JPH02234365A - Lithium battery - Google Patents

Lithium battery

Info

Publication number
JPH02234365A
JPH02234365A JP1055447A JP5544789A JPH02234365A JP H02234365 A JPH02234365 A JP H02234365A JP 1055447 A JP1055447 A JP 1055447A JP 5544789 A JP5544789 A JP 5544789A JP H02234365 A JPH02234365 A JP H02234365A
Authority
JP
Japan
Prior art keywords
lithium
battery
aluminum
negative electrode
batteries
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1055447A
Other languages
Japanese (ja)
Inventor
Hisashi Tsukamoto
寿 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP1055447A priority Critical patent/JPH02234365A/en
Publication of JPH02234365A publication Critical patent/JPH02234365A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To make manufacture of the title battery easy and safe by using an active mass whose charge and discharge reaction are lithium absorbing and desorbing processes for a cathode and aluminum for an anode. CONSTITUTION:Aluminum for an anode can absorb and desorb lithium and an active mass whose charge-discharge reaction is lithium absorbing-desorbing process is used. At the time of charging, lithium absorbed in a cathode is desorbed and at the same time lithium is absorbed in aluminum anode and forms lithium-aluminum alloy. That, is aluminum anode is converted into a lithium-aluminum alloy at the time of first charging and after that, in charge- discharge cycles, similar electric properties with a conventional lithium battery are obtained. As a result, manufacture of lithium battery is made easy and problems in quality, cost, and safety can be resolved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、リチウム電池に関するものである.従来の技
術 リチウム電池は、負極には通常、金属リチウムまたはリ
チウムアルミニウム合金等のリチウム合金が用いられ、
正極にはリチウムがインターカレートする物質が用いら
れ、電解液には有機電解液,溶融塩電解液あるいは固体
電解質等の非水電解液が用いられている. リチウム電池は、水溶液系の電池に比べて、放tt圧が
高いこと、エネルギー密度が高いこと等の優れた特徴を
有している.しかし、負極に用いられている金属リチウ
ムやリチウム合金が空気中の水分ときわめて容易に反応
するので、水溶液糸の電池に比べてその製造における取
扱いが煩雑である。すなわち、通常の室内で負極を取扱
うと、空気中の水分と反応して電池性能の著しい低下を
招くばかりか、反応熱が原因となって火災を引き起こす
恐れがある.このような火災の危険性は、可燃性の電解
液である有n電解液を用いた電池の場合に特に大きい. したがって、従来のリチウム電池の製造は、品質の低下
や火災の危険性を考慮して、乾燥雰囲気の中で行なう必
要があった.この場合、乾燥雰囲気とは、露点が少なく
とも−40℃以下に保たれた状態をいう.この様な乾燥
状態を実現するためには、モノキュラーシーブや塩化リ
チウムの中を通って空気を循環させるような循環精製装
置を供えた適度な気密性を有する部屋、いわゆるドライ
ルームが必要である. 発明が解決しようとする課題 従来のリチウム電池の製造においては、金属リチウムや
リチウム合金に起因する火災の発生という安全上の間趙
点、また、ドライルームを建設しこれを運転する費用を
必要とするコスト上の問題点、さらに長時間ドライルー
ム内で人間が作業した場合の人体への悪影響という健康
上の問題があった. 課題を解決するための手段 本発明ではリチウム電池において、充放電反応がリチウ
ムの吸蔵・放出過程である活物質を正極に用い、アルミ
ニウムを負極に用いることにより、上述の問題点を解決
する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to lithium batteries. Conventional technology Lithium batteries typically use metallic lithium or a lithium alloy such as a lithium aluminum alloy for the negative electrode.
A material that intercalates lithium is used for the positive electrode, and a nonaqueous electrolyte such as an organic electrolyte, molten salt electrolyte, or solid electrolyte is used for the electrolyte. Lithium batteries have superior characteristics, such as higher discharge pressure and higher energy density, than aqueous batteries. However, since the metal lithium or lithium alloy used in the negative electrode reacts extremely easily with moisture in the air, handling during production is more complicated than with aqueous solution thread batteries. In other words, if the negative electrode is handled indoors, it not only reacts with moisture in the air, resulting in a significant drop in battery performance, but also poses a risk of fire due to the heat of reaction. The risk of such a fire is particularly great in the case of batteries that use n-containing electrolytes, which are flammable electrolytes. Therefore, conventional lithium battery manufacturing had to be carried out in a dry atmosphere due to the risk of quality deterioration and fire. In this case, a dry atmosphere means a state in which the dew point is maintained at at least -40°C or lower. In order to achieve such dry conditions, a so-called dry room, a room with appropriate airtightness, is required, equipped with a monocular sieve or a circulation purification device that circulates air through lithium chloride. Problems to be Solved by the Invention In the conventional manufacturing of lithium batteries, there are safety issues such as fires caused by metallic lithium and lithium alloys, and the expense of constructing and operating a dry room. There was a cost problem, as well as a health problem due to the negative effects on the human body if people worked in a dry room for a long time. Means for Solving the Problems The present invention solves the above-mentioned problems by using, in a lithium battery, an active material whose charge/discharge reaction is a lithium intercalation/desorption process for the positive electrode and aluminum for the negative electrode.

