. 1, except that the composition of the conductive paste and/or the composition of the dielectric ceramic material was changed as shown in the table. When a reliability test was conducted using the same method, the results shown in the table were obtained. However, the firing temperature ranges from 1100 to 128 degrees depending on the type of dielectric porcelain material.
It was varied within the range of 0°C.

表の誘電体の枕には、積層磁器コンデンサ1の誘電体磁
器層2の種類が1〜6で示されている。
The types of dielectric ceramic layers 2 of the multilayer ceramic capacitor 1 are indicated by numbers 1 to 6 on the dielectric pillows in the table.

この表において1で示す第1の誘電体磁器は試料No、
 1のものと同一である。
The first dielectric ceramic indicated by 1 in this table is sample No.
It is the same as 1.

表において2で示す第2の誘電体磁器は、(S r o
、elc a O,37M g o、olZ n、 o
、olo )  (T 10.97” ’ 0.03)
02 から成る100重量部の基本成分と、B 203とSi
O2とMOとから成る2重量部の添加成分とから成る。
The second dielectric ceramic indicated by 2 in the table is (S r o
,elc a O,37M go,olZ n,o
,olo) (T 10.97"' 0.03)
100 parts by weight of basic components consisting of B 203 and Si
and 2 parts by weight of additional components consisting of O2 and MO.

但し、添加成分の組成は、 10モル%のB2O3と、 75モル%のS iO2と、 15モル%のMOと から成り、MOは、 10モル%のBaOと、 20モル%のMgOと、 5モル%のZnOと、 20モル%のSrOと、 45モル%のCaOとから成る。However, the composition of the added ingredients is 10 mol% B2O3, 75 mol% SiO2, 15 mol% MO and The MO consists of 10 mol% BaO, 20 mol% MgO, 5 mol% ZnO, 20 mol% SrO; 45 mol% of CaO.

表において3で示す第3の誘電体磁器は、(Sr   
Ca   O)    (Ti   Zr   )0.
70.3  1.01   0.1  0.9から成る
100重量部の基本成分と、L 120とS 102と
MOとから成る1重量部の添加成分とから成る。但し、
添加成分は、 30モル%のL 120と、 60モル%のSiO2と、 10モル%のMOと から成り、MOは、 20モル%のBaOと、 10モル%のMgOと、 10モル%のZnOと、 30モル%のSrOと、 30モル%のCaOとから成る。
The third dielectric ceramic indicated by 3 in the table is (Sr
CaO) (TiZr)0.
70.3 1.01 0.1 0.9, 100 parts by weight of the base component, and 1 part by weight of additional components, consisting of L 120, S 102 and MO. however,
The additive components consist of 30 mol% L 120, 60 mol% SiO2, and 10 mol% MO, where the MOs are 20 mol% BaO, 10 mol% MgO, and 10 mol% ZnO. , 30 mol% SrO, and 30 mol% CaO.

表において4で示す第4の誘電体磁器は、aTiO3 から成る100重量部の基本成分と、B2O3とS z
 O2とMOとから成る1、5重量部の添加成分とから
成る。但し、添加成分は、 30モル%のB2O3と、 50モル%のS i O2と、 20モル%のMOと から成り、MOは、 20モル%のBaOと、 10モル%のMgOと、 30モル%のZnOと、 20モル%のSrOと、 20モル%のCaOとから成る。
The fourth dielectric ceramic, indicated by 4 in the table, contains 100 parts by weight of a basic component consisting of aTiO3, B2O3 and Sz
It consists of 1.5 parts by weight of additional components consisting of O2 and MO. However, the added components consist of 30 mol% B2O3, 50 mol% SiO2, and 20 mol% MO, and the MO is 20 mol% BaO, 10 mol% MgO, and 30 mol%. % ZnO, 20 mol% SrO, and 20 mol% CaO.

表において5で示す第5の誘電体磁器は、BaTiO3
+0.02CaO から成る100重量部の基本成分と、L l 20とS
 iO2とMOとから成る3重量部の添加成分とから成
る。但し、添加成分の組成は、 5モル%のL 120と、 55モル%のSiO2と、 40モル%のMOと から成り、MOは、 20モル%のBaOと、 20モル%のMgOと、 20モル%のZnOと、 20モル%のSrOと、 20モル%のCaOとから成る。
The fifth dielectric ceramic indicated by 5 in the table is BaTiO3
100 parts by weight of the basic component consisting of +0.02CaO, L l 20 and S
and 3 parts by weight of additional components consisting of iO2 and MO. However, the composition of the additive components is: 5 mol% L120, 55 mol% SiO2, 40 mol% MO, and the MO is: 20 mol% BaO, 20 mol% MgO, 20 It consists of mol% ZnO, 20 mol% SrO, and 20 mol% CaO.

