JPH02239605A - Cryostat - Google Patents

Cryostat

Info

Publication number
JPH02239605A
JPH02239605A JP1061234A JP6123489A JPH02239605A JP H02239605 A JPH02239605 A JP H02239605A JP 1061234 A JP1061234 A JP 1061234A JP 6123489 A JP6123489 A JP 6123489A JP H02239605 A JPH02239605 A JP H02239605A
Authority
JP
Japan
Prior art keywords
cryogenic refrigerant
refrigerant tank
power lead
piping
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1061234A
Other languages
Japanese (ja)
Inventor
Junji Sakuraba
桜庭 順二
Yukio Mikami
行雄 三上
Hironori Hase
長谷 洋典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP1061234A priority Critical patent/JPH02239605A/en
Publication of JPH02239605A publication Critical patent/JPH02239605A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To reduce the intrusion of heat to a cryogenic refrigerant tank largely by installing a communicating hole closed when a power lead is retreated and a valve body capable of being abutted against and sealing the periphery of the communicating hole to the cryogenic refrigerant tank. CONSTITUTION:When power leads 5A, 5B are engaged with connectors 10A, 10B in order to complete the permanent current mode of a superconducting magnet 3, a valve body 19 is separated from the peripheral section of the communicating hole 22 of a cryogenic refrigerant tank 1 and the communicating hole 22 is opened, the gas of a cryogenic refriderant is flowed into a piping 4 for the power leads from the inside of the cryogenic refrigerant tank 1, and the power leads 5A, 5B are cooled. When the permanent current mode of the superconducting magnet 3 is completed and the power leads 5A, 5B are detached from the connectors 10A, 10B, the valve body 19 is abutted against and seals the peripheral section of the communicating hole 22 of the cryogenic refrigerant tank 1 and the communicating hole 22 is closed, the inflow of the cryogenic refrigerant gas from the inside of the cryogenic refrigerant tank 1 is stopped, and the inside of the piping 4 for the power leads is closed. The cryogenic refrigerant gas in the piping 4 is removed, and the inside of the piping is held under a vacuum or low pressure. Accordingly, heat loss due to a convection is prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、液体ヘリウム等の冷媒により極低温に保持し
た超電導磁石に通電するための着脱式通電機構に特徴が
あるクライオスタットに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cryostat characterized by a detachable energization mechanism for energizing a superconducting magnet kept at an extremely low temperature by a coolant such as liquid helium.

