JPH02233174A - Coating apparatus - Google Patents

Coating apparatus

Info

Publication number
JPH02233174A
JPH02233174A JP5185389A JP5185389A JPH02233174A JP H02233174 A JPH02233174 A JP H02233174A JP 5185389 A JP5185389 A JP 5185389A JP 5185389 A JP5185389 A JP 5185389A JP H02233174 A JPH02233174 A JP H02233174A
Authority
JP
Japan
Prior art keywords
time
film thickness
coated
motor
reflected light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5185389A
Other languages
Japanese (ja)
Inventor
Kenji Marumoto
健二 丸本
Atsushi Aya
淳 綾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5185389A priority Critical patent/JPH02233174A/en
Publication of JPH02233174A publication Critical patent/JPH02233174A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To highly control a film thickness by a method wherein monochromatic light is allowed to be incident to the surface of an object to be coated and the intensity of the reflected light from said surface is monitored during rotary coating and it is detected that a liquid film becomes a desired value, on the basis of the intensity of the reflected light. CONSTITUTION:An object 10 to be coated is irradiated with laser beam being monochromatic light from a laser 10 when or before the rotation of a motor is started and the intensity of the reflected light from said object 1 is detected by a light detector 11 and the voltage signal being the output of said detector 11 is taken in a motor control part 6. Voltage outlet V1 to be outputted at the time if a desired film thickness preliminarily calculated by experiment, the time tf required in obtaining a desired film thickness and the time t1 arbitrarily set between the time tf and the time tf-1 when voltage Vf is outputted one time ago are stored in the motor control part 6. The control part 6 continues the rotation of the motor 5 at the time of t<t1 and issues a command for the motor 5 to stop rotation at the point of time of t>t1 and V=Vf, that is, at the point of time when a desired film is obtained. By this method, the irregularity of a film thickness caused by a change of the temp. of a supplied liquid or an atmospheric condition is prevented.

