JPH02236410A - Method for measuring shape of curved surface symmetrical with respect to axis of revolution - Google Patents

Method for measuring shape of curved surface symmetrical with respect to axis of revolution

Info

Publication number
JPH02236410A
JPH02236410A JP1056410A JP5641089A JPH02236410A JP H02236410 A JPH02236410 A JP H02236410A JP 1056410 A JP1056410 A JP 1056410A JP 5641089 A JP5641089 A JP 5641089A JP H02236410 A JPH02236410 A JP H02236410A
Authority
JP
Japan
Prior art keywords
axis
curved surface
error
measured
displacement meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1056410A
Other languages
Japanese (ja)
Inventor
Yukihisa Koizumi
幸久 小泉
Masayasu Fujisawa
藤沢 政泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1056410A priority Critical patent/JPH02236410A/en
Publication of JPH02236410A publication Critical patent/JPH02236410A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To calculate plural fixed error elements of an arbitrary curved surface with a high precision in a short time by analyzing output data of a displacement meter moved to the measuring position on the curved surface symmetrical with respect to the axis of revolution by the multiple regression analysis method. CONSTITUTION:An X-axis table 2 and a main arm 3 are arbitrarily moved in the X-axis direction and the Y-axis direction respectively on a measuring base 1. An object 4 to be measured is fixed on the table 2 so that the curbed surface symmetrical with respect to the axis of revolution as the surface to be measured is directed to the Z axis. A displacement meter contact 5 is fixed to an electric displacement meter 6, and the displacement meter 6 is attached to a Z-axis column 7 which can be arbitrarily moved in the Z-axis direction. X-axis, Y-axis, and Z-axis driving motors 8, 9, and 10 are controlled by a numerical controller 12 to drive the table 2, the main arm 3, and the Z-axis column 7 respectively. The contact 5 is moved to the measuring position on the curved surface symmetrical with respect to the axis of revolution, and output data of the displacement meter 6 is inputted to a calculation processing device 11, and output data values are corrected with plural error factor values obtained by the multiple regression analysis method to calculate the shape error of the curved surface.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、プラスチックレンズ型のような回転軸対称な
面の形状測定方法に係り、とくに、被測定面の形状誤差
を高精度・高能率に測定するのに好敵な測定方法に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for measuring the shape of a rotationally symmetrical surface such as a plastic lens mold, and in particular, a method for measuring shape errors of the surface to be measured with high precision and high efficiency. Concerning measurement methods that are suitable for measurement.

〔従来の技術〕[Conventional technology]

回転軸対称な面の形状精度は,一般に被測定面の対称軸
を含む断面形状を測定して評価している。
The shape accuracy of a surface that is rotationally symmetrical is generally evaluated by measuring the cross-sectional shape of the surface to be measured that includes the axis of symmetry.

このため、形状測定では、測定座標と被測定面の対称軸
と原点を一致させて行っているが、被』1定物の測定機
への取付誤差およびその他の誤差の影響により、これら
が必ずしも一致せず、このため測定結果には、測定誤差
が含まれる。従来技術においては、例えば,特開昭60
−114445に記載のように、測定データを2次曲線
に近似して各測定値の誤差を個々に算出し、各測定値を
修正していた。
For this reason, shape measurements are carried out by aligning the measurement coordinates with the axis of symmetry of the surface to be measured and the origin, but these are not always possible due to installation errors of the object to be measured and other errors. They do not match, and therefore the measurement results include measurement errors. In the prior art, for example, Japanese Patent Application Laid-open No. 1986
-114445, the measurement data was approximated to a quadratic curve, the error of each measurement value was calculated individually, and each measurement value was corrected.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、被測定面形状を一度2次曲線に近似し
た後、測定誤差要因を算出するため、被測定面形状にも
制限があり、また,誤差要因を個々に分離することがで
きず、計算時間が長い等の問題があった。
In the conventional technology described above, measurement error factors are calculated after the shape of the surface to be measured is approximated to a quadratic curve, so there are limitations to the shape of the surface to be measured, and it is not possible to separate the error factors individually. , there were problems such as long calculation time.

