JPH02247469A - Method and apparatus for cooling - Google Patents

Method and apparatus for cooling

Info

Publication number
JPH02247469A
JPH02247469A JP6353589A JP6353589A JPH02247469A JP H02247469 A JPH02247469 A JP H02247469A JP 6353589 A JP6353589 A JP 6353589A JP 6353589 A JP6353589 A JP 6353589A JP H02247469 A JPH02247469 A JP H02247469A
Authority
JP
Japan
Prior art keywords
cooling
air
temperature
compressor
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6353589A
Other languages
Japanese (ja)
Inventor
Kenzo Hoshino
星野 謙三
Yoji Uchiyama
内山 洋司
Seigou Kadoyu
角湯 正剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP6353589A priority Critical patent/JPH02247469A/en
Publication of JPH02247469A publication Critical patent/JPH02247469A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve cooling efficiency without heating the periphery of an apparatus and also without using Freon by utilizing a compressor which compresses gas or vapor under the condition of a substantially isothermal change and a less increase in temperature. CONSTITUTION:The structure of a compressor is designed to compress air in a cylinder 18 by a piston 19, and air that has entered the cylinder 18 through an air feed valve 20 is pressurized and discharged through a valve 21. If a PQ plane is not moved forward, PR, RS and SQ planes do not move, and accordingly the air in the cylinder 18 is neither elevated in its pressure nor increased in its temperature. With the movement of the PQ plane, the air is compressed to increase its temperature. Therefore, if a coolant is constantly ejected from a nozzle 38 toward the PQ plane, the PQ plane is cooled and can compress the air while cooling it. The compressed air and the coolant pass through the valve 21 and a passage 23 to be accumulated in an accumulator 25 and cooled by a cooler 26, and then passes through a coolant feed pump 29 and a passage 39 via a passage 27 to be again ejected from the nozzle 38. In this case, air in an air-cooling room is sent into the cooler 26 by a pump 30 and allowed to pass through a cooling fluid passage 31, whereby the coolant can be cooled at the part of a cooler passage 32.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は,建物、材料等の冷房、冷凍に使用される方法
及び装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method and apparatus used for cooling and freezing buildings, materials, etc.

(従来の技術とその問題点) 現在、使用されている冷却装置の中でもっとも能率的な
方法として冷媒としてフロンガスを使用し、フロンガス
を該圧縮して、この冷却し、フロン液とし、液を低圧空
間で蒸発させて空間を冷却した部分によってその周りを
冷却している。しかし、この場合、フロンガスを圧縮す
る場合には圧縮によりガス温度が常温より遥かに上昇す
るのでこれを冷却する時、大気中に熱を放散するので冷
却袋・置の外側は温度が高(なる欠点があると共に圧縮
するのにその分だけ動力を浪費もしている。
(Prior art and its problems) Currently, the most efficient method of cooling equipment in use uses fluorocarbon gas as a refrigerant, compresses the fluorocarbon gas, cools it, and converts it into a fluorocarbon liquid. The area around it is cooled by evaporating it in a low-pressure space and cooling the space. However, in this case, when compressing fluorocarbon gas, the gas temperature rises far above room temperature due to compression, so when it is cooled, the heat is dissipated into the atmosphere, so the temperature outside the cooling bag/place is high. Not only does it have its drawbacks, but it also wastes power to compress it.

現在ζこの方法では冷媒としてフロンが一番性能が良い
とさているがフロンは大気を害すると言うことで出来た
ら使用しないですませたい。
Currently, it is said that chlorofluorocarbons have the best performance as a refrigerant in this method, but fluorocarbons are said to harm the atmosphere, so I would like to avoid using them if possible.

この発明は、周囲を熱することなく、又、フロンを使用
しないで能率の良い冷凍装置を供給するためのである。
The purpose of this invention is to provide an efficient refrigeration system that does not heat the surrounding area or use Freon.

(問題点を解決するためにの手段) 冷凍装置の熱力学的な線図の一例を第6図に示す横軸に
気体、或いは薫気の比体積(単位質量の体積)縦軸に圧
力を示す、P、は大気圧とじPaは圧縮柱わりの圧力と
すると、通常Aの気体をP。
(Means for solving the problem) An example of a thermodynamic diagram of a refrigeration system is shown in Figure 6. The horizontal axis represents the specific volume of gas or fume (volume per unit mass), and the vertical axis represents pressure. As shown, P is the atmospheric pressure and Pa is the pressure of the compressed column.Usually, the gas of A is P.