(従来の技術〕 従来、着脱式の磁石通電機構を備えたクライオスタット
では、第5図に示t如く、真空槽2内に極低温冷媒槽1
を配置して熱シールド板で覆い、該極低温冷媒槽lと前
記真空槽2を熱シールド板を貫通して連結するパワーリ
ード用配管4を設け、該配管4内に、極低温冷媒槽lに
対し抜き差し可能な一対のパワーリード5A、5Bを設
け、かつ、極低温冷媒槽1に、前記パワーリード5A、
5Bが着脱可能な一対のコネクタIOA、IOBを設け
ると共に、極低温冷媒槽1内に貯液された極低温冷媒に
超電導磁石3を浸漬させ、該超電導磁石3に前記コネク
タIOA、JOBを夫々接続するリード線12A,12
Bを永久電流スイッチl1を介して接続しており、パワ
ーリード5A,5BをコネクタIOA,IOBに接続し
、かつ、永久電流スイッチ11を切った後、電6[27
によりパワーリード5A,5Bとリード線12AS 1
2Bを介して超電導磁石3に通電し、所定の電流に達し
た後、永久電流スイッチ11を閉じ、かつ、電源電流を
零として永久電流モードを完成し、しかる後、パワーリ
ード5A,5BをコネクタIOA,10Bから切り離す
ようにしている。また、コネクタIOA..IOBから
切り離した後、パワーリード5A,5Bは、第6図に示
す如くパワーリード用配管4内に留めておくか、又は第
7図に示す如《バワーリード用配管4内から完全に抜き
取っていた. 〔発明が解決しようとする課題〕 しかしながら、極低温冷媒槽l内で蒸発した極低温冷媒
のガスがコネクタIOA,IOBと極低温冷媒槽lとの
間に存在する隙間を通し流入してパワーリード用配管4
内に極低温冷媒のガス雰囲気が形成され、極低温冷媒ガ
スの対流が発生するため、第6図に示す前者の方法では
、超電導磁石3に対する通電作業の自動化が容易である
という利点がある反面、パワーリード5A、5Bを介し
て熱伝導により真空槽2外部(常温部)から外部熱が侵
入し、これがパワーリード用配管4内の対流により極低
温冷媒槽1内に伝達されて熱損失が生じ、更に熱シール
ド板で遮断できなかった輻射熱による熱損失もあって、
貯液された極低温冷媒が蒸発して行き、保持時間は少な
くなるという欠点があった。また、第7図に示す後者の
方法では、パワーリード用配管4内に対流防止板を配置
する必要があると共に、パワーリード5A,5Bの出し
入れ及び差込み・口の開閉が煩わしく、超電導磁石3に
対する通電作業の自動化が困難であるという欠点があっ
た。
(Prior Art) Conventionally, in a cryostat equipped with a removable magnet energizing mechanism, as shown in FIG.
A power lead piping 4 is provided to connect the cryogenic refrigerant tank l and the vacuum chamber 2 through the heat shield plate, and the cryogenic refrigerant tank l is installed in the pipe 4 and covered with a heat shield plate. A pair of power leads 5A and 5B are provided that can be inserted into and removed from the cryogenic refrigerant tank 1, and the power leads 5A and
5B is provided with a pair of detachable connectors IOA and IOB, a superconducting magnet 3 is immersed in cryogenic refrigerant stored in a cryogenic refrigerant tank 1, and the connectors IOA and JOB are connected to the superconducting magnet 3, respectively. Lead wires 12A, 12
B is connected via persistent current switch l1, and after connecting power leads 5A and 5B to connectors IOA and IOB and turning off persistent current switch 11, power 6[27
Power leads 5A, 5B and lead wire 12AS 1
2B to the superconducting magnet 3, and after reaching a predetermined current, the persistent current switch 11 is closed and the power supply current is set to zero to complete the persistent current mode. After that, the power leads 5A and 5B are connected to the connectors. I am trying to separate it from IOA and 10B. Also, the connector IOA. .. After being separated from the IOB, the power leads 5A and 5B are either left in the power lead piping 4 as shown in FIG. 6, or are completely removed from the power lead piping 4 as shown in FIG. .. [Problem to be Solved by the Invention] However, the gas of the cryogenic refrigerant evaporated in the cryogenic refrigerant tank l flows into the power lead through the gap existing between the connectors IOA, IOB and the cryogenic refrigerant tank l. Piping 4
Since a gas atmosphere of the cryogenic refrigerant is formed within the superconducting magnet 3 and convection of the cryogenic refrigerant gas occurs, the former method shown in FIG. , external heat enters from the outside of the vacuum chamber 2 (normal temperature part) by heat conduction via the power leads 5A and 5B, and this is transferred to the cryogenic refrigerant tank 1 by convection in the power lead piping 4, resulting in heat loss. In addition, there was also heat loss due to radiant heat that could not be blocked by the heat shield plate.
There was a drawback that the stored cryogenic refrigerant evaporated and the retention time became shorter. In addition, in the latter method shown in FIG. 7, it is necessary to arrange a convection prevention plate in the power lead piping 4, and it is troublesome to take the power leads 5A and 5B in and out, insert them, and open and close the opening. The drawback was that it was difficult to automate the energization work.

〔発明の目的〕[Purpose of the invention]

本発明はコネクタ切り離し後のパワーリードを配管内に
留めておくタイプのクライオスタントにおける前記課題
を解決するためになしたもので、極低温冷媒槽への熱侵
入を大幅に減少させることを目的とする。
The present invention was made in order to solve the above-mentioned problem in a type of cryostrist in which the power lead is kept in the pipe after the connector is disconnected, and its purpose is to significantly reduce heat intrusion into the cryogenic refrigerant tank. do.