本発明の目的は、任意の曲面に対し、複数の測定誤差要
因を短時間に計算して精度よく一括して求め、さらに算
出された測定誤差要因から潤定誤差を求めることができ
る回転軸対称曲面の形状測定方法を提供することにある
The purpose of the present invention is to calculate multiple measurement error factors for any curved surface in a short time and obtain them all at once with high accuracy, and further to obtain a lubrication error from the calculated measurement error factors. An object of the present invention is to provide a method for measuring the shape of a curved surface.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、形状測定手段を上記回転軸
対称曲面上の■1定位置に移動せしめ、上記形状測定手
段の出力データを重回帰分析法により分析して得られる
、上記形状測定における複数の誤差要因値を用いて、上
記出力データ値の夫々を補正し、上記曲面の形状誤差を
算出するようにしたものであるゆ 〔作用〕 以上のように構成した回転軸対称曲面の形状測定法は、
例えば被測定物の取付時に発生する三種類の誤差要因値
を多数の測定データを用いて重回帰法により算出するの
で、精度よく求めることができ,これらの誤差要因値を
用いて算呂される上記測定データの補正精度を著しく向
上することができる。
In order to achieve the above object, the shape measuring means is moved to a fixed position on the rotation axis symmetrical curved surface, and the output data of the shape measuring means is analyzed by multiple regression analysis. The shape error of the curved surface is calculated by correcting each of the output data values using a plurality of error factor values. [Operation] Shape measurement of the rotation axis symmetric curved surface configured as described above. The law is
For example, the three types of error factor values that occur when attaching the object to be measured are calculated using a multiple regression method using a large amount of measurement data, so they can be calculated with high accuracy and calculated using these error factor values. The accuracy of correction of the measurement data can be significantly improved.

〔実施例〕 以下、本発明の一実施例を第1図により説明する。〔Example〕 An embodiment of the present invention will be described below with reference to FIG.

第1図において、1はX軸テーブル2がX軸方向に、メ
インアーム3がY軸方向に任意に移動できるように支尽
された測定台である。被測定物4は被測定面である回転
軸対称曲面をZ軸正方向に向け,X軸テーブル2上に固
定されている。変位計接触子5は電気式変位計6に固定
され,電気式変位計6はZ軸方向に任,意に移動できる
Z軸コラム7に取付けられている。X軸肚動モータ8は
数値制御装置12により制御され、X軸テーブル2を移
動させる。Y軸踵動モータ9は数値制御装置12により
制御され,メインアーム3をY軸方向に移動させる。Z
軸叩動モータ10は数値制御装置12により制御され、
Z軸コラムを制御する。
In FIG. 1, reference numeral 1 denotes a measurement stand on which an X-axis table 2 is freely movable in the X-axis direction and a main arm 3 is movable in the Y-axis direction. The object to be measured 4 is fixed on the X-axis table 2 with its rotation axis-symmetric curved surface, which is the surface to be measured, facing in the positive direction of the Z-axis. The displacement meter contact 5 is fixed to an electric displacement meter 6, and the electric displacement meter 6 is attached to a Z-axis column 7 that can be moved arbitrarily in the Z-axis direction. The X-axis percussion motor 8 is controlled by a numerical control device 12 to move the X-axis table 2. The Y-axis heel motor 9 is controlled by a numerical control device 12 to move the main arm 3 in the Y-axis direction. Z
The shaft beating motor 10 is controlled by a numerical control device 12,
Controls the Z-axis column.

計算処理装置11は数値制御装置12および電気式変位
計6と電気的に接続されている。
The calculation processing device 11 is electrically connected to the numerical control device 12 and the electric displacement meter 6.

本構成において、まず被測定物4の外径や基準面位置等
を測定して被測定面の対称軸の位置を求める。数値制御
装置12は上記対称軸を含む面内で変位計接触子5を移
動させ,上記被測定面の座標値を遂次、測定し、その測
定結果を予め設定した基準断面の形状と比較し、これを
形状誤差とする。
In this configuration, first, the outer diameter, reference plane position, etc. of the object to be measured 4 are measured to find the position of the axis of symmetry of the object to be measured. The numerical control device 12 moves the displacement meter contactor 5 within a plane including the axis of symmetry, successively measures the coordinate values of the surface to be measured, and compares the measurement results with the shape of a preset reference cross section. , this is defined as the shape error.