Description

【発明の詳細な説明】 E産業上の利用分野] この発明は,液体の塗布装置に関し、特に、半導体ウエ
ハの表面にフォトレジストなどを回転塗布するのに用い
られる塗布装置に関するものである. [従来の技術1 回転塗布装置は、平板に液体を均一に塗布することが比
較的容易であることから、従来、種々の分野で利用され
ている。半導体製造プロセスにおいても、株式会社工業
調査会発行「電子材料」別冊、(1 988年12月号
)78−83ページに示されるように,シリコンウエハ
上にフォトレジストを塗布するのにも用いられている.
第7図は従来のこの種の塗布装置を示し、シリコンウエ
ハなどのFlu!布体(1)にフォトレジストなどの塗
布液(2)を塗布.するもので、(3)は塗布液(2)
を被塗布体(1)に滴下するためのノズル、(4)はチ
ャック、(5)はモーク,(6)はモータ制御部である
. 次1;動作について、シリコンウエハにフォトレジスト
を塗布する場合を例にとり説明する.まず、モータ(5
)に接続されたチャック(4)の上に、ウエハ(1)が
設置され、さらに例えば真空吸引力によりウエハ(1)
がチャック(4)に固定される.次いで、ノズル(3)
からフォトレジスト液(2)がウエハ(1)上に適量滴
下される.このレジスト液(2)の滴下は、以下に行う
ウエハ(i)の回転が開始されてからでもよい.さらに
、ウエハ(1)が,予め決定された回転パターンに従っ
て、モータ(5)の回転にチャック(4)を介して連動
して回転する.この間レジスト(2)は、溶媒の蒸発を
伴いながら、C遠心力によってウエハ(1)上を拡がり
薄l1tを形成する.モータ(5)の回転数や回転時間
などの回転パターンは、使用するレジスト液(2)の粘
度や所望の膜厚から、予め条件出しを行って決定されて
いる. [発明が解決しようとする課題] 従来の塗布装置は以上のように構成されており、予め決
められた条件で一律に運転されるた/め,通常、多数枚
のウエハが連続して処理される際に,雰囲気条件や、供
給液温などの微妙な変化に対して、ウエ八表面に形成さ
れるレジストの膿厚を一定にすることが困難であり、膜
厚のばらつきを招くという欠点があった. このような欠点を解消する手段として,本発明者らは概
要以下のような発明を行った(この発明を以下では先行
発明と呼ぶ).すなわち,第8図に示す塗布装置であり
、被塗布体(1)に塗布液(2)の塗布を行う場合、ま
ずチャック(4)上に被塗布体(.1)を載せ,真空吸
着により固定する。その後、ノズル(3)から塗布液(
2)を被塗布体(1)上に滴下する.さらに、モータ(
5)により被塗布体(1)およびチャック(4)を一定
時間、高速で回転し、被塗布体(1)上の塗布液(2)
を遠心力により拡げて,塗布液(2)の膜を形成する.
塗布中、光源(20)から被塗布体(1)上に光を照射
し、その反射光強度を光検出器flllで検出する.塗
布時、塗布液(2)の膜厚が減少するのに伴い、膜中で
の光の吸収が減少し、従って、反射光強度が増加してい
く。この様子を第9図に示す.同図(a)は時間tと膜
厚βの関係を示すグラフ図、同図(b)は時間tと反射
光強度Iの関係を示すグラフ図である.図中、I2rは
所望の膜厚、■,はこの所望の膜厚2fのときの反射光
強度を示している.モーク回転停止制御部(12)は、
第lO図に示すように,受光素子から反射光強度を求め
、その値がI t−eつた時点でモータ(5)の回転を
停止する. 以上、先行兄明を具体的に説明したが、上記のように股
厚が所望の値になったことを検知し、この時点で被塗布
体(1)の回転を停止させることにより,膜厚のばらつ
きを発生しない塗布装置を得ることができる. この発明は、上記先行発明をさらに進め,より高い膜厚
制御制度が達成できる塗缶装置を得ることを目的とする
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a liquid coating device, and particularly to a coating device used for spin-coating photoresist or the like onto the surface of a semiconductor wafer. [Prior Art 1] Rotary coating devices have been used in various fields because it is relatively easy to uniformly coat a liquid onto a flat plate. In the semiconductor manufacturing process, it is also used to coat photoresist on silicon wafers, as shown in the separate volume of "Electronic Materials" published by Kogyo Chosenkai Co., Ltd. (December 1988 issue), pages 78-83. ing.
FIG. 7 shows a conventional coating device of this type, which is used to coat silicon wafers, etc. Apply coating liquid (2) such as photoresist to cloth body (1). (3) is the coating liquid (2)
(4) is a chuck, (5) is a mork, and (6) is a motor control unit. Next 1: The operation will be explained using the case of applying photoresist to a silicon wafer as an example. First, the motor (5
) The wafer (1) is placed on the chuck (4) connected to the chuck (4), and the wafer (1) is
is fixed to the chuck (4). Next, nozzle (3)
An appropriate amount of photoresist solution (2) is dropped onto the wafer (1). The resist liquid (2) may be dropped after the rotation of the wafer (i), which will be described below, has started. Further, the wafer (1) is rotated in conjunction with the rotation of the motor (5) via the chuck (4) according to a predetermined rotation pattern. During this time, the resist (2) spreads over the wafer (1) due to C centrifugal force while the solvent evaporates, forming a thin film. The rotation pattern such as the rotation speed and rotation time of the motor (5) is determined in advance by determining conditions based on the viscosity of the resist liquid (2) used and the desired film thickness. [Problems to be Solved by the Invention] Conventional coating apparatuses are configured as described above, and because they are uniformly operated under predetermined conditions, usually a large number of wafers are processed in succession. When coating, it is difficult to maintain a constant thickness of the resist formed on the wafer surface due to subtle changes in atmospheric conditions, supply liquid temperature, etc., resulting in variations in film thickness. there were. As a means to overcome these drawbacks, the present inventors have made an invention as outlined below (hereinafter, this invention will be referred to as the prior invention). That is, the coating apparatus shown in FIG. 8 is used to apply the coating liquid (2) to the object to be coated (1), first place the object to be coated (.1) on the chuck (4), and then apply it by vacuum suction. Fix it. After that, the coating liquid (
Drop 2) onto the object to be coated (1). In addition, the motor (
5), the object to be coated (1) and the chuck (4) are rotated at high speed for a certain period of time, and the coating liquid (2) on the object to be coated (1) is
is spread by centrifugal force to form a film of coating solution (2).
During coating, light is irradiated onto the object to be coated (1) from a light source (20), and the intensity of the reflected light is detected by a photodetector fllll. During coating, as the film thickness of the coating liquid (2) decreases, the absorption of light in the film decreases, and therefore the intensity of reflected light increases. This situation is shown in Figure 9. FIG. 5(a) is a graph showing the relationship between time t and film thickness β, and FIG. 2(b) is a graph showing the relationship between time t and reflected light intensity I. In the figure, I2r indicates the desired film thickness, and ■ and indicates the reflected light intensity when the desired film thickness is 2f. The mork rotation stop control section (12) is
As shown in Fig. 10, the intensity of reflected light from the light receiving element is determined, and the rotation of the motor (5) is stopped when the value reaches I t -e. Above, we specifically explained the preceding method.As mentioned above, by detecting that the crotch thickness has reached the desired value and stopping the rotation of the object (1) to be coated at this point, the film thickness can be increased. This makes it possible to obtain a coating device that does not cause variations in color. The present invention further advances the prior invention described above and aims to provide a can coating device that can achieve higher film thickness control accuracy.