からP8まで圧縮すると断熱圧縮に近い線で圧縮され、
温度が上昇してB′となる B rで膨張させると、や
はり断熱膨張となり B を八になって、温度が下って
もとの八に戻るので圧縮する前の温度となり、気体は冷
却しない、それで現在は、圧縮して高温なったB′の状
態より大気等で冷却して同じ圧力で大気圧の温度まで冷
却すると比体積は小さくなり、Bの状態になるからBで
断熱膨張すればCの状態となるがCはAより比体積が小
さいのでAよりも温度が低くなるからCから八に移る間
に周りから熱を奪って冷凍室を冷却する。
When compressed from to P8, it is compressed at a line close to adiabatic compression,
The temperature rises and becomes B'. When the gas is expanded by B, it also undergoes adiabatic expansion, and B becomes 8. When the temperature decreases, it returns to the original 8, so it returns to the temperature before compression, and the gas is not cooled. So, currently, if we cool the compressed and high temperature state B' in the atmosphere, etc. and cool it down to the atmospheric pressure temperature at the same pressure, the specific volume will become smaller and we will be in the state B, so if we adiabatically expand at B, then C However, since C has a smaller specific volume than A, its temperature is lower than that of A, so during the transition from C to 8, heat is taken from the surroundings to cool the freezer compartment.

(49の矢印で示すようにaの方は高温、bの方は低温
となる。) しかし、B′からBに移る間は周りの大気を熱するので
、冷却装置の外気は温度が高(なり、大気の温度はどう
しても上昇する。
(As shown by the arrow 49, the temperature at point a is high and the temperature at point b is low.) However, during the transition from B' to B, the surrounding atmosphere is heated, so the temperature of the outside air of the cooling device is high ( As a result, the atmospheric temperature will inevitably rise.

これをなくすためには、Aより直接已に行けばよい、そ
のために温度の上昇か0が非常に少ない圧縮機を使用す
ることにより、周りの大気温を殆ど上昇させないで建物
や材料を冷却することが出来る。
In order to eliminate this, you can go directly to A. To do this, use a compressor with very little temperature rise or zero, which cools buildings and materials without raising the surrounding atmospheric temperature. I can do it.

温度上界がOか非常に少ない圧縮機は変位型圧縮では第
3図、第4図のようにピストン表面PQ面を冷却するこ
とにより実現出来、又、速度型圧縮機では例えば第5図
に示した遠心式圧縮機のようにディフューザーの表面P
Q面を冷却することにより実現される。PQ面は気体の
圧力を上昇させると同時に温度も上昇させるからである
A compressor with a temperature upper limit of O or very small can be realized in a displacement type compression by cooling the piston surface PQ as shown in Figures 3 and 4, and in a velocity type compressor, for example, as shown in Figure 5. As shown in the centrifugal compressor, the diffuser surface P
This is achieved by cooling the Q plane. This is because the PQ surface increases the pressure of the gas and simultaneously increases the temperature.

(関連特許時H63−28031.特1!!l!1−8
572・) それ故、PQ面を反対に冷却すれば気体の圧力は上昇す
るが温度は上昇しないようになる。
(Related patent H63-28031.Special 1!!l!1-8
572・) Therefore, if the PQ surface is cooled in the opposite direction, the pressure of the gas will increase, but the temperature will not increase.

