JPH02234476A - Semiconductor light emitting diode and semiconductor light emitting diode array - Google Patents

Semiconductor light emitting diode and semiconductor light emitting diode array

Info

Publication number
JPH02234476A
JPH02234476A JP1055329A JP5532989A JPH02234476A JP H02234476 A JPH02234476 A JP H02234476A JP 1055329 A JP1055329 A JP 1055329A JP 5532989 A JP5532989 A JP 5532989A JP H02234476 A JPH02234476 A JP H02234476A
Authority
JP
Japan
Prior art keywords
light emitting
emitting diode
semiconductor light
light
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1055329A
Other languages
Japanese (ja)
Inventor
Taku Matsumoto
卓 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1055329A priority Critical patent/JPH02234476A/en
Publication of JPH02234476A publication Critical patent/JPH02234476A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

PURPOSE:To reduce the size by a method wherein a mirror surface is provided on the surface of a semiconductor substrate at a position corresponding to a light emitting region formed on the rear of the semiconductor substrate. CONSTITUTION:A mirror surface 21 which is inclined by 45 degrees from the surface of a semiconductor substrate 11 is provided on the surface of the semiconductor substrate 11 at a position corresponding to a light emitting region 20 formed on the rear of the semiconductor substrate 11. Therefore, light 30 emitted from the light emitting region is reflected by the mirror surface 21 to bend its direction at a right angle and coupled with an optical fiber 23 which is so provided as to have its end surface a vertical light taking-out surface 22 vertical to the substrate surface 11a through the vertical light taking-out surface 22.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光通信、光情報処理等における光源に関する. 〔従来の技術〕 光ファイバー通信の光源を目的とする半導体発光ダイオ
ードは、高輝度、ファイバー結合出力の大きいこと、低
電流駆動の可能なこと及び高信頼であることなどが重要
である.宇治等の報告によれば、発光部を円形メサ構遣
とし、積層面に垂直な方向に光を取り出す面型発光ダイ
オードにより、低電流で高いファイバー結合出力が得ら
れている(電子通信学会、信学技報 OQEB84−9
8<1984)P.15−P.20).まなこの円形メ
サ構造を有した面発光型発光ダイオードは集積化が容易
で発光ダイオードアレーも林等によって試作されている
(昭和63年電子情報通信学会春季全国大会講演集C−
355>.〔発明が解決しようとする課題〕 面型発光ダイオードは基板面に対して垂直に光を取り出
すためにファイバーとのカップリングは容易であるが、
基板面とファイバーの軸方向が直交するためにモジュー
ルとしては大型になってしまうという欠点を有していた
。特に上記問題は高密度実装が要求される光並列伝送用
発光ダイオードアレイのモジュールで大きな問題となっ
ていた。また発光ダイオードアレイのモジュールにおい
てはファイバーアレイとの結合の調整が難しいという欠
点も有していた. 〔課題を解決するための手段〕 上記問題点を解決するなめに本発明は半導体基板上に、
発光に与る活性層を含む積層構造を備え、積層構造の一
部領域を発光領域とし、光を積層面に垂直な方向に取り
出す面型半導体発光ダイオードにおいて、前記半導体基
板裏面の前記発光領域と相対する位置に、前記半導体基
板面に対して45度傾いたミラー面を有する構成とした
ものである. また前記ミラー面を湾曲形状とすることにより高いファ
イバー結合出力が得られる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a light source for optical communication, optical information processing, etc. [Prior Art] Semiconductor light emitting diodes intended as light sources for optical fiber communications must have high brightness, large fiber-coupled output, low current drive, and high reliability. According to a report by Uji et al., high fiber-coupled output can be obtained with low current by using a surface-type light-emitting diode with a circular mesa structure for the light-emitting part and emitting light in a direction perpendicular to the laminated surface (Institute of Electronics and Communication Engineers, IEICE technical report OQEB84-9
8<1984) P. 15-P. 20). Manako's surface-emitting light-emitting diode with a circular mesa structure is easy to integrate, and a light-emitting diode array was also prototyped by Hayashi et al.
355>. [Problem to be solved by the invention] Surface-type light emitting diodes are easy to couple with fibers because they extract light perpendicular to the substrate surface.
Since the substrate surface and the axial direction of the fiber are perpendicular to each other, the module has the disadvantage of being large. In particular, the above-mentioned problem has become a serious problem in light-emitting diode array modules for optical parallel transmission, which require high-density packaging. Another drawback of the light emitting diode array module was that it was difficult to adjust the coupling with the fiber array. [Means for Solving the Problems] In order to solve the above problems, the present invention provides a structure in which on a semiconductor substrate,
In a planar semiconductor light emitting diode that has a laminated structure including an active layer that participates in light emission, a part of the laminated structure is used as a light emitting region, and light is extracted in a direction perpendicular to the laminated surface, the light emitting region and the light emitting region on the back surface of the semiconductor substrate are provided. The configuration has a mirror surface inclined at 45 degrees with respect to the semiconductor substrate surface at an opposing position. Further, by forming the mirror surface into a curved shape, a high fiber coupling output can be obtained.