〔課題を解決する・ための手段〕[Means for solving the problem]

本発明のクライオスタットは、第1図〜第4図に示す如
《、真空槽2内の極低温冷媒槽lに一対のコネクタIO
A,IOBを設け、かつ、真空槽2と極低温冷媒槽1を
連結したパワーリード用配管4内に前記コネクタIOA
,IOBに着脱可能な一対のパワーリード5A、5Bを
設けたものにおいて、前記パワーリード用配管4内と接
続した真空ポンブl4又はガス吸着材を充填した吸収管
15a,15bを設け、かつ、コネクタIOA、10B
を極低温冷媒槽lとの間に隙間を生じないように設ける
と共に、極低温冷媒槽lに、パワーリード用配管4内に
連通する連通孔22と、該連通孔22が前記パワーリー
ド5A、5Bの後退時に閉塞するように連通孔22の側
に付勢して連通孔22周縁と当接シール可能な弁体l9
とを設けたことをvff!kとしており、かかる構成に
よって前記目狗を達成するものである。
As shown in FIGS. 1 to 4, the cryostat of the present invention has a pair of connectors IO and
A, IOB is provided, and the connector IOA is installed in the power lead piping 4 that connects the vacuum chamber 2 and the cryogenic refrigerant tank 1.
, a pair of removable power leads 5A and 5B are provided on the IOB, and a vacuum pump 14 connected to the inside of the power lead piping 4 or absorption tubes 15a and 15b filled with gas adsorbent is provided, and a connector is provided. IOA, 10B
The cryogenic refrigerant tank l is provided with a communication hole 22 that communicates with the power lead piping 4, and the communication hole 22 is connected to the power lead 5A, A valve body 19 that can be biased toward the communication hole 22 and sealed by contacting with the periphery of the communication hole 22 so as to close when the valve 5B retreats.
vff! k, and this configuration achieves the above-mentioned goal.

〔作 用〕[For production]

超電導磁石3の永久電流モードを完成させるためコネク
タIOA,IOBにパワーリード5A、5Bを係合させ
た時、弁体l9が極低温冷媒槽lの連通孔22周縁部か
ら離れて連通孔22が開き、極低温冷媒槽1内から極低
温冷媒のガスがパワーリード用配管4内に流入し、パワ
ーリード5A,5Bは冷却される.超電導磁石3の永久
電流モードを完成させた後コネクタIOA、IOBから
パワーリード5A、5Bを切り離した時、弁体l9が極
低温冷媒槽lの連通孔22周縁部に当接シールして連通
孔22が閉じ、極低温冷媒槽l内からの極低温冷媒ガス
の流入がストップし、パワーリード用配管4内が密閉さ
れる。次いで、真空ポンプl4又は吸収管15a又は1
5b内のガス吸着材により、パワーリード用配管4内の
極低温冷媒ガスが除去され、かつ、パワーリード用配管
4内は真空又は低圧に保持され、対流による熱損失がな
くなる。
When the power leads 5A and 5B are engaged with the connectors IOA and IOB to complete the persistent current mode of the superconducting magnet 3, the valve body l9 separates from the peripheral edge of the communication hole 22 of the cryogenic refrigerant tank l, and the communication hole 22 closes. The cryogenic refrigerant gas flows from the cryogenic refrigerant tank 1 into the power lead piping 4, and the power leads 5A and 5B are cooled. When the power leads 5A and 5B are disconnected from the connectors IOA and IOB after the persistent current mode of the superconducting magnet 3 is completed, the valve body 19 contacts and seals the peripheral edge of the communication hole 22 of the cryogenic refrigerant tank l, and the communication hole is closed. 22 is closed, the inflow of cryogenic refrigerant gas from inside the cryogenic refrigerant tank l is stopped, and the inside of the power lead piping 4 is sealed. Next, the vacuum pump l4 or absorption tube 15a or 1
The gas adsorbent in 5b removes the cryogenic refrigerant gas in the power lead pipe 4, and maintains the power lead pipe 4 at a vacuum or low pressure, eliminating heat loss due to convection.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図〜第3図に沿って説明
する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 3.

図中1は極低温冷媒(例えば液体ヘリウム)を貯液する
極低温冷媒槽で、真空槽2内に配置されて極低温冷媒槽
1への輻射熱を防止する図示しない熱シールド板により
覆われている。
In the figure, reference numeral 1 denotes a cryogenic refrigerant tank that stores a cryogenic refrigerant (for example, liquid helium), which is placed in a vacuum tank 2 and covered with a heat shield plate (not shown) to prevent radiant heat to the cryogenic refrigerant tank 1. There is.