作用 従来のリチウム電池の製逍における品質上,コスト上,
安全上等の問題点は、通常の空気中では取扱うことがで
きない金属リチウムまたはリチウム合金を負極として用
いていることに起因している。
Effects Due to quality and cost issues in conventional lithium battery manufacturing,
Safety and other problems arise from the use of metallic lithium or lithium alloy, which cannot be handled in normal air, as the negative electrode.

本発明では、これらの金属に変えて、アルミニウムを負
極に用いて電池を組立て゛る。アルミニウムは、その表
面に薄い酸化被膜を生成した後は安定なので通常の室内
で取扱うことができる.また、アルミニウムはリチウム
を吸蔵・放出できるという特徴を有している.さらに本
発明では正極活物質として、充放電反応がリチウムの吸
蔵・放出であるものを用いるが、組み立て時にはこの活
物質を、リチウムを吸蔵した状態、すなわち放電状態で
用いる. 本発明の電池を充電ずると、正極に吸蔵されていたリチ
ウムが放出されると共に、負極のアルミニウムにリチウ
ムが吸蔵されてリチウムアルミニウム合金を形成する.
すなわち、アルミニウム負極は、最初の充電によってリ
チウムアルミニウム合金に転換される.そして、その後
の充放電サイクルにおいては、負極に金属リチウムやリ
チウム合金を用いて、正極に充電状態の活物質を用いて
、乾燥雰囲気中で組立てた従来のリチウム電池と同等の
特性が得られる。
In the present invention, a battery is assembled using aluminum for the negative electrode instead of these metals. Aluminum is stable after a thin oxide film is formed on its surface, so it can be handled indoors. Additionally, aluminum has the characteristic of being able to absorb and release lithium. Furthermore, in the present invention, a positive electrode active material whose charge/discharge reaction is occlusion and desorption of lithium is used, and during assembly, this active material is used in a state in which lithium is occluded, that is, in a discharge state. When the battery of the present invention is charged, the lithium occluded in the positive electrode is released, and lithium is occluded in the aluminum of the negative electrode, forming a lithium-aluminum alloy.
That is, the aluminum negative electrode is converted into a lithium aluminum alloy by the first charge. Then, in subsequent charge/discharge cycles, characteristics equivalent to those of conventional lithium batteries assembled in a dry atmosphere can be obtained using metallic lithium or lithium alloy for the negative electrode and a charged active material for the positive electrode.