表において6で示す第6の誘電体磁器は、0.97((
Ba  Mgo、o5Cao、o30)1olT iO
) + 0 、03 Ca、 Z r O3から成る1
00重量部の基本成分と、B2O3とS iO2とMO
とから成る0、5重量部の添加成分とから成る。但し、
添加成分は、 50モル%の8203と、 49モル%のS I O2と、 1モル%のMOと から成り、MOは、 10モル%のBaOと、 50モル%のMgOと、 40モル%のCaOとから成る。
The sixth dielectric ceramic indicated by 6 in the table is 0.97((
Ba Mgo, o5Cao, o30) 1olT iO
) + 0 , 03 Ca, 1 consisting of Z r O3
00 parts by weight of basic components, B2O3, SiO2 and MO
and 0.5 parts by weight of additional components. however,
The additive components consist of 50 mol% 8203, 49 mol% SIO2, and 1 mol% MO, where the MOs are 10 mol% BaO, 50 mol% MgO, and 40 mol% It consists of CaO.

各試料Noにおける共材には、各試料NOの誘電体の柵
に示す誘電体磁器の粉末が使用されている6表から明ら
かなように、本発明に従う組成の導電性ペーストを使用
して内部電極を形成すると、85℃、90%の高温高湿
試験で少なくとも2000時間経過しても絶縁不良か発
生しない。
As is clear from Table 6, the dielectric ceramic powder shown in the dielectric fence of each sample No. is used as the common material in each sample No. Once the electrode is formed, insulation failure will not occur even after at least 2000 hours in a high temperature and high humidity test at 85° C. and 90%.

一方、試fJ No、 7.8.9.10.26.31
.32.36.37.41.42.48.51〜61で
は不良が発生し、本発明の目的を達成することができな
い。従って、これ等の試料は本発明の範囲外のものであ
る。
On the other hand, test fJ No. 7.8.9.10.26.31
.. 32, 36, 37, 41, 42, 48, 51 to 61, defects occur and the object of the present invention cannot be achieved. Therefore, these samples are outside the scope of the present invention.

次に、内部電極用導電性ペーストの力1ラス粉末の組成
及び添加量について述べる。カラス粉末の好ましい組成
は、第2図のB2B203−8io2の組成比をモル(
mo l )%で示す三角図に基づいて決定することが
できる。三角図の点1(A)は、試料No、 1のB2
O3が1モル%、S I O2か80モル%、M2O3
が19モル%の組成を示し、点(B)は、試料No、 
2のB2O3が1モル%、5i02が39モル%、M2
O3が60モル%の組成を示し、点(C)は、試料No
、 3のB2O3が29モル%、S i O2が1モル
%、M2O3が70モル%の組戒を示し、点(D)は、
試料No、 4の8203が90モル%、S 102が
1モル%、M2O3が9モル%の組成を示し、点(E)
は、試料No、 5のB2O3が90モル%、S iO
2が9モル%、M2O3が1モル%の組成を示し、点(
F)は試料No、 6のB2O3が19モル%、S 1
02が80モル%、M2O3が1モル%の組成をす。
Next, the composition and amount of the powder of the conductive paste for internal electrodes will be described. The preferred composition of the glass powder is the composition ratio of B2B203-8io2 in Figure 2 (molar)
It can be determined based on the triangular diagram shown in mol)%. Point 1 (A) in the triangular diagram is B2 of sample No. 1
O3 is 1 mol%, S I O2 is 80 mol%, M2O3
shows a composition of 19 mol%, and point (B) is sample No.
B2O3 of 2 is 1 mol%, 5i02 is 39 mol%, M2
O3 shows a composition of 60 mol%, and point (C) is sample No.
, 3 shows a composition of 29 mol% B2O3, 1 mol% SiO2, and 70 mol% M2O3, and point (D) is
Sample No. 4 had a composition of 90 mol% of 8203, 1 mol% of S102, and 9 mol% of M2O3, and point (E)
is sample No. 5, B2O3 is 90 mol%, SiO
It shows a composition of 9 mol% of 2 and 1 mol% of M2O3, and the point (
F) is sample No. 6, B2O3 is 19 mol%, S 1
The composition is 80 mol% of 02 and 1 mol% of M2O3.