上計測定法においては、被測定物4の外径や基準面から
の距離により対称軸の位置を求めているが実際には、加
工誤差や被測定物4の測定機への取付誤差等による測定
誤差が発生する。
In the above-mentioned measurement method, the position of the axis of symmetry is determined based on the outer diameter of the object to be measured 4 and the distance from the reference plane, but in reality, the position of the axis of symmetry is determined by processing errors, errors in mounting the object to be measured 4 on the measuring machine, etc. Measurement errors occur.

第2図は、上記測定における誤差の発生を図示したもの
である。数値制御装置11に予め入力された基準断面1
30と実際に放置された被測定物4の断面13との間に
は半径方向の誤差γ,深さ方向の誤差d、対称軸の角度
誤差φ等があり、実際には被測定面13を測定すること
になる。
FIG. 2 illustrates the occurrence of errors in the above measurements. Reference section 1 inputted in advance to the numerical control device 11
30 and the cross section 13 of the object 4 actually left to be measured, there are errors γ in the radial direction, errors d in the depth direction, angular errors φ in the axis of symmetry, etc., and in reality, the surface 13 to be measured is will be measured.

まず,基準断面130の形状データ、および上記誤差要
因の計算式を計算処理装置11に入力する。
First, the shape data of the reference cross section 130 and the calculation formula for the above-mentioned error factors are input to the calculation processing device 11.

こ)で、第3図のフローチャートを用いて、以下に説明
する本発明の測定手順を概略説明しておく。
Now, the measurement procedure of the present invention, which will be explained below, will be briefly explained using the flowchart of FIG.

第3図において、上記した基準断面の形状データと誤差
要因計算式を入力する過程がIである。
In FIG. 3, step I is the process of inputting the shape data of the reference cross section and the error factor calculation formula described above.

■は被測定物4をX軸テーブル2に固定する過程,■は
被測定物4の外径または、基準面を電気式変位計により
測定する過程、■は■の甜定結果を数値制御装置12に
よりX,Y,Z座標値に変換し,これより計算処理装置
11により対称軸14の位置を求め、被測定面l3と対
称軸14との交点15を測定原点として設定する過程、
■は数値制御装置12により対称軸14を含む断面上の
被測定面13を電気式変位計6を用いて測定する過程、
■は計算処理装置11により■の測定結果と予め入力さ
れた基準断面データとを比較して形状誤差を算出する過
程,■は実際の測定面がもつ非対称性その他の誤差を修
正する過程、■は結果を呂力する過程である。
■ is the process of fixing the object to be measured 4 to the X-axis table 2, ■ is the process of measuring the outer diameter of the object to be measured 4 or the reference surface with an electric displacement meter, and ■ is the process of measuring the measurement result of ■ to the numerical control device. 12 into X, Y, Z coordinate values, from which the position of the axis of symmetry 14 is determined by the calculation processing device 11, and the process of setting the intersection 15 of the surface to be measured l3 and the axis of symmetry 14 as the measurement origin,
(2) is a process of measuring the surface to be measured 13 on a cross section including the axis of symmetry 14 by the numerical control device 12 using the electric displacement meter 6;
(2) is a process in which the calculation processing device 11 compares the measurement results in (2) with pre-input reference cross-sectional data to calculate a shape error; (2) is a process in which asymmetry and other errors of the actual measurement surface are corrected; (2) is the process of producing results.