この極低温冷媒槽1内に貯液された極低温冷媒には超電
導磁石3が浸漬されている。
A superconducting magnet 3 is immersed in the cryogenic refrigerant stored in the cryogenic refrigerant tank 1 .

4は極低温冷媒槽1と真空槽2を連結するパワーリード
用配管で、真空槽2及び熱シールド板を貫通して設けら
れている。
Reference numeral 4 denotes a power lead pipe that connects the cryogenic refrigerant tank 1 and the vacuum tank 2, and is provided to penetrate the vacuum tank 2 and the heat shield plate.

5A,5Bは一対のバワーリードで、該パワーリード5
A、5Bの上下両端部は夫々連結部材6、7を介して連
結され、下端部は前記バワーリード用配管4内に挿入さ
れ、かつ、上端部は真空槽2の外部に配置されており、
図示しない移動装置により極低温冷媒槽lに対して一体
的に抜き差し可能となっている。
5A and 5B are a pair of power leads, and the power lead 5
The upper and lower ends of A and 5B are connected via connecting members 6 and 7, respectively, the lower ends are inserted into the power lead piping 4, and the upper ends are arranged outside the vacuum chamber 2,
It can be integrally inserted into and removed from the cryogenic refrigerant tank l by a moving device (not shown).

このパワーリード5A,5Bの夫々の内部には超電導磁
石3に通電するための導体8A、8Bが収められ、夫々
の先端には前記導体8A,8Bと接続した着脱部9A、
9Bが設けられている。
Conductors 8A and 8B for energizing the superconducting magnet 3 are housed inside each of the power leads 5A and 5B, and a removable portion 9A connected to the conductors 8A and 8B is provided at the tip of each of the power leads 5A and 5B.
9B is provided.

10A,IOBは前記パワーリード5A、5Bを着脱可
能な一対のコネクタで、前記パワーリード用配管4内に
臨ませて極低温冷媒槽lとの間に隙間を生じないように
該極低温冷媒槽lに設けられている。
10A and IOB are a pair of connectors to which the power leads 5A and 5B can be attached and detached, and are connected to the cryogenic refrigerant tank so as to face inside the power lead piping 4 so as not to create a gap between them and the cryogenic refrigerant tank l. It is provided in l.

このコネクタIOA,IOBには、一端を超電導磁石3
と接続したリード線12A,12Bの他端が夫々接続さ
れ、該リード線12A,12Bは中間部において永久電
流スイッチ11を介し互いに接続されている。
These connectors IOA and IOB have one end connected to a superconducting magnet 3.
The other ends of the lead wires 12A and 12B are connected to each other, and the lead wires 12A and 12B are connected to each other via the persistent current switch 11 at an intermediate portion.

l3はベローズ等の伸縮性シール筒体で、プレート状に
形成された前記上部連結部材6の周縁部と、真空槽2上
部にバワーリード用配管4内に臨ませて開設された貫通
孔9の周縁部との間に設けられている.この伸縮性シー
ル筒体l3によってパワーリード5A,5Bの移動にか
かわらずパワーリード用配管4内は気密に保持されてい
る。
13 is an elastic seal cylinder such as a bellows, which is connected to the periphery of the plate-shaped upper connecting member 6 and the periphery of the through hole 9 formed in the upper part of the vacuum chamber 2 so as to face the inside of the power lead piping 4. It is located between the department. The inside of the power lead piping 4 is kept airtight by this elastic seal cylinder l3 regardless of the movement of the power leads 5A, 5B.

14は真空ポンプで、上部連結部材6を介して接続配管
l5によりパワーリード用配管4内と接続されている。
Reference numeral 14 denotes a vacuum pump, which is connected to the inside of the power lead pipe 4 via the upper connecting member 6 and a connecting pipe 15.