本発明の範囲に属する試料の添加成分の組成は三角図の
第1〜第6の点(A)〜(F>を順に結ぶ6本の直線で
囲まれた領域内の組成になっている。試料No、 7.
8.9.10に示すガラス粉末の組成は第2図の第1〜
第6の点(A)〜(F)を結んで示す範囲外であるので
、これを使用した積層磁器コンデンサでは絶縁不良が発
生ずる。
The composition of the additive component of the sample that falls within the scope of the present invention is within the region surrounded by six straight lines connecting the first to sixth points (A) to (F> in the triangular diagram in order). Sample No. 7.
The composition of the glass powder shown in 8.9.10 is as follows from 1 to 1 in Figure 2.
Since it is outside the range shown by connecting the sixth points (A) to (F), insulation failure will occur in a laminated ceramic capacitor using this.

導電性ペースト中のガラス粉末の割合が試料N。The proportion of glass powder in the conductive paste is Sample N.

26.32.37.42に示すように0.5重量%の場
合には不良が発生するが、試料No、 27.33.3
8.43に示すように1重量%の場合には不良が発生し
ない。従って、ガラス粉末の添加量の下限は1重量%で
ある6また、試料NO,31,36,41,48に示す
ようにガラス粉末の添加量が21重量%の以上の場合に
は絶縁不良が発生するが、試料No、 30.35.4
0.47のように20重量%の場合には絶縁不良か発生
しない。従って、ガラス粉末の添加量の上限は20重量
%である。
As shown in 26.32.37.42, defects occur in the case of 0.5% by weight, but sample No. 27.33.3
As shown in 8.43, no defects occur when the amount is 1% by weight. Therefore, the lower limit of the amount of glass powder added is 1% by weight.6 Also, as shown in sample Nos. 31, 36, 41, and 48, if the amount of glass powder added is 21% by weight or more, insulation failure may occur. However, sample No. 30.35.4
If it is 20% by weight, such as 0.47, no insulation failure will occur. Therefore, the upper limit of the amount of glass powder added is 20% by weight.

導電性ペースト中の共材が試料No、 27〜30に示
すように0重量%の場合でも不良が発生しない。
No defects occurred even when the co-material in the conductive paste was 0% by weight as shown in Sample Nos. 27 to 30.

また、試料No38〜40に示すように10重量%の場
合も不良か発生しない。従って、共材は必要に応じて0
〜10重量%の範囲で添加することができる。
Furthermore, as shown in Samples Nos. 38 to 40, no defects occurred even in the case of 10% by weight. Therefore, common materials can be set to 0 if necessary.
It can be added in a range of 10% by weight.

[変形例] 以上、本発明の実施例について述べたが、本発明はこれ
に限定されるものではなく、例えば次の変形が可能なも
のである。
[Modifications] Although the embodiments of the present invention have been described above, the present invention is not limited thereto, and, for example, the following modifications are possible.

(a)  電極中に添加するガラス成分の中に、本発明
の目的を阻害しない範囲で微量のMnOあるいはM n
 02等を添加し、ガラス成分の融点を下げてもよい。
(a) A trace amount of MnO or Mn may be added to the glass component added to the electrode as long as it does not impede the purpose of the present invention.
02 or the like may be added to lower the melting point of the glass component.

(b)  導電性ペーストの金属としてNi以外の卑金
属又は貴金属を使用する場合にも同等の作用効果を得る
ことができる。
(b) Similar effects can be obtained when a base metal or a noble metal other than Ni is used as the metal of the conductive paste.

(c)  共材は導電性ペーストを塗布するグリーンシ
ートの磁器材料と同一であることが望ましいが、全く同
一であることは必要でなく、類似の磁器材料を使用する
ことができる。
(c) It is desirable that the common material is the same as the porcelain material of the green sheet to which the conductive paste is applied, but it is not necessary that it be exactly the same, and similar porcelain materials can be used.

(d)  単層の磁器コンデンサの電極材料にも使用す
ることができる。
(d) It can also be used as an electrode material for single-layer ceramic capacitors.