次に上記誤差要囚γ,d,φ等を算出する方法について
第4図を用いて説明する.第4図において基準断面13
0に対し、χ軸方向のずれがγである時の被測定面を1
31,上記γと角度誤差φおよび深さ方向の誤差dが存
在する時の被測定面?χ)と表される時、被測定面13
2の距離χ,における測定誤差ΔZ,は、第4図より Δ2,=Δ2■+ΔZ2+d・・・・(1)と表わされ
る.たゾし、ΔZ1は基準断面130をχ軸方向にγだ
け平行移動した場合の誤差でγがχ,に対し十分小さけ
れば ΔZ1=f(χ,+γ)一f(χ,) =γf’(χ■)・・・・・・(2) と近似することができる。たゾし ?γU,+φ■■+d    ・・・・・(5)たゾし
   Uイ=f′(χ,) ■イ=f(χ1)・ f’(χ,)+χ1とする。
Next, a method for calculating the above-mentioned error constraints γ, d, φ, etc. will be explained using Fig. 4. In Fig. 4, reference section 13
0, the surface to be measured when the deviation in the χ axis direction is γ is 1
31. What is the surface to be measured when the above γ, angular error φ, and depth error d exist? When expressed as χ), the surface to be measured 13
The measurement error ΔZ at the distance χ of 2 is expressed as Δ2,=Δ2■+ΔZ2+d (1) from FIG. Therefore, ΔZ1 is the error when the reference section 130 is translated by γ in the χ axis direction, and if γ is sufficiently small with respect to χ, ΔZ1 = f (χ, +γ) - f (χ,) = γf' ( χ■)...(2) It can be approximated as follows. Tazoshi? γU, +φ■■+d...(5) Tazoshi Ui=f'(χ,) ■i=f(χ1)・f'(χ,)+χ1.

第4図においてX軸に沿ってnヶの測定点を設け、その
測定結果に式(6)に示すような重回帰分析法を適用す
ればγ,φ,d等の誤差成分を精度良く求めることがで
きる。
In Figure 4, by setting n measurement points along the X-axis and applying the multiple regression analysis method shown in equation (6) to the measurement results, error components such as γ, φ, and d can be obtained with high accuracy. be able to.

こ1で算呂されるγ,φ,d等の値を夫々、γ。,φ。The values of γ, φ, d, etc. calculated in this step are respectively γ. ,φ.

t ct,とおくと上記の式(6)はとする。また、Δ
Z2 は同様にγがχ、に対し十分に小さいとき、近似
的に ΔZ, = {f(z z)・f’ (z +)+ z
 t)sinφ−−−(4)と近似できる。深さ方向の
誤差dが存在すると、上記Δz1とΔZ2の合計が全体
としてdだけZ軸方向に移動するのであるから各誤差の
合計はφが十分に小さいとして、式(1)〜(3)より
次のように表わせることになる。
t ct, the above equation (6) becomes. Also, Δ
Similarly, when γ is sufficiently small with respect to χ, Z2 is approximately ΔZ, = {f(z z)・f' (z +) + z
t) sinφ --- It can be approximated as (4). If there is an error d in the depth direction, the sum of Δz1 and ΔZ2 will move in the Z-axis direction by d as a whole, so assuming that φ is sufficiently small, the sum of each error can be expressed by equations (1) to (3). It can be expressed as follows.

ΔZ r = yf’ (z ,)”(f(z +)4
’ (z +)+ z z)φ+dのようになる.こ\
で求められたγ。,φ。l dn等の値を式(5)に代
入すれば各測定点の測定誤差の推定値として式(7)に
示すΔZl’ が得られる. ΔZ1’ =Y.tL+$。Vi+d,−−−−(7)
このΔZ t’ を実際の測定値から差し引くことによ
り、測定誤差を補正することができる.上記した本発明
による誤差の補正例について述べると、基準断面の形が
式(8)で表される半径14nmの回転軸対称面を0.
 2 rm間隔で測定した場合、上記測定誤差ΔZ1は
、 ,m.1:1’  C =3.2504X10−”K 
 =−5.0503X10−’ A4=−6.8 7 6 5 X 1 0゜4A,=3
,3117399xlO゜9 A,=−3.8 9 8 4 7 2 8 X 1 0
−11A1。=−1.314145xlO−”本発明を
適用しない場合は第5図のように、また、本発明を適用
した場合は第6図のようになる。
ΔZ r = yf' (z ,)"(f(z +)4
' (z +) + z z)φ+d. child\
γ determined by ,φ. By substituting values such as l dn into equation (5), ΔZl' shown in equation (7) can be obtained as the estimated value of the measurement error at each measurement point. ΔZ1'=Y. tL+$. Vi+d,---(7)
By subtracting this ΔZ t' from the actual measured value, the measurement error can be corrected. To describe an example of error correction according to the present invention described above, the shape of the reference cross section is expressed by equation (8) and the rotation axis symmetry plane with a radius of 14 nm is 0.
When measured at 2 rm intervals, the measurement error ΔZ1 is: , m. 1:1'C = 3.2504X10-"K
=-5.0503X10-' A4=-6.8 7 6 5 X 1 0°4A, =3
,3117399xlO゜9 A,=-3.8 9 8 4 7 2 8 X 1 0
-11A1. =-1.314145xlO-" If the present invention is not applied, the result will be as shown in FIG. 5, and if the present invention is applied, the result will be as shown in FIG. 6.