また前記ミラー面で反射後ミラー面に対向して設けた光
取り出し面を凸レンズ形状とすることによっても高いフ
ァイバー結合出力が得られる。
Further, a high fiber coupling output can also be obtained by forming the light extraction surface provided opposite the mirror surface after reflection into a convex lens shape.

また半導体発光ダイオードをアレイ状に並べて発光ダイ
オードアレイが得られる.この発光ダイオードアレイに
おいては光の出射方向が半導体層の集積方向に対して垂
直となり、ファイバーアレイの軸合わせは基板面が固定
されているので調整が容易になる. 〔作用〕 面型発光ダイオードと光ファイバーの垂直結合について
はファイバーを近距離で直角に曲げる、ファイバーと発
光ダイオード間にミラーを置くなどの方向が考えられる
が、モジュールとして小型化出来、かつ信頼性と結合の
簡便さを実現することは極めて難しい.その中で本発明
による発光ダイオード構造は基板裏面にミラー面を作り
付けるという点で小型化と結合の簡便さを実現しており
、かつ端面発光型の半導体レーザダイオードを両方向に
反射させる手法として精力的研究されており(アブライ
ド フィジックス レターズ46 (1985)PL.
15〜117)良好な反射面がRIBE(リアクティブ
 イオン ビームエッチング)によって得られている。
A light-emitting diode array can also be obtained by arranging semiconductor light-emitting diodes in an array. In this light emitting diode array, the direction of light emission is perpendicular to the direction in which the semiconductor layers are integrated, and alignment of the fiber array is easy because the substrate surface is fixed. [Function] Concerning vertical coupling between a surface-type light-emitting diode and an optical fiber, possible methods include bending the fiber at right angles at a short distance or placing a mirror between the fiber and the light-emitting diode. It is extremely difficult to achieve the simplicity of connection. Among these, the light emitting diode structure according to the present invention realizes miniaturization and ease of coupling by forming a mirror surface on the back surface of the substrate, and is also an effective method for reflecting edge-emitting semiconductor laser diodes in both directions. (Ablide Physics Letters 46 (1985) PL.
15-117) Good reflective surfaces have been obtained by RIBE (reactive ion beam etching).

