JPH02248044A - Formation of oxide film - Google Patents

Formation of oxide film

Info

Publication number
JPH02248044A
JPH02248044A JP6765789A JP6765789A JPH02248044A JP H02248044 A JPH02248044 A JP H02248044A JP 6765789 A JP6765789 A JP 6765789A JP 6765789 A JP6765789 A JP 6765789A JP H02248044 A JPH02248044 A JP H02248044A
Authority
JP
Japan
Prior art keywords
substrate
oxide film
heated
film thickness
torr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6765789A
Other languages
Japanese (ja)
Inventor
Yoshinari Matsumoto
松本 良成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6765789A priority Critical patent/JPH02248044A/en
Publication of JPH02248044A publication Critical patent/JPH02248044A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To eliminate a reduction and a variability in a breakdown strength per unit film thickness even if the film thickness of an oxide film is 100Angstrom thinner by a method wherein before the surface of an Si substrate is oxidized, the substrate is heated in a vacuum exceeding 10<-8>Torr. CONSTITUTION:An Si substrate is subjected to RCA cleaning and pure cleaning and is dried. Then, the substrate is put in a molecular beam epitaxial device and after being heated in a vacuum exceeding 10<-8>Torr, the substrate is cooled and is taken out. Then, while hydrogen and oxygen are flowed in a flow rate ratio of 1:1, the substrate is put in a core tube heated to 1000 deg.C and an oxidation is performed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は酸化膜形成方法に関し、さらに詳しくは、シリ
コン(S r >集積回路製造段階での製造歩留まりや
、特に集積回路を構成する基本素子構造であるところの
金属/絶縁膜/半導体()letalOxide Se
m1conductor :通称MO8)構造電界効果
トランジスタの特性に影響を与える絶縁膜/半導体構造
の形成に際して適用される酸化膜形成方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for forming an oxide film, and more specifically, the present invention relates to a method for forming an oxide film, and more particularly, to a method for forming an oxide film, and more particularly, to a method for forming an oxide film, it is particularly concerned with the production yield of silicon (S r Structure of metal/insulating film/semiconductor ()letalOxide Se
The present invention relates to an oxide film forming method applied to the formation of an insulating film/semiconductor structure that affects the characteristics of a field effect transistor.

[従来の技術] 3i集積回路の製造段階、特にS 1−MOSトランジ
スタの製作には3i表面の酸化が随所で行われる。酸化
の方法はいろいろあるが、3iつ工−ハの洗浄等を行っ
たあとで酸素あるいは若干の水分を含んだ炉の中で10
00℃程度で行うものであった。
[Prior Art] Oxidation of the 3i surface is frequently performed during the manufacturing stage of 3i integrated circuits, especially in the fabrication of S1-MOS transistors. There are various methods of oxidation, but after 3 times of cleaning, etc., it is oxidized in a furnace containing oxygen or a little moisture.
It was to be carried out at about 00°C.

[発明が解決しようとする課題] しかし、こうしてできあがった3iと酸化膜の界面に問
題があることが最近わかってきた。すなわち、LSIが
高密度化するに従って、要求される酸化膜厚が薄くなっ
てくることは、良く知られたスケール則からの要請であ
るが、酸化膜厚が100Å以下にもなると酸化膜の単位
膜厚あたりの耐圧のウェーハ内のバラツキや低下が著し
くなるなどの問題が生じている。
[Problems to be Solved by the Invention] However, it has recently been found that there is a problem with the interface between 3i and the oxide film thus formed. In other words, as LSI density increases, the required oxide film thickness becomes thinner, which is a requirement from the well-known scale law, but when the oxide film thickness becomes less than 100 Å, the oxide film unit becomes thinner. Problems have arisen, such as a significant variation or decrease in breakdown voltage per film thickness within a wafer.