(作    用) 一般に気体は高圧より低圧に断熱膨張させると温度が下
がる0例えば、空気の場合、9に17cm”より大気圧
(ζ1 にg/cs+” )まで断熱膨張させると25
0℃近く温度が下がるが圧縮するのに断熱圧縮すると同
様に温度が上昇するので圧縮したまますぐに膨張させて
も温度は下がらない、しかし、前述のように温度をあま
り上昇させないで圧縮出来れば断熱膨張により温度は2
50 ”Cも下がるので低温の空気が得れる。そのため
に第6図のようにへの状態の気体を等温線へBに沿って
圧縮すればよい、そのためには、圧縮しながら冷却する
方法をとれば多段圧縮と同様な折れ線AB″となり、A
l3aに近くなる。前述のようにI’Q面は気体を加熱
する基となる面と言える面であるからこのPQ面を冷却
することにより、連続的な多段圧縮の効果を得ることが
出来る。このようにして得られたB′を断熱膨張すれば
C点に近いC′の状態となり、冷凍室の温度りより低い
温度が得られる、冷凍室を冷やした温度りの気体を冷房
室に導き、冷房室をEの温度まで下げることが出来る。
(Function) In general, when a gas is adiabatically expanded from a high pressure to a low pressure, its temperature decreases.For example, in the case of air, when it is adiabatically expanded from 9 to 17 cm to atmospheric pressure (ζ1 to g/cs+”), the temperature decreases to 25.
The temperature drops near 0 degrees Celsius, but the temperature rises in the same way as adiabatic compression, so even if you expand immediately after compression, the temperature will not drop.However, as mentioned above, if you can compress without raising the temperature too much, then the temperature will rise. Due to adiabatic expansion, the temperature is 2
Since the temperature also drops to 50"C, we can obtain low-temperature air. To do this, we need to compress the gas in the state of B along the isothermal line B as shown in Figure 6. To do this, we need a method of cooling while compressing. If taken, it becomes a polygonal line AB'' similar to multi-stage compression, and A
It becomes close to l3a. As mentioned above, since the I'Q surface can be said to be the surface that becomes the basis for heating the gas, by cooling this PQ surface, the effect of continuous multi-stage compression can be obtained. If B' obtained in this way is expanded adiabatically, it will be in the state of C', which is close to point C, and a temperature lower than that of the freezer compartment will be obtained.The gas at the temperature of the freezer compartment will be guided into the cooling compartment. , it is possible to lower the temperature of the cooling room to E.

(実  施  例) 本発明の実施例を図面について説明すると、建物3の冷
凍室!、冷房室2を冷却するため、5の空気取入口より
ストレーナ−6予冷装T!、8、通路9を通り、予冷装
W8において冷房室2より送出口16を通り、予冷管7
に送られた冷たい空気により予冷された空気が10の給
気口よ°す、圧縮機l2に入り、高圧の空気となって吐
出管13を経て膨張室14より吐出し、冷たい空気とな
って冷凍jlflを冷凍して吹出口15より冷房室に送
られ、送出口16より予成パイプ、7番通って出口17
・より冷たい空気が屋外4に出て、屋外も冷やすことが
出来る。11はドレン抜きです、このとき、圧IIi′
Iv112により吐出管13に送られる空気の温度が低
くないと膨張室14より吐出された空気が冷たくない、
それに適する圧縮機の構造としては第3図に示すように
シリンダー18内の空気をピストン19で圧縮し、20
の給気弁より、入った空気を高圧にして弁21から吐出
する場合を説明すると、シリンダー18内の空気はPQ
面が動かなければr>rt、ps%SQ面は動かないの
で圧力、温度とも上昇しない、PQ面が動くことにより
、圧縮、温度が上昇を抑えることが出来る。そのため3
8のノズルより、冷却液を常時面PQに注げばPQ面は
冷却して空気を冷却しながら圧縮することが出来る。圧
縮空気と冷却液は21の弁、23の通路より25のアキ
ニームレータ−に溜まり、26のクーラーで冷却され、
27の通路より送液ポンプ29、通路39を通り再び3
8のノズルより噴出される。このとき、クーラー26に
は冷房室の空気を30より送り、31に通すことにより
320部分で液を冷却することが出来る。
(Example) An example of the present invention will be described with reference to the drawings. A freezing room in building 3! , In order to cool the cooling room 2, the strainer 6 is pre-cooled from the air intake port 5! , 8, passes through the passage 9, passes through the outlet 16 from the cooling chamber 2 in the precooling unit W8, and passes through the precooling pipe 7.
The air pre-cooled by the cold air sent to the compressor 12 enters the compressor 12 through the air supply port 10, becomes high pressure air, is discharged from the expansion chamber 14 through the discharge pipe 13, and becomes cold air. The frozen jlfl is frozen and sent to the cooling room from the air outlet 15, passes through the preparatory pipe from the air outlet 16, and passes through the outlet 17 through the air outlet 16.
・Cooler air goes outside 4, making it possible to cool the outside as well. 11 is draining, at this time pressure IIi'
If the temperature of the air sent to the discharge pipe 13 by Iv112 is not low, the air discharged from the expansion chamber 14 will not be cold.
As shown in FIG. 3, the structure of a compressor suitable for this purpose is to compress the air in a cylinder 18 with a piston 19,
To explain the case where the air entering the cylinder 18 is made high pressure and discharged from the valve 21, the air inside the cylinder 18 is PQ.
If the surface does not move, r>rt, ps% Since the SQ surface does not move, neither pressure nor temperature will rise. By moving the PQ surface, compression and temperature increases can be suppressed. Therefore 3
If the cooling liquid is constantly poured onto the surface PQ from the nozzle 8, the PQ surface can be cooled and the air can be compressed while being cooled. Compressed air and cooling liquid are collected in 25 akinimulators through 21 valves and 23 passages, and are cooled by 26 coolers.
From the passage 27, the liquid feed pump 29 passes through the passage 39 and returns to the passage 3.
It is ejected from 8 nozzles. At this time, air from the cooling room is sent to the cooler 26 from 30 and passed through 31, so that the liquid can be cooled at 320.