〔実施例1〕 第1の実施例の半導体発光ダイオードの断面構造を第1
図に示す。InP基板11上にn型InPクラッド層1
2、InGaAsP活性層13、p型InPクラッド層
14、p型I nGaAsPコンタクト層15を順次積
層した半導体発光ダイオード用DH(ダブルへテロ)構
造に内径20μm、外径60μmの環状の溝10を形成
し、渭に囲まれた円形メサ部20を発光領域とした.基
板裏面にはメサ部20と相対する位置に、基板面11a
に対して45度傾いた45゜ミラー面2lを形成してい
る.ミラー面はSi02をマスクとしてRIBHにより
基板裏面をエッチングして形成されており、その表面は
極めて平坦に形成されている.発光領域で発生した光3
0は、ミラー面21により進行方向を直角に曲げられ、
基板面11aに垂直な垂直光収り出し面22を経て、端
面垂直光取り出し面に対向させて配置したファイバー2
3に結合される. ミラーの反射ロスは極めて少なく実質上間題の無いこと
が確認された.また本実施例の半導体発光ダイオードに
ファイバーを固定して作製したモジュールは従来の基板
面に対し垂直に光を取り出す方式のモジュールに比べて
約1/2の厚さに小型化することができた. 〔実施例2〕 第2の実施例の半導体発光ダイオードの断面構造を第2
図に示す,InP基板11上にn型InPクラッド層1
2、InGaAsP活性層13、p型InPクラッド層
14、p型I nGaAsPコンタクト層15を順次積
層した半導体発光ダイオード用DH(ダブルへテロ)構
造に内径20μm、外径60μmの環状の溝10を形成
し、溝に囲まれた円形メサ部20を発光領域とした.基
板裏面にはメサ部と相対する位置に湾曲したミラー面3
1を形成している。ミラー面はS i 02をマスクと
してRIBEによりエッチングして第1図のミラー面と
同じに形成した後、その表面をArのイオンビームエッ
チングにより凸面状に(基板内側から見ると凹面状)に
形成している。
[Example 1] The cross-sectional structure of the semiconductor light emitting diode of the first example was
As shown in the figure. n-type InP cladding layer 1 on InP substrate 11
2. An annular groove 10 with an inner diameter of 20 μm and an outer diameter of 60 μm is formed in a DH (double hetero) structure for a semiconductor light emitting diode in which an InGaAsP active layer 13, a p-type InP cladding layer 14, and a p-type InGaAsP contact layer 15 are sequentially laminated. The circular mesa portion 20 surrounded by the water was set as the light emitting region. A substrate surface 11a is provided on the back surface of the substrate at a position facing the mesa portion 20.
It forms a 45° mirror surface 2l that is tilted 45° with respect to the mirror surface. The mirror surface is formed by etching the back surface of the substrate by RIBH using Si02 as a mask, and the surface is extremely flat. Light generated in the light emitting area 3
0, the direction of travel is bent at right angles by the mirror surface 21,
The fiber 2 is arranged so as to pass through the vertical light extraction surface 22 perpendicular to the substrate surface 11a and face the end face vertical light extraction surface.
Combined with 3. It was confirmed that the reflection loss of the mirror was extremely small and there was virtually no problem. In addition, the module manufactured by fixing the fiber to the semiconductor light emitting diode of this example was able to be made smaller to about 1/2 the thickness of a conventional module that extracts light perpendicular to the substrate surface. .. [Example 2] The cross-sectional structure of the semiconductor light emitting diode of the second example was
As shown in the figure, an n-type InP cladding layer 1 is placed on an InP substrate 11.
2. An annular groove 10 with an inner diameter of 20 μm and an outer diameter of 60 μm is formed in a DH (double hetero) structure for a semiconductor light emitting diode in which an InGaAsP active layer 13, a p-type InP cladding layer 14, and a p-type InGaAsP contact layer 15 are sequentially laminated. The circular mesa portion 20 surrounded by the groove was used as a light emitting region. On the back side of the board, there is a curved mirror surface 3 facing the mesa part.
1 is formed. The mirror surface is etched by RIBE using S i 02 as a mask to form the same mirror surface as shown in Fig. 1, and then the surface is made convex (concave when viewed from inside the substrate) by Ar ion beam etching. are doing.