こうした原因については現在明らかではないが、最近の
電子顕微鏡による格子像に代表される原子レベルでの観
察手段によれば、Si/酸化膜界面に凹凸があること等
が明らかになっている。この凹凸は通常、数原子層であ
るが、場合によっては10原子層程度に及ぶこともある
。数原子層程度の凹凸は、数ないし10人程度の酸化膜
厚の変動に焼き直すことができるが、酸化膜が数100
への場合には問題とならなかったこの界面での凹凸が1
00人を切るようになると顕在化することは容易に想像
できる。
Although the cause of this is not clear at present, recent observation methods at the atomic level, such as lattice images using an electron microscope, have revealed that there are irregularities at the Si/oxide film interface. This unevenness is usually several atomic layers, but may extend to about 10 atomic layers in some cases. Irregularities on the order of several atomic layers can be recalculated into variations in oxide film thickness on the order of a few to 10 layers, but if the oxide film is on the order of several hundred
The unevenness at this interface, which was not a problem in the case of
It is easy to imagine that this will become more obvious when the number of people falls below 00.

本発明は、以上述べたような従来の問題点を解決するた
めになされたもので、膜厚が100Å以下においても単
位膜厚あたりの耐圧低下やバラツキのない酸化膜を形成
する方法を提供することを目的とする。
The present invention was made in order to solve the conventional problems as described above, and provides a method for forming an oxide film without a drop in breakdown voltage or variation per unit film thickness even when the film thickness is 100 Å or less. The purpose is to

[課題を解決するための手段] 本発明は、8i基板表面を酸化するに先立って、10−
8Torrを超える真空内で3i基板を加熱してなるこ
とを特徴とする酸化膜形成方法である。
[Means for Solving the Problems] The present invention provides that, prior to oxidizing the surface of an 8i substrate, a 10-
This is an oxide film forming method characterized by heating a 3i substrate in a vacuum exceeding 8 Torr.

本発明の方法において、3i基板を10−8Torrを
超える真空中で加熱する時の温度は、800〜1100
℃程度が適当である。
In the method of the present invention, the temperature when heating the 3i substrate in a vacuum exceeding 10-8 Torr is 800 to 1100 Torr.
Approximately ℃ is appropriate.

[作用] 3i表面は、通常、化学機械研磨により鏡面研磨されて
いる。3i表面は酸化に先立って、有機溶媒を用いての
洗浄、あるいは硝酸や硫酸中での煮沸や、RCA洗浄と
通称される処理が行われる。
[Operation] The 3i surface is usually mirror polished by chemical mechanical polishing. Prior to oxidation, the 3i surface is washed with an organic solvent, boiled in nitric acid or sulfuric acid, or subjected to a treatment commonly called RCA washing.

化学機械研磨面は通常の光学的手段によっては十分に鏡
面であるとみなぜるものであるが、原子層レベルでは激
しい凹凸が存在する。
Although the chemical mechanically polished surface can be considered to be a mirror surface by ordinary optical means, severe irregularities exist at the atomic layer level.

しかしこの凹凸は、前記したような酸化に先立つ表面処
理ではその軽減はほとんど期待できない。
However, this unevenness can hardly be expected to be reduced by surface treatment prior to oxidation as described above.

事実、こうしたSi表面に凹凸が存在することは、こう
した処理後に3i表面を酸化し、できあがった3iとS
iO2の界面を断面電子顕微鏡観察することで認めるこ
とができる。
In fact, the existence of such irregularities on the Si surface is due to the oxidation of the 3i surface after such treatment, and the resulting 3i and S
This can be recognized by observing the iO2 interface using a cross-sectional electron microscope.

本発明ではこの酸化に先立つSi表面の原子層レベルで
の凹凸を軽減するために、10−8Torrを超える真
空中で加熱する。こうした熱処理段階では、3i表面付
近を構成する3i原子の移動度が高く、3i表面の凹凸
が整理されて1原子層程度のステップに整理されること
は分子線エピタキシャル成長法など表面処理結果より明
らかにされてきた。
In the present invention, in order to reduce the unevenness of the Si surface at the atomic layer level prior to this oxidation, heating is performed in a vacuum exceeding 10 −8 Torr. At this heat treatment stage, the mobility of the 3i atoms constituting the vicinity of the 3i surface is high, and it is clear from surface treatment results such as molecular beam epitaxial growth that the unevenness of the 3i surface is organized into steps of about one atomic layer. It has been.