尚、第4図に示す如く、真空ポンプ14に代えて、接続
配管15に、活性炭等のガス吸着材を充填した吸収管を
接続してもほぼ同効である。接続配管15に吸収管15
a、15bを分岐接続したのは、吸収管内のガス吸着材
を常時活性化保持して使用できるようにするためであり
、吸収管15a,15bの吸着材充填部には、ガス吸着
材を加熱する再生用のヒータ16が付設され、かつ、接
続配管l5から再生側の吸収管15a又は15bを切り
離せるように吸着材充填部の前後には切換弁l7、l8
が設けられる。
It should be noted that, as shown in FIG. 4, in place of the vacuum pump 14, an absorption pipe filled with a gas adsorbent such as activated carbon may be connected to the connecting pipe 15 with almost the same effect. Absorption pipe 15 to connection pipe 15
The reason why a and 15b are branched and connected is to enable the gas adsorbent in the absorption tube to be kept activated at all times. A heater 16 for regeneration is attached, and switching valves l7 and l8 are installed before and after the adsorbent filling part so that the absorption pipe 15a or 15b on the regeneration side can be disconnected from the connecting pipe l5.
is provided.

l9は弁体で、極低温冷媒槽1の上部内面に取り付けた
弁箱20内に移動可能に嵌入され、弁体l9と弁箱20
の反配管4側端壁との間に介装した圧縮ばね21により
配管4側に付勢されている。
Reference numeral 19 denotes a valve body, which is movably fitted into a valve box 20 attached to the inner surface of the upper part of the cryogenic refrigerant tank 1. The valve body 19 and the valve box 20
It is urged toward the piping 4 side by a compression spring 21 interposed between the end wall and the end wall on the side opposite to the piping 4.

22、23は極低温冷媒槽l内と配管4内を連通させる
連通孔で、連通孔22は弁体19により開閉されるよう
に極低温冷媒槽lの上部に開設され、連通孔23は弁箱
20の側壁に開設されている。
Reference numerals 22 and 23 are communicating holes that communicate the inside of the cryogenic refrigerant tank l and the inside of the pipe 4. The communicating hole 22 is opened at the upper part of the cryogenic refrigerant tank l so as to be opened and closed by the valve body 19, and the communicating hole 23 is connected to the inside of the cryogenic refrigerant tank l. It is provided on the side wall of box 20.

24はOリング等のシール部材で、弁体19と極低温冷
媒槽lの連通孔22周縁部との間を当接シール可能にそ
の一方に取り付けられている。
Reference numeral 24 denotes a sealing member such as an O-ring, which is attached to one of the valve bodies 19 and the peripheral edge of the communication hole 22 of the cryogenic refrigerant tank l so as to be able to contact and seal between the valve body 19 and the peripheral edge of the communication hole 22 of the cryogenic refrigerant tank l.

25は弁体l9に突設された貫通孔22内を貫通する受
動ロンドである。26は下部連結部材7の極低温冷媒槽
l側に突設された作動片で、パワーリード5A、5Bの
前進時に受動ロッド25先端を押し下げ、後退時に受動
ロッド25から離間するように設けられている。
Reference numeral 25 denotes a passive iron that passes through the through hole 22 provided in a protruding manner in the valve body l9. Reference numeral 26 denotes an actuating piece protruding from the cryogenic refrigerant tank l side of the lower connecting member 7, which is provided so as to push down the tip of the driven rod 25 when the power leads 5A and 5B move forward, and to separate from the driven rod 25 when the power leads 5A and 5B move backward. There is.

以上の構成において、超電導磁石3の永久電流モードを
完成させる場合、移動装置によりパワーリード5A、5
Bを極低温冷媒槽lに向がい前進させて先端の着脱部9
A、9Bを極低温冷媒槽1上部に設けたコネククIOA
,IOBと係合させ、バワーリード5A,5B内の導体
8A,8Bをリード線12A,12Bに接続した後、導
体8A,8Bに接続した電源27により超電導磁石3に
通電し、所定の電流に達した後、永久電流スイッチ11
@閉じ、かつ、電源電流を零とする。しかる後、前記と
逆の手順でパワーリード5A、5B先端の着脱部9A、
9BをコネクタIOA、IOBから切り離す。
In the above configuration, when completing the persistent current mode of the superconducting magnet 3, the power leads 5A, 5 are
B toward the cryogenic refrigerant tank l and move it forward to remove the attachment/detachment part 9 at the tip.
Connectoku IOA with A and 9B installed on top of cryogenic refrigerant tank 1
, IOB and the conductors 8A and 8B in the power leads 5A and 5B are connected to the lead wires 12A and 12B, and then the superconducting magnet 3 is energized by the power supply 27 connected to the conductors 8A and 8B to reach a predetermined current. After that, the persistent current switch 11
@Close and make the power supply current zero. After that, by reversing the above procedure, attach/detach the power leads 5A, 5B to the detachable parts 9A,
Disconnect 9B from connectors IOA and IOB.