発光領域で発生した光がミラー面31で反射し、垂直光
取り出し面を22を経てファイバー23に結合するのは
第1の実施例と同じであるが、本実施例ではミラー面が
湾曲しているため、発散した光30aも集光されて効率
良くファイバに結合する.ミラー面での反射ロスは極め
て少なくファイバー結合効率は約1dB向上した.〔実
施例3〕 第3の実施例の半導体発光ダイオードの断面構造を第3
図に示す,InP基板11上に、n型InPクラッド層
12、I nGaAsP活性層13、p型InPクラッ
ド層14、ρ型I nGaAsPコンタクト層15を順
次m層した半導体発光ダイオード用DH(ダブルへテロ
)構造に内径20μm、外径60μmの環状の溝10を
形成し、溝に囲まれた円形メサ部20を発光領域とした
.基板裏面にはメサ部と相対する位置に、基板面11a
に対して45度傾いた45゜ミラー面21を形成しいて
る。ミラー面は極めて平坦に形成されている. ミラー面に対向した光取り出し面32は、Arのイオン
ビームエッチングにより球面状に加工されており、集光
作用があるため、第2の実施例と同様、集光効率が高く
ファイバー結合効率は約1dB向上した. 〔実施例4〕 第4の実施例の半導体発光ダイオードアレイの平面模式
図を第4図に示す.InP基板11上に、n型InPク
ラッド層、InGaAsP活性層、p型1nPクラッド
層、p型1 nGaAsPコンタクト層を順次積層した
半導体発光ダイオード用DH(ダブルへテロ)I造に内
径20μm、外径60μmの環状の溝を複数、並べて形
成し、面発光型ダイオードアレイとした。基板裏面には
、溝で囲まれた複数の発光領域20と相対する位置に4
5゜ミラー面21が形成されている。発光領域からの光
はミラー面で反射し、垂直光取り出し面を経てファイバ
ーアレイ33に結合される。ミラー面の反射ロスは極め
て少なく実質上問題の無いことが確認された。また光軸
とファイバーアレイの軸合わせは基板面が固定されてい
るために一方向のみでよく従来に比べて非常に容易にな
った。
The light generated in the light emitting region is reflected by the mirror surface 31 and coupled to the fiber 23 via the vertical light extraction surface 22, as in the first embodiment, but in this embodiment, the mirror surface is curved. Therefore, the divergent light 30a is also focused and efficiently coupled to the fiber. Reflection loss on the mirror surface was extremely low, and fiber coupling efficiency was improved by approximately 1 dB. [Example 3] The cross-sectional structure of the semiconductor light emitting diode of the third example was
As shown in the figure, a DH for semiconductor light emitting diode (double An annular groove 10 with an inner diameter of 20 μm and an outer diameter of 60 μm was formed in the structure, and a circular mesa portion 20 surrounded by the groove was used as a light emitting region. On the back side of the board, there is a board surface 11a at a position facing the mesa part.
A 45° mirror surface 21 is formed which is inclined at 45° with respect to the mirror surface. The mirror surface is extremely flat. The light extraction surface 32 facing the mirror surface is processed into a spherical shape by Ar ion beam etching and has a light condensing effect, so as in the second embodiment, the light condensing efficiency is high and the fiber coupling efficiency is approximately Improved by 1dB. [Example 4] FIG. 4 shows a schematic plan view of a semiconductor light emitting diode array of the fourth example. An n-type InP cladding layer, an InGaAsP active layer, a p-type 1nP cladding layer, and a p-type 1nGaAsP contact layer are sequentially laminated on an InP substrate 11 to form a DH (double hetero) I structure for semiconductor light emitting diodes with an inner diameter of 20 μm and an outer diameter. A plurality of 60 μm annular grooves were formed side by side to form a surface-emitting diode array. On the back side of the substrate, four light emitting regions 20 surrounded by grooves are located opposite to each other.
A 5° mirror surface 21 is formed. Light from the light emitting region is reflected by the mirror surface and coupled to the fiber array 33 via the vertical light extraction surface. It was confirmed that the reflection loss on the mirror surface was extremely small and there was virtually no problem. Furthermore, since the substrate surface is fixed, alignment of the optical axis and the fiber array only needs to be done in one direction, making it much easier than in the past.