(e)  外部電極4を形成する前に、内部電極用導電
性ペースト層を含む生チップを焼成し、その後に外部電
極4を形成してもよい。
(e) Before forming the external electrodes 4, a raw chip containing a conductive paste layer for internal electrodes may be fired, and then the external electrodes 4 may be formed.

(f)  還元性雰囲気による焼成の温度を例えば10
50℃〜1300℃の範囲で種々変えることができる。
(f) The temperature of firing in a reducing atmosphere is, for example, 10
The temperature can be varied within the range of 50°C to 1300°C.

また、大気雰囲気における加熱処理温度を500℃〜1
000℃の範囲で変えることができる。
In addition, the heat treatment temperature in the air atmosphere was set at 500°C to 1°C.
It can be varied within a range of 000°C.

(g)  ビヒクルの量は、金属粉末とガラス粉末と必
要に応じて添加させる共材との合計重量を100重量部
とした時に、例えは10〜200重量部の範囲で種々変
えることができる。また、ビしクルの有機バインダ及び
溶剤として公知の種々のものを使用し得る。
(g) The amount of the vehicle can be varied, for example, from 10 to 200 parts by weight, when the total weight of the metal powder, glass powder, and co-materials added as necessary is 100 parts by weight. Furthermore, various known organic binders and solvents can be used for the vehicle.

[発明の効果] 上述のように本発明に係わる導電性ペーストを使用して
磁器コンデンサの電極を形成すると、高温高湿環境によ
る絶縁劣化の少ない磁器コンデンサを提供することがで
きる。
[Effects of the Invention] As described above, when electrodes of a ceramic capacitor are formed using the conductive paste according to the present invention, it is possible to provide a ceramic capacitor with little insulation deterioration due to high temperature and high humidity environments.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係わる積層磁器コンデンサを
原理的に示す一部切欠縦断面図、第2図は導電性ペース
ト中のガラス粉末の組成を示す三角図である。 1・・・積層磁器コンデンサ、2・・・誘電体磁器層、
3・・・内部電極、4・・・外部電極。
FIG. 1 is a partially cutaway vertical sectional view showing the principle of a multilayer ceramic capacitor according to an embodiment of the present invention, and FIG. 2 is a triangular diagram showing the composition of glass powder in a conductive paste. 1... Multilayer ceramic capacitor, 2... Dielectric ceramic layer,
3...Internal electrode, 4...External electrode.

Claims (1)

【特許請求の範囲】 [1]80〜99重量%の金属粉末と1〜20重量%の
ガラス粉末とを含み、 前記ガラス粉末がB_2O_3とSiO_2とMO(但
し、MOはBaO、MgO、ZnO、SrO及びCaO
の内の少なくとも1種の金属酸化物)との組成を示す三
角図における 前記B_2O_3が1モル%、前記SiO_2が80モ
ル%、前記MOが19モル%の点(A)と、前記B_2
O_3が1モル%、前記SiO_2が39モル%、前記
MOが60モル%の点(B)と、前記B_2O_3が2
9モル%、前記SiO_2が1モル%、前記MOが70
モル%の点(C)と、前記B_2O_3が90モル%、
前記SiO_2が1モル%、前記MOが9モル%の点(
D)と、前記B_2O_3が90モル%、前記SiO_
2が9モル%、前記MOが1モル%の点(E)と、前記
B_2O_3が19モル%、前記SiO_2が80モル
%、前記MOが1モル%の点(F)と、を順に結ぶ6本
の直線で囲まれた領域内のものであることを特徴とする
磁器コンデンサの電極用導電性ペースト。 [2]更に、前記磁器コンデンサの誘電体磁器と同一又
は類似の磁器粉末を10重量%以下の範囲で含むことを
特徴とする請求項1記載の磁器コンデンサの電極用導電
性ペースト。 [3]前記金属粉末はニッケル粉末である請求項1又は
2に記載の磁器コンデンサの電極用導電性ペースト。
[Scope of Claims] [1] Contains 80 to 99% by weight of metal powder and 1 to 20% by weight of glass powder, and the glass powder includes B_2O_3, SiO_2, and MO (however, MO is BaO, MgO, ZnO, SrO and CaO
A point (A) where the B_2O_3 is 1 mol%, the SiO_2 is 80 mol%, and the MO is 19 mol% in the triangular diagram showing the composition with the B_2
Point (B) where O_3 is 1 mol%, SiO_2 is 39 mol%, MO is 60 mol%, and B_2O_3 is 2 mol%.
9 mol%, the SiO_2 is 1 mol%, the MO is 70
Point (C) of mol% and the above B_2O_3 is 90 mol%,
The point where the SiO_2 is 1 mol% and the MO is 9 mol% (
D), the B_2O_3 is 90 mol%, the SiO_
Connect in order the point (E) where 2 is 9 mol%, the MO is 1 mol%, and the point (F) where the B_2O_3 is 19 mol%, the SiO_2 is 80 mol%, and the MO is 1 mol% 6 A conductive paste for electrodes of a ceramic capacitor, characterized in that it is within an area surrounded by straight lines. [2] The conductive paste for an electrode of a ceramic capacitor according to claim 1, further comprising 10% by weight or less of a ceramic powder that is the same as or similar to the dielectric ceramic of the ceramic capacitor. [3] The conductive paste for an electrode of a ceramic capacitor according to claim 1 or 2, wherein the metal powder is a nickel powder.
JP7219189A 1989-03-24 1989-03-24 Conductive paste for electrode of ceramic capacitor Pending JPH02251122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7219189A JPH02251122A (en) 1989-03-24 1989-03-24 Conductive paste for electrode of ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7219189A JPH02251122A (en) 1989-03-24 1989-03-24 Conductive paste for electrode of ceramic capacitor