第5図では対称軸に対し対称性がなく、これでは補正加
工に必要な正しい情報は得られない.これに対し第6図
に示す本発明を適用した結果は対称性に優れ、形状精度
評価も行いやすい.また本発明における必要な演算時間
は、約30秒であったが第5図の従来方法の場合は、約
3分を必要としていた。
In Figure 5, there is no symmetry with respect to the axis of symmetry, and it is not possible to obtain the correct information necessary for corrective machining. On the other hand, the results of applying the present invention shown in Figure 6 have excellent symmetry and are easy to evaluate the shape accuracy. Further, the required computation time in the present invention was about 30 seconds, whereas in the case of the conventional method shown in FIG. 5, about 3 minutes were required.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、回転軸対称面の形状測定における測定
原点設定時の3つの誤差成分を正確に求めることができ
るので測定結果の補正精度を著しく向上させる効果が得
られるうえ、例えば、従来、3分かかっていた測定誤差
修正演算時間を30秒に短縮できるので測定時間の短縮
の効果も併せて得られる。
According to the present invention, it is possible to accurately determine the three error components when setting the measurement origin in the shape measurement of a surface symmetric about the rotational axis, so that it is possible to significantly improve the correction accuracy of the measurement results. Since the measurement error correction calculation time that used to take 3 minutes can be shortened to 30 seconds, the effect of shortening the measurement time can also be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す図,第2図は被測定物
の設置誤差を説明する断面図,第3図は本発明による誤
差修正法の手順図、第4図は被測定物の設置誤差に応じ
て発生する測定誤差を説明する図、第5図は従来の方法
による形状誤差の測定結果を示す図,第6図は本発明に
よる形状誤差の測定結果を示す図である。 1・・・測定台、2・・・X軸テーブル、3・・・メイ
ンアーム、4・・・被測定物、5・・・変位1f接触子
、  6・・・電気式変位計7・・・Z軸コラム、  
  8・・・X軸廓動モータ、9−y IllI恥動モ
ータ、  1 0−Z IdliH動モータ、11・・
・計算処理装置、 12・・・数値制御装置、130・
・・基準断面,  13・・・被測定面、131・・・
径方向のずれγが存在する時の被測定面、132・・・
131にさらに角度誤差φと深さ方向の誤差dが加わっ
た被測定面, 14・・被測定面13の対称軸、15・・・13と14
の交点。 発 凶 第4暑 第/凶
Fig. 1 is a diagram showing an embodiment of the present invention, Fig. 2 is a sectional view explaining the installation error of the object to be measured, Fig. 3 is a procedure diagram of the error correction method according to the invention, and Fig. 4 is the object to be measured. FIG. 5 is a diagram illustrating the measurement error that occurs depending on the installation error of an object, FIG. 5 is a diagram showing the measurement result of shape error by the conventional method, and FIG. 6 is a diagram showing the measurement result of shape error by the present invention. . DESCRIPTION OF SYMBOLS 1... Measuring stand, 2... X-axis table, 3... Main arm, 4... Measured object, 5... Displacement 1f contact, 6... Electric displacement meter 7...・Z-axis column,
8...X-axis rotation motor, 9-y IllI shame motor, 1 0-Z IdliH movement motor, 11...
・Calculation processing device, 12... Numerical control device, 130・
...Reference cross section, 13...Measurement surface, 131...
Surface to be measured when radial deviation γ exists, 132...
131 plus the angular error φ and depth error d, 14...Axis of symmetry of the measured surface 13, 15...13 and 14
intersection. 4th heat / bad weather

Claims (1)