超電導磁石3の永久電流モードを完成させるためにパワ
ーリード5A,5BをコネクタIOA,10Bに係合さ
せる際、パワーリード5A,5B先端部に下部連結部材
7を介し設けた作動片26が受動ロッド25を付勢され
たばね力に打ち勝って押し、弁体l9は反パワーリード
用配管4側に押し下げられるから、弁体l9は掻低温冷
媒槽lの連通孔22周縁部から離れ、連通孔22が開い
てバワーリード用配管4内と弁箱20内が連通ずる。弁
箱20内には連通孔23を介して極低温冷媒槽l内が連
通しているため、極低温冷媒槽■内の極低温冷媒ガスは
弁箱20内を経てパワーリード用配管4内に流入するか
ら、この極低温冷媒ガスによりバワーリード用配管4内
及びバワーリード5A、5Bが冷却される。
When the power leads 5A, 5B are engaged with the connectors IOA, 10B to complete the persistent current mode of the superconducting magnet 3, the actuating piece 26 provided at the tip of the power leads 5A, 5B via the lower connecting member 7 is connected to the passive rod. 25 is pushed by overcoming the biased spring force, and the valve body l9 is pushed down toward the anti-power lead pipe 4 side, so that the valve body l9 is separated from the peripheral edge of the communication hole 22 of the cryogenic refrigerant tank l, and the communication hole 22 is pushed down. When opened, the inside of the power lead piping 4 and the inside of the valve box 20 are communicated. Since the inside of the cryogenic refrigerant tank 1 is in communication with the inside of the valve box 20 through the communication hole 23, the cryogenic refrigerant gas in the cryogenic refrigerant tank 1 passes through the inside of the valve box 20 and enters the power lead piping 4. Since the cryogenic refrigerant gas flows in, the inside of the power lead pipe 4 and the power leads 5A and 5B are cooled by this cryogenic refrigerant gas.