実施例 以下、本発明を好適な実施例を用いて説明する.まず、
負極板の製法を述べる.直径が1511で厚さが0. 
2nlのアルミニウム円板を2016形リチウムボタン
電池の負極ケースにスポット溶接して負極板とした。金
属リチウムやリチウムアルミニウム合金を負極に用いた
従来の電池は、負極の溶融・燃焼をまねくので、負極を
ケースにスポット溶接することができなかった。つまり
本発明のリチウム電池は、従来のリチウム電池と比較し
て製造が容易であるだけでなく、電極とケースとの電子
電導性が良好であるという点で61*れている.次に、
正極の製造方法について述べる.炭酸リチウムと炭酸コ
バルトとの混合物をペレット状に成形して900℃で2
0時間熱分解した後、ベレットを再度粉砕しな.そして
、グラファイトを10wt%混合添加した後o.oag
を秤量して金型に投入して直径が15nnで厚さが0.
61iのペレット状に成形した.このペレットを100
メッシュのアルミニウム金網で包んで正極板とした。熱
分解により合成された正極活物質は、充放電反応がリチ
ウムの吸蔵・放出過程であって化学式がLi. Cod
. ( 0 < x≦1)で示されるような物質である
.この物質はリチウムを吸蔵した状態では、比較的安定
しているので通常の空気中で取汲うことができる。
EXAMPLES The present invention will be explained below using preferred examples. first,
The manufacturing method of the negative electrode plate will be described. The diameter is 1511 and the thickness is 0.
A 2nl aluminum disc was spot welded to the negative electrode case of a 2016 type lithium button battery to form a negative electrode plate. Conventional batteries that use metallic lithium or lithium-aluminum alloy for the negative electrode cannot be spot-welded to the case because this would cause the negative electrode to melt and burn. In other words, the lithium battery of the present invention is superior to conventional lithium batteries in that it is not only easier to manufacture, but also has better electronic conductivity between the electrode and the case. next,
This section describes the method for manufacturing the positive electrode. A mixture of lithium carbonate and cobalt carbonate is formed into pellets and heated at 900℃ for 2 hours.
After 0 hours of pyrolysis, the pellets should not be ground again. After adding 10 wt% of graphite, o. oag
was weighed and put into a mold to form a mold with a diameter of 15 nn and a thickness of 0.
It was molded into 61i pellets. 100 of these pellets
It was wrapped in a mesh aluminum wire gauze to form a positive electrode plate. The positive electrode active material synthesized by thermal decomposition has a chemical formula of Li. Cod
.. It is a substance as shown by (0 < x≦1). This material is relatively stable when it absorbs lithium, so it can be extracted in normal air.

ここまでの作業は、通常の室内で行なったが、これ以降
の作業は水分を嫌う有機電解液を取扱うために、従来の
リチウム電池と同様にドライルーム内で行なった。なお
、負極および正極板は、ドライルームに持ち込む前に1
20℃で20時間の真空乾燥を行なった。
The work up to this point was carried out in a normal room, but the following work was carried out in a dry room, as with conventional lithium batteries, in order to handle an organic electrolyte that dislikes moisture. Please note that the negative and positive electrode plates are
Vacuum drying was performed at 20° C. for 20 hours.