第4図は、冷却液33をピストン19で押して通路34
より圧縮室50に送り、弁2oより入った空気を液面3
6で圧縮する型のものでこの場合は液面3GがPQ面と
なり、34を通して常に冷えた冷却液を注水35するこ
とにより空気を冷却して圧縮弁21より吐出する。弁3
7はバルブでピストンが戻るときに弁37を通って液が
シリンダーに入る。又、液はm路3o、31を通して冷
たい空気を送ることにより冷却出来る。
FIG. 4 shows that the piston 19 pushes the coolant 33 into the passage 34.
The air is sent to the compression chamber 50 from the valve 2o, and the air that enters from the valve 2o is lowered to the liquid level 3.
In this case, the liquid level 3G becomes the PQ level, and the air is cooled by constantly injecting cold cooling liquid 35 through 34 and discharged from the compression valve 21. Valve 3
7 is a valve, and when the piston returns, liquid enters the cylinder through valve 37. The liquid can also be cooled by sending cold air through the m-paths 3o and 31.

第5図は、速度型圧縮機を使用する場合の圧縮機の構造
を示す、ポンプ43の羽根42を持ったランナー41が
軸40とともにベアリング48に与えられて回転し、入
口47より入った空気、ランナー41.羽根42により
加速されてディフューザー44に入って圧力が上界する
。この場合、ディフューザーと空気の接触面がPQとな
るのでノズル38より冷却液を接触面に注ぎ、PQil
flを冷却する。冷却液は圧縮空気とともに渦室45に
貯えられ、ドレーン46、通、路24、パルプ37、ク
ーラー26、通路27よりタンク28に貯えられ、ポン
プ29.3Ii路39よりノズル38に送られる。この
ようにしてPQ面を冷却し、空気の温度の上界を抑えて
圧縮することが出来るので膨張による低温効果が大きく
なる。
FIG. 5 shows the structure of a compressor when a speed type compressor is used. A runner 41 with vanes 42 of a pump 43 is rotated together with a shaft 40 by a bearing 48, and air enters from an inlet 47. , runner 41. The air is accelerated by the vanes 42 and enters the diffuser 44, where the pressure rises. In this case, since the contact surface between the diffuser and the air is PQ, coolant is poured from the nozzle 38 onto the contact surface, and PQil
Cool fl. The cooling liquid is stored in the vortex chamber 45 together with compressed air, and is stored in the tank 28 through the drain 46, the passage 24, the pulp 37, the cooler 26, and the passage 27, and is sent to the nozzle 38 through the pump 29.3Ii passage 39. In this way, the PQ surface can be cooled and compressed while suppressing the upper limit of the air temperature, thereby increasing the low temperature effect due to expansion.