また、超電導磁石3の永久電流モードを完成させた後、
パワーリード5A、5Bは後退させられ、弁体l9は付
勢されたばね力により自動的にパワーリード用配管4側
に戻って極低温冷媒槽lの連通孔22周縁部にシール部
材24を介し当接シールされて連通孔22が閉じ、バワ
ーリード用配管4内と弁箱20内との連通が遮断され、
バワーリード用配管4内は気密に保持される。しかる後
、連通孔22が閉じられた後、真空ポンプl4により接
続配管l5を介してバワーリード用配管4内が真空引き
され、バワーリード用配管4内の極低温冷媒ガスは除去
されて真空保持されるから、対流による熱損失がなくな
る。又は、連通孔22が閉じられた後、使用される側の
吸収管15a (又は15b)の前段切換弁l7、l8
が開かれ、該吸収管15a(又′は15b)内のガス吸
着材によりバワーリード用配管内の極低温冷媒ガスが除
去されて減圧されるから、対流による熱損失が少なくな
る. 〔発明の効果〕 以上の通り、本発明によれば、コネクタ切り離し後のパ
ワーリードをパワーリード用配管内に留めておくタイプ
のクライオスタットにおいて、コネクタ切り離しと同時
に、弁機構によりパワーリード用配管内を気密保持し、
かつ、真空引き又はガス吸着によりパワーリード用配管
内の極低温冷媒ガスを除去して真空又は低圧保持するこ
とができるから、パワーリード用配管内に対流が生じな
いか、又は生じ難くなる。従って、超電導磁石に対する
通電作業の自動化が容易であるという利点を保持しなが
ら、熱侵入を大幅に低減させて極低温冷媒槽内に貯液さ
れた極低温冷媒の蒸発損失を少なくすることができると
共に、既存のクライオスタットに容易に適用できる。
Also, after completing the persistent current mode of superconducting magnet 3,
The power leads 5A and 5B are moved back, and the valve body 19 is automatically returned to the power lead pipe 4 side by the biased spring force and is applied to the periphery of the communication hole 22 of the cryogenic refrigerant tank 1 via the seal member 24. The communication hole 22 is closed and the communication between the inside of the power lead piping 4 and the inside of the valve box 20 is cut off.
The inside of the power lead piping 4 is kept airtight. Thereafter, after the communication hole 22 is closed, the inside of the power lead pipe 4 is evacuated by the vacuum pump 14 via the connecting pipe 15, and the cryogenic refrigerant gas inside the power lead pipe 4 is removed and maintained in a vacuum. Therefore, heat loss due to convection is eliminated. Or, after the communication hole 22 is closed, the upstream switching valves l7 and l8 of the absorption pipe 15a (or 15b) on the side to be used
is opened, and the cryogenic refrigerant gas in the power lead piping is removed and depressurized by the gas adsorbent in the absorption tube 15a (or 15b), thereby reducing heat loss due to convection. [Effects of the Invention] As described above, according to the present invention, in a cryostat of a type in which the power lead is retained in the power lead piping after the connector is disconnected, the valve mechanism causes the power lead piping to be closed at the same time as the connector is disconnected. Keep it airtight,
In addition, since the cryogenic refrigerant gas in the power lead piping can be removed by evacuation or gas adsorption to maintain a vacuum or low pressure, convection does not occur or is difficult to occur in the power lead piping. Therefore, it is possible to significantly reduce heat invasion and reduce evaporation loss of the cryogenic refrigerant stored in the cryogenic refrigerant tank, while retaining the advantage that it is easy to automate the process of energizing the superconducting magnet. In addition, it can be easily applied to existing cryostat.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す概略的な断面図、第2
図、第3図は作用説明図、第4図は本発明の他実施例を
示す概略的な断面図、第5図は従来例を示す概略的な断
面図、第6図、第7図はパワーリードのコネクタ切り離
し方弐を示す概念図である。 ■・・・・・・極低温冷媒槽、2・・・・・・真空槽、
3・・・・・・超電導磁石、4・・・・・・パワーリー
ド用配管、5A、5B・・・・・・パワーリード、6、
7・・・・・・連結部材、8A、8B・・・・・・導体
、9A、9B・旧・・着脱部、10AS IOB・・・
・・・コネクタ、l1・・・・・・永久電流スイッチ、
12AS 12B・旧・・リード線、l3・・・・・・
伸縮性シール筒体、l4・・・由真空ポンプ、l5・・
・・・・接続配管、15a,15b・・・・・・吸収管
、l6・・・・・・ヒータ、l7、l8・・・・・・切
換弁、l9・・・・・・弁体、20・・・・・・弁箱、
2l・・・・・・圧縮ばね、22、23・・・・・・連
通孔、24・・・・・・シール部材、25・・・・・・
受動ロッド、26・・・・・・作動片、27・・・・・
・電源.
FIG. 1 is a schematic cross-sectional view showing one embodiment of the present invention, and FIG.
3 is an explanatory view of the operation, FIG. 4 is a schematic sectional view showing another embodiment of the present invention, FIG. 5 is a schematic sectional view showing a conventional example, and FIGS. 6 and 7 are FIG. 7 is a conceptual diagram showing a second method for disconnecting the power lead connector. ■... Cryogenic refrigerant tank, 2... Vacuum tank,
3...Superconducting magnet, 4...Power lead piping, 5A, 5B...Power lead, 6,
7... Connecting member, 8A, 8B... Conductor, 9A, 9B old... Detachable part, 10AS IOB...
... Connector, l1 ... Persistent current switch,
12AS 12B・Old・Lead wire, l3・・・・・・
Stretchable seal cylinder, l4...Vacuum pump, l5...
...Connection piping, 15a, 15b...Absorption pipe, l6...Heater, l7, l8...Switching valve, l9...Valve body, 20...Bent box,
2l...Compression spring, 22, 23...Communication hole, 24...Seal member, 25...
Passive rod, 26... Actuating piece, 27...
·power supply.