【特許請求の範囲】[Claims] 1、回転軸対称な曲面の形状測定方法において、形状測
定手段を上記曲面上の測定位置に移動せしめ、上記形状
測定手段の出力データを重回帰分析法により分析して得
られる、上記形状測定における複数の誤差要因値を用い
て、上記出力データ値の夫々を補正し、上記曲面の形状
誤差を算出したことを特徴とする回転軸対称曲面の形状
測定方法。
1. In a method for measuring the shape of a curved surface that is symmetrical about the rotational axis, the shape measuring means is moved to a measurement position on the curved surface, and the output data of the shape measuring means is analyzed by multiple regression analysis. A method for measuring the shape of a rotationally symmetric curved surface, characterized in that a shape error of the curved surface is calculated by correcting each of the output data values using a plurality of error factor values.
JP1056410A 1989-03-10 1989-03-10 Method for measuring shape of curved surface symmetrical with respect to axis of revolution Pending JPH02236410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1056410A JPH02236410A (en) 1989-03-10 1989-03-10 Method for measuring shape of curved surface symmetrical with respect to axis of revolution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1056410A JPH02236410A (en) 1989-03-10 1989-03-10 Method for measuring shape of curved surface symmetrical with respect to axis of revolution

Publications (1)

Publication Number Publication Date
JPH02236410A true JPH02236410A (en) 1990-09-19

Family

ID=13026384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1056410A Pending JPH02236410A (en) 1989-03-10 1989-03-10 Method for measuring shape of curved surface symmetrical with respect to axis of revolution

Country Status (1)

Country Link
JP (1) JPH02236410A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106625172A (en) * 2016-12-27 2017-05-10 东莞市圣荣自动化科技有限公司 Electrical equipment accessory surface cleaning device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5968609A (en) * 1982-10-14 1984-04-18 Hitachi Ltd Measuring device of shape of in-process cut face
JPS63128219A (en) * 1986-11-18 1988-05-31 Matsushita Electric Ind Co Ltd Aspherical shape measuring machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5968609A (en) * 1982-10-14 1984-04-18 Hitachi Ltd Measuring device of shape of in-process cut face
JPS63128219A (en) * 1986-11-18 1988-05-31 Matsushita Electric Ind Co Ltd Aspherical shape measuring machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106625172A (en) * 2016-12-27 2017-05-10 东莞市圣荣自动化科技有限公司 Electrical equipment accessory surface cleaning device

Similar Documents

Publication Publication Date Title
JP5255012B2 (en) Calibration method of gear measuring device
CN110285773B (en) Constant linear velocity control method for workpiece contour detection
JPS63200957A (en) Method of grinding two or more of cam in camshaft
EP3789729A1 (en) Method of non-contact scanning of profiles of rotating objects and evaluation of their external dimensions
US20130055540A1 (en) Autocalibration
Morse et al. 6 DOF calibration of profile sensor locations in an inspection station
JP3807847B2 (en) Machine tool control method
JPH08338718A (en) Shape measuring machine
JPH02236410A (en) Method for measuring shape of curved surface symmetrical with respect to axis of revolution
JP2002096232A (en) Controlling method for machine tool
JP2008524576A (en) Sequential multi-probe method for straightness measurement of straight rulers
JP3098213B2 (en) Circular contour measuring method and system
KR101915859B1 (en) Servo Mismatch Compensation Method of Multi-axis Control Machine Using Laser Tracker
JPH0933244A (en) Shape measuring method
JPH05187868A (en) Calculation method of straightness error and correction method of measured value in detector feed direction of rotation-direct-acting function type circularity measurement machine
JP3855734B2 (en) 3D cam profile measuring apparatus and 3D cam profile measuring method
CN114851023A (en) In-situ detection method for large-size aspheric optical element grinding and polishing machine tool
JP6685708B2 (en) Shape measuring device, shape measuring method, and optical element manufacturing method
TWI402711B (en) System and method for analyzing errors of aspheric lens
JPS60114445A (en) Neumerical control machine tool
JP2004192152A (en) Numerical control device
JP4493168B2 (en) Shape measuring method and shape measuring apparatus
JP3818628B2 (en) Measuring method and measuring device
JPH04125412A (en) Inspecting method of worm
JP2024510443A (en) Method for generating virtual geometry and system for data processing