すなわち、このように、3i表面を1原子層程度のステ
ップにした後に表面酸化工程に入ると、得られる酸化膜
/Si界面においても凹凸は軽減され、1原子層程度の
ステップしか存在しない界面が得られる。
In other words, if the surface oxidation process is started after the 3i surface is made into steps of about one atomic layer, the unevenness of the resulting oxide film/Si interface will be reduced, and the interface with only steps of about one atomic layer will be reduced. can get.

[実施例] 以下、本発明の実施例について詳細に説明する。[Example] Examples of the present invention will be described in detail below.

ここでは3i基板をまずRCA洗浄、純粋洗浄を行い、
乾燥した。次に、81基板を分子線エピタキシャル装置
に入れ、10” Torr以下の真空にした後、温度9
00’Cに上昇し、約20分間加熱した。この加熱後の
ウェー八表面を分子線エピタキシャル装置付属のRHE
ED装置により観察すると、表面構造は3i基板表面が
(100)面の場合には2X1、(111)の場合には
7X7構造が再現性よく現れた。分子線エピタキシャル
装置内での加熱処理が終わったウェーハを冷却後、取り
出し、水素および酸素を流量比1:1で流しつつ、10
00℃に加熱した炉心管の中に挿入し、酸化を行った。
Here, we first performed RCA cleaning and pure cleaning on the 3i board.
Dry. Next, the 81 substrate was placed in a molecular beam epitaxial apparatus, and after creating a vacuum of 10" Torr or less, the temperature was reduced to 9.
00'C and heated for about 20 minutes. After this heating, the surface of the wafer was heated using an RHE attached to a molecular beam epitaxial device.
When observed using an ED device, a 2X1 surface structure appeared when the 3i substrate surface was a (100) plane, and a 7X7 structure appeared when the 3i substrate surface was a (111) plane with good reproducibility. After cooling the wafer after the heat treatment in the molecular beam epitaxial apparatus, it was taken out and heated for 10 minutes while flowing hydrogen and oxygen at a flow rate ratio of 1:1.
It was inserted into a furnace tube heated to 00°C and oxidized.

得られた酸化膜厚は50人である。The thickness of the obtained oxide film is 50.

以上のようにして形成したSi基板表面酸化層について
、断面電子顕微鏡観察を行って評価すると共に、その耐
圧を測定した。まず、基板のかなりの広範囲な断面電子
顕微鏡観察を行ったところ、1原子層の凹凸は存在する
ものの、3原子層以上の凹凸が存在する場合はないと判
断された。また、耐圧のテストは先端直径20へのタン
グステン針を酸化膜にたて、1mm間隔で行ったところ
、9×106■/CIRと極めて高い値を示し、またそ
のバラツキは±2%以下の優れた値を示した。耐圧測定
の結果は50人のSiO2膜厚が3i結晶の1原子層程
度のバラツキにおさまっていることを示唆するものと言
える。
The oxidized layer on the surface of the Si substrate formed as described above was evaluated by observation using a cross-sectional electron microscope, and its breakdown voltage was measured. First, when a fairly wide cross-section of the substrate was observed with an electron microscope, it was determined that although unevenness of one atomic layer was present, there were no cases of unevenness of three or more atomic layers. In addition, the pressure resistance test was conducted by placing a tungsten needle with a tip diameter of 20 mm on the oxide film at 1 mm intervals, and it showed an extremely high value of 9 x 106 /CIR, and the variation was less than ±2%. The value was shown. The results of the breakdown voltage measurements can be said to suggest that the variation in the SiO2 film thickness of the 50 people was within the range of about one atomic layer of 3i crystal.

上記のようなSi基板表面酸化層についての分析結果は
、複数のSi基板について再現性よく得ることができた
The analysis results for the Si substrate surface oxide layer as described above could be obtained with good reproducibility for a plurality of Si substrates.