Claims (2)

【特許請求の範囲】[Claims] (1)、真空槽内の極低温冷媒槽に一対のコネクタを設
け、かつ、真空槽と極低温冷媒槽を連結したパワーリー
ド用配管内に前記コネクタに前後進で着脱可能な一対の
パワーリードを設けたクライオスタットにおいて、前記
パワーリード用配管内と接続した真空ポンプを設け、か
つ、前記コネクタを極低温冷媒槽との間に隙間を生じな
いように設けると共に、極低温冷媒槽に、パワーリード
用配管内に連通する連通孔と、該連通孔が前記パワーリ
ードの後退時に閉塞するように連通孔の側に付勢して連
通孔周縁と当接シール可能な弁体とを設けたことを特徴
とするクライオスタット。
(1) A pair of connectors are provided in the cryogenic refrigerant tank in the vacuum chamber, and a pair of power leads that can be attached and detached from the connector in forward and backward movement are installed in the power lead piping that connects the vacuum chamber and the cryogenic refrigerant tank. In a cryostat equipped with a power lead, a vacuum pump connected to the inside of the power lead piping is provided, and the connector is installed so that there is no gap between the power lead and the cryogenic refrigerant tank, and the power lead is connected to the cryogenic refrigerant tank. A communication hole that communicates with the inside of the power lead, and a valve body that can be biased toward the communication hole and sealed against the periphery of the communication hole so that the communication hole is closed when the power lead is retreated. Characteristic cryostat.
(2)、前記請求項1記載のクライオスタットにおいて
、真空ポンプに代えて、ガス吸着材を充填した吸収管を
パワーリード用配管内と接続して設けたことを特徴とす
るクライオスタット。
(2) The cryostat according to claim 1, characterized in that, in place of the vacuum pump, an absorption tube filled with a gas adsorbent is connected to the inside of the power lead piping.
JP1061234A 1989-03-14 1989-03-14 Cryostat Pending JPH02239605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1061234A JPH02239605A (en) 1989-03-14 1989-03-14 Cryostat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1061234A JPH02239605A (en) 1989-03-14 1989-03-14 Cryostat

Publications (1)

Publication Number Publication Date
JPH02239605A true JPH02239605A (en) 1990-09-21

Family

ID=13165331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1061234A Pending JPH02239605A (en) 1989-03-14 1989-03-14 Cryostat

Country Status (1)

Country Link
JP (1) JPH02239605A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006067915A1 (en) * 2004-12-21 2006-06-29 Sumitomo Electric Industries, Ltd. Power lead-out structure of superconducting apparatus
US8007186B2 (en) 2005-09-22 2011-08-30 Sumitomo Electric Industries, Ltd. Method of constructing a normal joint structure of a superconducting cable

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006067915A1 (en) * 2004-12-21 2006-06-29 Sumitomo Electric Industries, Ltd. Power lead-out structure of superconducting apparatus
US8007186B2 (en) 2005-09-22 2011-08-30 Sumitomo Electric Industries, Ltd. Method of constructing a normal joint structure of a superconducting cable

Similar Documents

Publication Publication Date Title
CA2096419A1 (en) Process for regenerating a cryopump and suitable cryopump for implementing this process
FR2525541A1 (en) ELECTROPNEUMATIC BRAKE EQUIPMENT
GB1395207A (en) Heat pipe
JPH02239605A (en) Cryostat
GB584920A (en) Improvements in apparatus for filling gas storage cylinders
US4681142A (en) Self-compensating solenoid valve
DE19632123A1 (en) Cryopump
JPH05325945A (en) Electrolyte injection method for battery
CN211976018U (en) Electromagnetic type gas emergency cut-off valve
JPH02150003A (en) Power operating contacting device for superconducting circuit
US3621870A (en) Vacuum device including valve and service coupling therefor
JPH05141553A (en) Safety valve for conduit
JPS5958277A (en) Three-way solenoid valve
US3383041A (en) Dual function thermal vacuum valve
US3984648A (en) Circuit breaker actuating device
US3266505A (en) Bakeable, leakproof, straight-through ultra-high vacuum valve
US3193657A (en) Welding apparatus
JPH0278281A (en) Cryostat provided with adsorber
JP2519789B2 (en) Vacuum pumping device for superconducting magnet device
US2831933A (en) Circuit interrupters
CN209925744U (en) Novel vacuum reverse self-locking valve
US2463052A (en) Vacuum valve
EP0226476A1 (en) Voltage-measuring device for a shielded high-voltage installation
JPS6123673B2 (en)
US20070277732A1 (en) Film Forming Apparatus