(発明の効果) 以上のように本発明の冷却力及び装置によれば気体、或
いは蒸気を圧縮する際、殆ど等温変化に近<、温度上界
が少ない圧縮機を使用することにより、冷却効果の優れ
た冷凍機冷房装置を得るので非常に能率良く建物、材料
等を冷却することが出来る。その上、圧縮に際して無駄
な温度上昇が少なくないので必要な動力も節減出来る上
、従来のものは室内が冷える場合、室外に熱を放出する
欠点があったがこのような不都合なことは少なくするこ
とが出来る。更にフロンガスのような公害材料を冷媒と
して使用しなくてもすむ上、直接新鮮な空気を冷やして
換気を行うことも出来るので社会的にも喜ばれるものと
思われる。
(Effects of the Invention) As described above, according to the cooling power and apparatus of the present invention, when compressing gas or vapor, the cooling effect can be improved by using a compressor with almost isothermal change and a small temperature upper limit. This provides an excellent refrigerator cooling system that can cool buildings, materials, etc. very efficiently. Furthermore, since there is a considerable amount of unnecessary temperature rise during compression, it is possible to reduce the amount of power required.In addition, conventional methods have the disadvantage of emitting heat outside when the room gets cold, but this inconvenience is reduced. I can do it. Furthermore, it eliminates the need to use polluting materials such as fluorocarbon gas as a refrigerant, and it is also possible to directly cool fresh air for ventilation, which is thought to be socially acceptable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は、本発明の側面全体図。 第3図、第4図、第5図は、本発明に使用される圧!t
ill装置の例の側面図。 第6図は、熱力学的線図である。 l・・・冷凍室、2・・・冷房室、3・・家屋、4・・
・屋外、5・・・空気取入口、6・・・ストレーナ−7
・・・冷却気空管、8・・・予冷装置、9・・・通路、 10・・・給気口、11・・・ドレン抜き、12・・・
圧縮機、13・・・吐出口、14・・・膨張室、15・
・・吹出「1.16・・・送出口、17・・・出口、 18・・・シリンダー 19・・・ピストン、20・・
・給気弁、21・・・弁、 22・・・吐出口、23.24.27・・・通路25・
・・アキュームレークー 26・・・クーラー、2日・  ・タンク、29・・・
ポンプ、30.31・・・冷却流体通路、32・・・ク
ーラー通路、33・ ・冷却液、34・・・通路、35
・・注水、36・・・液面、37・・・バルブ、38・
・・ノズル、39・・・通路、40・・軸、41・・・
ランナー、42・・・羽根、43・・・ポンプ本体、4
4・・・ディフューザー45・・・渦室、46・・・ド
レーン、47・・・空気入口、48・・・ベアリング、
49・・・方向(a高温、b低温)、50・・・圧縮室
、51・・・バルブ、ASB%C,DE%B’  B’
 ・ ・空気状態、P+   Pg  ・・圧力、V:
比体積、a:高圧、b:低温、PQ:圧縮面 PR,T?S%SQニジリンダ−壁。 イ 国
1 and 2 are overall side views of the present invention. Figures 3, 4, and 5 show the pressures used in the present invention! t
FIG. 2 is a side view of an example ill device. FIG. 6 is a thermodynamic diagram. l... Freezer room, 2... Cooling room, 3... House, 4...
・Outdoor, 5...Air intake, 6...Strainer-7
... Cooling air empty pipe, 8 ... Precooling device, 9 ... Passage, 10 ... Air supply port, 11 ... Drain drain, 12 ...
Compressor, 13...Discharge port, 14...Expansion chamber, 15.
・Blowout ``1.16... Outlet, 17... Outlet, 18... Cylinder 19... Piston, 20...
・Air supply valve, 21... Valve, 22... Discharge port, 23.24.27... Passage 25.
・・Accumulation Recoup 26・・Cooler, 2nd・・・Tank, 29・・・・
Pump, 30. 31... Cooling fluid passage, 32... Cooler passage, 33... Coolant, 34... Passage, 35
...Water injection, 36...Liquid level, 37...Valve, 38.
... Nozzle, 39... Passage, 40... Shaft, 41...
Runner, 42... Vane, 43... Pump body, 4
4... Diffuser 45... Vortex chamber, 46... Drain, 47... Air inlet, 48... Bearing,
49... Direction (a high temperature, b low temperature), 50... Compression chamber, 51... Valve, ASB%C, DE%B'B'
・ ・Air condition, P+ Pg ・・Pressure, V:
Specific volume, a: high pressure, b: low temperature, PQ: compression surface PR, T? S%SQ Niji Linda - Wall. Indonesia

Claims (1)