〔発明の効果〕〔Effect of the invention〕

本発明は以上説明したように半導体基板裏面の発光領域
に相対する部分にミラー面を設けているために発光ダイ
オードモジュールとして小型化することができ、またミ
ラーを基板面にモノリシックに形成してあるためにファ
イバーとの結合が容易になるという効果を有する。家な
本発明では集光ミラーや集光レンズをモノリシックに形
成することが可能であり、ファイバー結合効率を高める
という効果も併せて有する。
As explained above, the present invention provides a mirror surface on the back surface of the semiconductor substrate in the portion facing the light emitting region, so it can be miniaturized as a light emitting diode module, and the mirror is monolithically formed on the substrate surface. This has the effect of making it easier to combine with fibers. According to the present invention, it is possible to monolithically form a condensing mirror and a condensing lens, and it also has the effect of increasing fiber coupling efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例の断面図、第2図は本発
明の第2の実施例の断面図、第3図は本発明の・第3の
実施例の断面図、第4図は本発明の第4の実施例の平面
模式図をそれぞれ示す。 11・・・InP基板、12・・・n型InPクラッド
層、13・−・InGaAs活性層、1 4−p型In
pクラッド層、15・・・p型InGaAsPコンタク
ト層、20・・・発光領域、21・・・45°ミラー面
、22・・・垂直光取り出し面、23・・・ファイバー
、31・・・ミラー面、32・・・レンズ状に加工され
た光取り出し面、33・・・ファイバーアレイ。
1 is a cross-sectional view of a first embodiment of the present invention, FIG. 2 is a cross-sectional view of a second embodiment of the present invention, and FIG. 3 is a cross-sectional view of a third embodiment of the present invention. 4 each shows a schematic plan view of a fourth embodiment of the present invention. 11... InP substrate, 12... n-type InP cladding layer, 13... InGaAs active layer, 1 4-p-type In
p cladding layer, 15... p-type InGaAsP contact layer, 20... light emitting region, 21... 45° mirror surface, 22... vertical light extraction surface, 23... fiber, 31... mirror Surface, 32... Lens-shaped light extraction surface, 33... Fiber array.

Claims (4)

【特許請求の範囲】[Claims] (1)半導体基板上に、発光に与る活性層を含む積層構
造を備え、積層構造の一部領域を発光領域とし、光を積
層面に垂直な方向に取り出す面型半導体発光ダイオード
において、前記半導体基板裏面の前記発光領域と相対す
る位置に、前記半導体基板面に対して45度傾いたミラ
ー面を有することを特徴とする半導体発光ダイオード。
(1) A planar semiconductor light emitting diode that has a laminated structure including an active layer that participates in light emission on a semiconductor substrate, a part of the laminated structure is used as a light emitting region, and light is extracted in a direction perpendicular to the laminated surface. A semiconductor light-emitting diode, comprising a mirror surface tilted at 45 degrees with respect to the semiconductor substrate surface at a position opposite to the light-emitting region on the back surface of the semiconductor substrate.
(2)請求項1記載の半導体発光ダイオードにおいて、
前記ミラー面を湾曲形状としたことを特徴とする半導体
発光ダイオード。
(2) The semiconductor light emitting diode according to claim 1,
A semiconductor light emitting diode characterized in that the mirror surface has a curved shape.
(3)請求項1記載の半導体発光ダイオードにおいて、
前記ミラー面に対向して設けた光取り出し面を凸レンズ
状としたことを特徴とする半導体発光ダイオード。
(3) The semiconductor light emitting diode according to claim 1,
A semiconductor light emitting diode characterized in that a light extraction surface provided opposite to the mirror surface is shaped like a convex lens.
(4)請求項1あるいは2または3記載の半導体発光ダ
イオードを1つの半導体基板上に複数個形成したことを
特徴とする半導体発光ダイオードアレイ。
(4) A semiconductor light emitting diode array comprising a plurality of semiconductor light emitting diodes according to claim 1, 2 or 3 formed on one semiconductor substrate.
JP1055329A 1989-03-07 1989-03-07 Semiconductor light emitting diode and semiconductor light emitting diode array Pending JPH02234476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1055329A JPH02234476A (en) 1989-03-07 1989-03-07 Semiconductor light emitting diode and semiconductor light emitting diode array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1055329A JPH02234476A (en) 1989-03-07 1989-03-07 Semiconductor light emitting diode and semiconductor light emitting diode array

Publications (1)

Publication Number Publication Date
JPH02234476A true JPH02234476A (en) 1990-09-17

Family

ID=12995499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1055329A Pending JPH02234476A (en) 1989-03-07 1989-03-07 Semiconductor light emitting diode and semiconductor light emitting diode array