正極板を2016形リチウム電池の正極ケースの中央に
セットして、その上に直径が161’lllで厚さが0
.31mのポリエチレン製の微孔セパレーターをセット
した.そして、18 LICI04  PC/DHEt
解液を30μ1注液した後に負極ケース(前述のように
、アルミニウム負極板をスポット溶接したもの)をセッ
トして封ロした.こうして得られた電池を本発明のリチ
ウム電池Aとする. 次に電池Aと同様にアルミニウム負極板を負極ケースに
スポット溶接する工程を通常の室内で行なった電池であ
って、正極活物質として[iえHnO.(0くx≦1)
を用いた以外は電池Aと同様な電池を本発明の電池Bと
する.また、同じく正極活物質としてLi. TiSz
 ( 0 < x≦1)を用いた電池を本発明の電池C
とする..さらに正極活物質としてLi. Vユ05(
0<x≦1)を用いた電池を本発明の電池Dとする.電
池B,CおよびDに用いた正極活物質は、吸湿性がきわ
めて強いので、通常の室内で取扱うことができなかった
.このため、電池Aに比較して、ドライルーム内での作
業の割合が増加したが、従来のリチウム電池に比べれば
、負極を通常の室内で取扱えるので作業性や安全性等が
より優れている。
Set the positive electrode plate in the center of the positive electrode case of a 2016 type lithium battery, and place a plate with a diameter of 161'lll and a thickness of 0 on top of it.
.. A 31 m polyethylene microporous separator was installed. And 18 LICI04 PC/DHEt
After injecting 30 μl of the solution, a negative electrode case (as described above, an aluminum negative electrode plate spot-welded) was set and sealed. The battery thus obtained is referred to as lithium battery A of the present invention. Next, as in Battery A, the process of spot welding the aluminum negative electrode plate to the negative electrode case was carried out in a normal room, and the positive electrode active material was [ie HnO. (0x≦1)
Battery B of the present invention is a battery similar to Battery A except that . Similarly, Li. TiSz
(0<x≦1) as the battery C of the present invention.
Suppose that .. Furthermore, Li. Vyu05(
0<x≦1) is referred to as battery D of the present invention. The positive electrode active materials used in Batteries B, C, and D were extremely hygroscopic and could not be handled indoors. For this reason, compared to Battery A, the percentage of work required in a dry room has increased, but compared to conventional lithium batteries, the negative electrode can be handled in a normal room, making workability and safety superior. There is.

次に、電池Aと同様に正極活物質にLii CQO2を
用いて、後述の多孔性のアルミニウム電極を負極に用い
た電池を本発明の電池Eとする.金属リチウムやリチウ
ム合金を負極に用いた従来のリチウム電池では、金属粉
末を出発材料として多孔性の負極板を得ることが非常に
困難であった。それは、金属リチウムやリチウム合金が
水と激しく反応するので、これらの金属粉末を乾燥状態
で取扱わねばならず、火災や爆発等の危険性が極めて大
きかったことに起因している.しかし本発明の電池では
、アルミニウム粉末を用いて、下記に示す安全な湿式法
により多孔性電極を得ることができた。すなわち、18
0〜320メッシュのアルミニウム粉末100重量部に
、精製水40重量部およびポリエチレン系接着剤の固形
分5重量部を添加して混合しペースト状にした。このペ
ーストを厚さが0.25niのニッケルエキスバンドネ
ットに均一に塗布して乾燥させた後、軽くプレスして円
板状に打ち抜いた。この結果、直径が1 51′on 
,厚さが0. 2mmで多孔度が30%の多孔性アルミ
ニウム電極が得られた.この多孔性アルミニウム電極の
一部分を加圧して平坦面を形成して、その平坦面を負極
ケースにスポット溶接した。このような多孔性アルミニ
ウム負極板を用いると、後述するように、電極の作用面
積の増加に伴う平均電流密度の低下によって、有機電解
液電池の欠点であった大電流密度の放電を行なった場合
の放電電圧の低下が抑制される。
Next, as in Battery A, a battery using Lii CQO2 as the positive electrode active material and a porous aluminum electrode as described below as the negative electrode is designated as Battery E of the present invention. In conventional lithium batteries that use metallic lithium or lithium alloy for the negative electrode, it is extremely difficult to obtain a porous negative electrode plate using metal powder as a starting material. This is because metallic lithium and lithium alloys react violently with water, so these metal powders had to be handled in a dry state, posing an extremely high risk of fire or explosion. However, in the battery of the present invention, a porous electrode could be obtained using aluminum powder by a safe wet method described below. That is, 18
40 parts by weight of purified water and 5 parts by weight of solid content of polyethylene adhesive were added to 100 parts by weight of aluminum powder of 0 to 320 mesh and mixed to form a paste. This paste was uniformly applied to a nickel expanded band net having a thickness of 0.25 ni, dried, and then lightly pressed to punch out a disk shape. As a result, the diameter is 1 51'on
, thickness is 0. A porous aluminum electrode with a thickness of 2 mm and a porosity of 30% was obtained. A portion of this porous aluminum electrode was pressurized to form a flat surface, and the flat surface was spot welded to the negative electrode case. When such a porous aluminum negative electrode plate is used, as will be described later, the average current density decreases due to the increase in the active area of the electrode, making it difficult to discharge at a high current density, which has been a drawback of organic electrolyte batteries. The decrease in discharge voltage is suppressed.