【特許請求の範囲】 1)気体或いは蒸発性気体を動作流体とし、気体成いは
蒸気を圧縮してその圧力を高めた後より低い圧力の空間
に膨張させ、該空間の温度を低くすることによって冷却
を行う冷却法において(気体成いは膨張蒸気を圧縮する
に際して)冷却液変位面、或いは冷却表面を持った変位
面によって気体或いは噴射蒸気を圧縮する変位型圧縮機
を使用することを特徴とする冷却法及び冷却装置、以下
冷却表面を持った変位面を冷却変位面と呼ぶ。 2)特許請求の範囲1)の項に記載した冷却法及び冷却
装置において、冷却変位面、或いは冷却変位面を持った
ディフューザー或いは羽根等により気体或いは膨張蒸気
を圧縮する速度型圧縮機を使用することを特徴とする冷
却法及び装置。 3)屋内に冷凍室及び冷房室を有する建物の冷却におい
て、屋外の空気を取り入れ、それを圧縮して冷凍室内で
噴射し、冷凍室で冷却した空気を冷房室に導き、冷房室
を冷却する冷却方法において冷却駅変位面を持った変位
型圧縮機により圧縮することを特徴とする冷却法及び装
置。 4)特許請求の範囲第3項に記載した方法において冷却
表面を持った変位型圧縮機を使用することを特徴とする
冷凍法及び装置。 5)特許請求の範囲第3項、第4項に記載した方法おい
て速度型圧縮機を使用することを特長とする冷却法及び
装置。 関連特許(出願63−280314、出願1−8572
[Claims] 1) Using a gas or vaporizable gas as a working fluid, compressing the gas or vapor to increase its pressure and then expanding it into a space with a lower pressure to lower the temperature of the space. (When compressing gas or expanded steam) A displacement type compressor is used to compress gas or injected steam using a cooling liquid displacement surface or a displacement surface with a cooling surface. Hereinafter, a displacement surface with a cooling surface will be referred to as a cooling displacement surface. 2) In the cooling method and cooling device described in claim 1), a velocity compressor is used that compresses gas or expanded vapor using a cooling displacement surface or a diffuser or blade having a cooling displacement surface. A cooling method and device characterized by: 3) For cooling buildings that have indoor freezing and cooling rooms, outdoor air is taken in, compressed and injected into the freezing room, and the air cooled in the freezing room is guided to the cooling room to cool the cooling room. A cooling method and device characterized in that the cooling method is compressed by a displacement compressor having a cooling station displacement surface. 4) A refrigeration method and apparatus characterized in that a displacement compressor with a cooling surface is used in the method according to claim 3. 5) A cooling method and apparatus characterized in that a velocity compressor is used in the method described in claims 3 and 4. Related patents (Application 63-280314, Application 1-8572
)
JP6353589A 1989-03-17 1989-03-17 Method and apparatus for cooling Pending JPH02247469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6353589A JPH02247469A (en) 1989-03-17 1989-03-17 Method and apparatus for cooling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6353589A JPH02247469A (en) 1989-03-17 1989-03-17 Method and apparatus for cooling

Publications (1)

Publication Number Publication Date
JPH02247469A true JPH02247469A (en) 1990-10-03

Family

ID=13232006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6353589A Pending JPH02247469A (en) 1989-03-17 1989-03-17 Method and apparatus for cooling

Country Status (1)

Country Link
JP (1) JPH02247469A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5769610A (en) * 1994-04-01 1998-06-23 Paul; Marius A. High pressure compressor with internal, cooled compression

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5769610A (en) * 1994-04-01 1998-06-23 Paul; Marius A. High pressure compressor with internal, cooled compression

Similar Documents

Publication Publication Date Title
EP4006445A1 (en) Carbon dioxide refrigerating system and refrigerating method thereof
CN204718250U (en) Medical ultralow temperature combined type portable cold room refrigeration system
CN204373252U (en) Change type CO2 trans critical cycle refrigeration system
CN107843020A (en) A kind of Trans-critical cycle CO2Two-stage Compression is pressurized refrigeration system
CN1573258A (en) Ejector cycle
JP3931226B2 (en) Ejector type refrigeration apparatus and ejector used in the apparatus
CN207350986U (en) The CO2 freezing and refrigerating systems of devaporizer supercooling based on hydraulic recovery
US4313307A (en) Heating and cooling system and method
US20150226465A1 (en) Cryogenic engine with rotary valve
JP4551305B2 (en) Refrigeration equipment
CN107036327A (en) It is a kind of to prevent the multistage evaporation compression heat pump method of work and device of frosting
JPH02247469A (en) Method and apparatus for cooling
CN206771804U (en) A kind of multistage evaporation compression heat pump device for preventing frosting
JPS58590B2 (en) Oil cooling method and device
CN106705308A (en) Mechanical flash type air conditioning refrigeration system and working method thereof
RU2659839C1 (en) Low-temperature refrigeration machine on carbon dioxide
CN206540269U (en) Mechanical Flash Type air-conditioning refrigeration system
KR100374167B1 (en) The refrigerating system with bypass
CN214665330U (en) With CO2Refrigerating system as refrigerant and secondary refrigerant system thereof
CN113028671A (en) With CO2Refrigerating system as refrigerant and secondary refrigerant system thereof
CN104748273B (en) Air-conditioning
FI91560C (en) Method and apparatus most preferably for pumping refrigerants
Williamson et al. Feasibility of air cycle systems for low-temperature refrigeration applications with heat recovery
CN109083675A (en) A kind of pneumatic refrigeration air-conditioner of mining mobile
CN105849483A (en) Compressor with an oil separator