[発明の効果] 以上説明したように、本発明によれば酸化膜厚が極めて
小さい場合でも単位膜厚あたりの耐圧低下がなく、また
そのバラツキも小さく抑えられた酸化膜形成方法が提供
される。
[Effects of the Invention] As explained above, according to the present invention, an oxide film forming method is provided in which there is no drop in breakdown voltage per unit film thickness even when the oxide film thickness is extremely small, and the variation thereof is suppressed to a small level. .

Claims (1)

【特許請求の範囲】[Claims] (1)Si基板表面を酸化するに先立って、10^−^
8Torrを超える真空内でSi基板を加熱してなるこ
とを特徴とする酸化膜形成方法。
(1) Prior to oxidizing the Si substrate surface, 10^-^
An oxide film forming method characterized by heating a Si substrate in a vacuum exceeding 8 Torr.
JP6765789A 1989-03-22 1989-03-22 Formation of oxide film Pending JPH02248044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6765789A JPH02248044A (en) 1989-03-22 1989-03-22 Formation of oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6765789A JPH02248044A (en) 1989-03-22 1989-03-22 Formation of oxide film

Publications (1)

Publication Number Publication Date
JPH02248044A true JPH02248044A (en) 1990-10-03

Family

ID=13351305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6765789A Pending JPH02248044A (en) 1989-03-22 1989-03-22 Formation of oxide film

Country Status (1)

Country Link
JP (1) JPH02248044A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63111630A (en) * 1986-10-30 1988-05-16 Fujitsu Ltd Manufature of semiconductor device
JPS63199434A (en) * 1987-02-16 1988-08-17 Oki Electric Ind Co Ltd Forming method for insulating film
JPS6450534A (en) * 1987-08-21 1989-02-27 Seiko Instr & Electronics Method of forming oxide film of element semiconductor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63111630A (en) * 1986-10-30 1988-05-16 Fujitsu Ltd Manufature of semiconductor device
JPS63199434A (en) * 1987-02-16 1988-08-17 Oki Electric Ind Co Ltd Forming method for insulating film
JPS6450534A (en) * 1987-08-21 1989-02-27 Seiko Instr & Electronics Method of forming oxide film of element semiconductor

Similar Documents

Publication Publication Date Title
JPH03129735A (en) Growth correction thermooxidation process for thin film oxide
JPH0997789A (en) Manufacture of semiconductor device
US2948642A (en) Surface treatment of silicon devices
US5704986A (en) Semiconductor substrate dry cleaning method
JPH01315144A (en) Silicon wafer of excellent gettering capacity and its manufacture
JPH03120365A (en) Sio2-adhering process
JP3122125B2 (en) Method of forming oxide film
US5189508A (en) Silicon wafer excelling in gettering ability and method for production thereof
JPH1131691A (en) Method for forming thermal oxidized film for silicon carbide semiconductor device
US5759426A (en) Heat treatment jig for semiconductor wafers and a method for treating a surface of the same
JP3116487B2 (en) Method for manufacturing semiconductor epitaxial substrate
JPH02248044A (en) Formation of oxide film
JP3042659B2 (en) Method for oxidizing semiconductor wafer
JP3292545B2 (en) Heat treatment method for semiconductor substrate
KR100287266B1 (en) Silicon oxide film formation method and gate oxide film of MOS transistor
CN115206789A (en) Silicon carbide ohmic contact and preparation method thereof
JP3210510B2 (en) Method for manufacturing semiconductor device
JP4305800B2 (en) Method for evaluating nitride on silicon wafer surface
JP3565068B2 (en) Heat treatment method for silicon wafer and silicon wafer
JPH11176828A (en) Forming method for silicon oxide film
JP2602598B2 (en) Semiconductor substrate processing method
JP2901421B2 (en) Silicon wafer manufacturing method
JPH06196459A (en) Manufacture of semiconductor silicon wafer
JPH0223023B2 (en)
JP3238957B2 (en) Silicon wafer