以上の本発明の電池A,B,C,DおよびEは、負極板
を負極ケースにスポット溶接する工程を通常の室内で行
なったが、この間に負極板が室内に放置されていた時間
は1〜4時間であった.次に比較のために、従来のリチ
ウム電池の負極板を本発明と同様に室内に放置した後組
立てた。
In the batteries A, B, C, D, and E of the present invention described above, the process of spot welding the negative electrode plate to the negative electrode case was carried out in a normal room, but the time during which the negative electrode plate was left indoors was 1. It was ~4 hours. Next, for comparison, the negative electrode plate of a conventional lithium battery was assembled after being left indoors in the same manner as in the present invention.

すなわち、厚さが0.2nlで直径が15lIの金属リ
チウム負極板を通常の室内に30分間放置した後ドライ
ルームに持ち込み、二酸化マンガンを正極として、電池
Aと同様のセパレーター,電解液を用いた比較のための
電池Fを製作した。
That is, a metal lithium negative electrode plate with a thickness of 0.2 nl and a diameter of 15 lI was left in a normal room for 30 minutes and then brought into a dry room, and manganese dioxide was used as a positive electrode, and the same separator and electrolyte as in Battery A were used. Battery F was manufactured for comparison.

これらの電池A〜Fを20℃, 1nA/一で放電して
電圧特性を比較した。その結果を第1図に示す。
These batteries A to F were discharged at 20° C. and 1 nA/1 and their voltage characteristics were compared. The results are shown in FIG.

なお、本発明による電池A−′−Eは、それぞれ20℃
で次に示す充電を行った後に放電した.AおよびEは1
l^/aaで充電電圧が4.3vに至るまで充電した.
また、B!,t3.5Vまで、Cは2.8vまで、Di
,t3.5Vまでそれぞれ1 1A/一で充電した. 同図より電池A,B,C,DおよびEは、いずれも水溶
液系の電池では得られないような高い放電電圧を示した
が、電池Fは放電容量がほとんど得られなかった。この
ことから本発明のリチウム電池は、少なくとも負極板の
取汲いを通常の室内で行なうことができるが、従来のリ
チウム電池では不可能であることがわかる。また、電池
Aと電池Eを比較すると、電池Eの放電電圧が高かった
In addition, batteries A-'-E according to the present invention were heated at 20°C.
The battery was charged as shown below and then discharged. A and E are 1
I charged it at l^/aa until the charging voltage reached 4.3V.
Also, B! , t up to 3.5V, C up to 2.8V, Di
, and charged at 11A/1 to t3.5V. As shown in the figure, batteries A, B, C, D, and E all showed high discharge voltages that cannot be obtained with aqueous batteries, but battery F had almost no discharge capacity. This shows that the lithium battery of the present invention allows at least the removal of the negative electrode plate in a normal room, which is not possible with conventional lithium batteries. Furthermore, when comparing Battery A and Battery E, the discharge voltage of Battery E was higher.

これは負極板に多孔性電極を用いたことに起因するもの
である。
This is due to the use of a porous electrode for the negative electrode plate.

発明の効果 以上述べたように本発明によって、製造が容易安全であ
り、しかも ■負極板を電池ケースにスポット溶接することが可能で
あるため、従来の接触のみによる場合に比較して負極板
とケース間の電子電導性が優れている。
Effects of the Invention As described above, the present invention is easy and safe to manufacture, and also allows spot welding of the negative electrode plate to the battery case, making it easier to connect the negative electrode plate to the battery case than by conventional contact only. Excellent electronic conductivity between cases.