Publications (1)

Publication Number Publication Date
JPH02251122A true JPH02251122A (en) 1990-10-08

Family

ID=13482077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7219189A Pending JPH02251122A (en) 1989-03-24 1989-03-24 Conductive paste for electrode of ceramic capacitor

Country Status (1)

Country Link
JP (1) JPH02251122A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100771757B1 (en) * 2000-02-03 2007-10-30 다이요 유덴 가부시키가이샤 A multi layer ceramic capacitor
JP2018518003A (en) * 2015-04-24 2018-07-05 チャン スン カンパニー、リミテッド Electrode paste composition for chip parts

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60240115A (en) * 1984-05-14 1985-11-29 京セラ株式会社 Laminated porcelain capacitor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60240115A (en) * 1984-05-14 1985-11-29 京セラ株式会社 Laminated porcelain capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100771757B1 (en) * 2000-02-03 2007-10-30 다이요 유덴 가부시키가이샤 A multi layer ceramic capacitor
JP2018518003A (en) * 2015-04-24 2018-07-05 チャン スン カンパニー、リミテッド Electrode paste composition for chip parts

Similar Documents

Publication Publication Date Title
CA2207847C (en) Dielectric ceramic composition and monolithic ceramic capacitor using same
EP0817216B1 (en) Dielectric ceramic composition and monolothic ceramic capacitor using same
US6108192A (en) Dielectric ceramic composition and ceramic electronic parts using the same
JP5104761B2 (en) Ceramic substrate and manufacturing method thereof
US5065275A (en) Multilayer substrate with inner capacitors
JP5003683B2 (en) Glass ceramic composition, glass ceramic sintered body, and multilayer ceramic electronic component
US7211533B2 (en) Oxide porcelain composition, ceramic multilayer substrate, and ceramic electronic component
JPWO2008018408A1 (en) Glass ceramic composition, glass ceramic sintered body, and multilayer ceramic electronic component
JP2666388B2 (en) Multilayer ceramic capacitors
JP3471839B2 (en) Dielectric porcelain composition
JPH053131A (en) Multilayer ceramic capacitor and manufacture thereof
JP3851295B2 (en) Low temperature fired dielectric composition, multilayer ceramic capacitor and ceramic electronic component
JPH02251122A (en) Conductive paste for electrode of ceramic capacitor
JPH04260314A (en) Ceramic laminate
JPH01166599A (en) Manufacture of laminated ceramic substrate
JPH02251121A (en) Conductive paste for electrode of porcelain capacitor
JP3158553B2 (en) Non-reducing dielectric ceramic composition
JP2784545B2 (en) Dielectric ceramic composition for composite circuit board
JP2518184B2 (en) Monolithic ceramic capacitors
JP3134430B2 (en) Non-reducing dielectric ceramic composition
JPS6224385B2 (en)
JP2652229B2 (en) Multilayer circuit ceramic substrate
JPH088190B2 (en) Multilayer ceramic capacitors
JPH04260316A (en) Ceramic laminate
JPH07326540A (en) Multilayer capacitor and its manufacture