Country Status (1)

Country Link
JP (1) JPH02234476A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6381386B1 (en) 1998-04-23 2002-04-30 Nec Corporation V-shaped optical coupling structure
JP2006013048A (en) * 2004-06-24 2006-01-12 Mitsubishi Electric Corp Light emitting optical semiconductor element and light receiving optical semiconductor element
GB2421849A (en) * 2004-11-22 2006-07-05 Agilent Technologies Inc Optoelectronic Module and Method of Making Such a Module
AT503027B1 (en) * 2006-05-08 2007-07-15 Austria Tech & System Tech Printed circuit board element for multi-mode or single mode waveguide data transmission, has opto-electronic component embedded in optical photo-polymerizable layered material, and component has curved deviation mirror
JP2007299985A (en) * 2006-05-01 2007-11-15 Sumitomo Electric Ind Ltd Laser diode

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6381386B1 (en) 1998-04-23 2002-04-30 Nec Corporation V-shaped optical coupling structure
US6487339B2 (en) 1998-04-23 2002-11-26 Nec Corporation V-shaped optical coupling structure
JP2006013048A (en) * 2004-06-24 2006-01-12 Mitsubishi Electric Corp Light emitting optical semiconductor element and light receiving optical semiconductor element
GB2421849A (en) * 2004-11-22 2006-07-05 Agilent Technologies Inc Optoelectronic Module and Method of Making Such a Module
GB2421849B (en) * 2004-11-22 2010-04-14 Agilent Technologies Inc Optoelectronic module and method of making such a module
JP2007299985A (en) * 2006-05-01 2007-11-15 Sumitomo Electric Ind Ltd Laser diode
AT503027B1 (en) * 2006-05-08 2007-07-15 Austria Tech & System Tech Printed circuit board element for multi-mode or single mode waveguide data transmission, has opto-electronic component embedded in optical photo-polymerizable layered material, and component has curved deviation mirror
WO2007128021A1 (en) 2006-05-08 2007-11-15 At & S Austria Technologie & Systemtechnik Aktiengesellschaft Printed circuit board element comprising an optoelectronic component and an optical waveguide
US8417078B2 (en) 2006-05-08 2013-04-09 At & S Austria Technologie & Systemtechnik Aktiengesellschaft Printed circuit board element including an optoelectronic component and an optical waveguide

Similar Documents

Publication Publication Date Title
CN100407525C (en) Surface emitting laser diode and process for producing the same
JP4839662B2 (en) Surface emitting semiconductor laser array and optical transmission system using the same
JP3375213B2 (en) Fiber with lens
JP3961530B2 (en) Optical element, optical transmission unit and optical transmission system
US6094515A (en) Optical module
US20020093024A1 (en) Micro-lens built-in vertical cavity surface emitting laser
EP1385032A1 (en) Lensed optical fiber
US6687282B2 (en) Micro-lens built-in vertical cavity surface emitting laser
JPH10282364A (en) Assembly of optical device
US6975792B1 (en) Method and apparatus for coupling light into a waveguide using a slit
JPH1039162A (en) Optical semiconductor device, semiconductor photodetector, and formation of optical fiber
JPH02234476A (en) Semiconductor light emitting diode and semiconductor light emitting diode array
US20150331212A1 (en) Method for forming optoelectronic modules connectable to optical fibers and optoelectronic module connectable to at least one optical fiber
EP2762936B1 (en) Method for forming optoelectronic modules connectable to optical fibers
JP2568506B2 (en) Semiconductor light receiving device
JP3302839B2 (en) Optical communication unit
JP2012098756A (en) Optical path converting body and packaging structure thereof, and optical module with the same
JP2913847B2 (en) Semiconductor laser module with detachable connector
JP3821576B2 (en) Optical module
JP2001264586A (en) Optical communication module
JP3801922B2 (en) Optical module
JP4031806B2 (en) Optical module
US10088627B1 (en) Waveguide corner structure
JP2595880B2 (en) Method for manufacturing semiconductor optical coupling device
CA2502188C (en) Fractional cladding for optical fibers