■負極板を多孔性電極にすることが可能であるため、大
電流で放電した場合の放電電圧の低下が少ない. 等の優れた特徴を有したリチウム電池を提供することが
できる。
■Since the negative electrode plate can be made into a porous electrode, there is little drop in discharge voltage when discharging at a large current. It is possible to provide a lithium battery having excellent characteristics such as the following.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、 本発明のリチウム電池と従来のリチ ウム電池の放電電圧特性を比較した図である.身 固 電泄必族重犯工野性 #位オ問 / hr Figure 1 shows The lithium battery of the present invention and the conventional lithium battery This is a diagram comparing the discharge voltage characteristics of umum batteries. body solid Electric excretion necessary serious criminal factory sex # rank o question / hr

Claims (1)

【特許請求の範囲】[Claims]  充放電反応がリチウムの吸蔵・放出過程である活物質
を正極に用い、アルミニウムを負極に用いたことを特徴
とするリチウム電池。
A lithium battery characterized by using an active material whose charge/discharge reaction is a lithium intercalation/desorption process for the positive electrode and aluminum for the negative electrode.
JP1055447A 1989-03-08 1989-03-08 Lithium battery Pending JPH02234365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1055447A JPH02234365A (en) 1989-03-08 1989-03-08 Lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1055447A JPH02234365A (en) 1989-03-08 1989-03-08 Lithium battery

Publications (1)

Publication Number Publication Date
JPH02234365A true JPH02234365A (en) 1990-09-17

Family

ID=12998853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1055447A Pending JPH02234365A (en) 1989-03-08 1989-03-08 Lithium battery

Country Status (1)

Country Link
JP (1) JPH02234365A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63261674A (en) * 1987-04-17 1988-10-28 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JPS63285865A (en) * 1987-05-18 1988-11-22 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JPH02114465A (en) * 1988-10-21 1990-04-26 Matsushita Electric Ind Co Ltd Lithium secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63261674A (en) * 1987-04-17 1988-10-28 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JPS63285865A (en) * 1987-05-18 1988-11-22 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JPH02114465A (en) * 1988-10-21 1990-04-26 Matsushita Electric Ind Co Ltd Lithium secondary battery

Similar Documents

Publication Publication Date Title
JPS63114064A (en) Nonaqueous secondary battery
JPS59186274A (en) Manufacture of nonaqueous electrolyte secondary battery
JP2020077611A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery including the same
WO2001086741A1 (en) Rechargeable battery including an inorganic anode
JPH09259929A (en) Lithium secondary cell
JP2004356048A (en) Electrode material for lithium secondary battery, electrode structure having the electrode material and lithium secondary battery having the electrode structure
JPH1160243A (en) Nickel hydroxide, lithium nickelate, their production and lithium ion secondary battery using the lithium nickelate
JP2002042812A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery using the same
JPH02234365A (en) Lithium battery
JPS60131776A (en) Nonaqueous electrolyte secondary battery
JPH0355770A (en) Lithium secondary battery
JP2004296149A (en) Nonaqueous electrolyte secondary battery
JP2002190300A (en) Lithium secondary cell
JP3311550B2 (en) Lithium secondary battery
JPH02183964A (en) Manufacture of hydrogen storage electrode
JPH0380121A (en) Production of manganese dioxide for lithium secondary cell
JPS59186276A (en) Nonaqueous electrolyte secondary battery
JPH01292753A (en) Secondary battery
JPH04163861A (en) Secondary battery with non-aqueous electrolyte
JPH03285270A (en) Alkaline storage battery
JP2858374B2 (en) Non-aqueous electrolyte secondary battery
JPH07142057A (en) Nonaqueous electrolyte battery
JP2000012033A (en) Nonaqueous electrolyte battery
JPH07192719A (en) Nonaqueous electrolyte secondary battery
JPH04167359A (en) Nonaqueous electrolyte secondary battery