[課題を解決するための手段】 この発明に係る塗布装置は、単色光を被塗布体表面に入
射させ,その反射光の強度を回転塗布中モニタし、その
反射光強度に基いて液膜が所望の値になったことを検知
し,被塗布体の回転を停止させるようにしたものである
. [作用] この発明においては、簡単な装置で、高精度に膿厚の制
御を行う。
[Means for Solving the Problems] The coating device according to the present invention makes monochromatic light incident on the surface of the object to be coated, monitors the intensity of the reflected light during spin coating, and forms a liquid film based on the intensity of the reflected light. This system detects when the desired value has been reached and stops the rotation of the object to be coated. [Operation] In the present invention, the thickness of pus is controlled with high precision using a simple device.

[実施例] 以下、この発明の第一の実施例を第1図〜第5図につい
て説明する。第l図において(1)は被塗布体、(2)
は塗布液、(4)はチャック、(5)はモータであり、
これらは第7図に示したものと同様である。塗布液滴下
用ノズルは省略した. さらに、単色光源であるレーザ(lO)、例えばフォト
ダイオードなどの光検出器(illが設けられている。
[Example] Hereinafter, a first example of the present invention will be described with reference to FIGS. 1 to 5. In Figure l, (1) is the object to be coated, (2)
is the coating liquid, (4) is the chuck, (5) is the motor,
These are similar to those shown in FIG. The nozzle for dropping the coating liquid was omitted. Furthermore, a monochromatic light source, a laser (lO), and a photodetector (ill), such as a photodiode, are provided.

(6)はモータ制御部である. 次ぎに動作について説明する.被塗布体(1)上に滴下
された塗布液(2)は、モータ(5)の回転に伴う被塗
布体(1)の回転により遠心力を受け、被塗布体上をう
す《拡がってゆ《.塗布液(2)が、半導体プロセスに
おけるフォトレジストのように蒸発性の溶媒を含む場合
には、上記遠心力による液膜の減少に加えて溶媒蒸発に
よる液膜の減少も生じる. さて、この実施例ではモータ回転開始時あるいはその前
から連続して、レーザ(IO)より単色光であるレーザ
光を被塗布体(1)上に照射し、その反射光の強度を光
検出器(11)により検出している.レーザ1101と
しては数mW程度のHe−Neレーザ(波長6328オ
ングストローム)を用いている.また、光検出器(Il
lとしてはフ才トダイ才一ドを用い、電流出力を定抵抗
両端の電圧出力に変換して検出している.このとき.電
圧出力としてljl l O m V以上の電圧が容易
に得られる.また,フォトダイオードを用いれば、光量
と電圧出力の直線性にもすぐれ、さらに応答速度も回転
塗布のフィードバック制御に対し七分に早い.なお、レ
ーザの入射角については特別な制限はないが、この実施
例ではほぼ垂直に近い条件とした。
(6) is the motor control section. Next, we will explain the operation. The coating liquid (2) dropped onto the object to be coated (1) is subjected to centrifugal force due to the rotation of the object to be coated (1) due to the rotation of the motor (5), and spreads thinly on the object to be coated. 《. When the coating liquid (2) contains an evaporable solvent, such as a photoresist used in a semiconductor process, in addition to the reduction in the liquid film due to the centrifugal force, the liquid film also decreases due to solvent evaporation. In this embodiment, monochromatic laser light is irradiated onto the object to be coated (1) from a laser (IO) at the start of motor rotation or continuously before that, and the intensity of the reflected light is detected by a photodetector. It is detected by (11). As the laser 1101, a He-Ne laser (wavelength: 6328 angstroms) of several mW is used. In addition, a photodetector (Il
A metal wire is used as l, and current output is converted to voltage output across a constant resistor for detection. At this time. A voltage of ljl l O m V or more can be easily obtained as a voltage output. Furthermore, by using a photodiode, the linearity of light intensity and voltage output is excellent, and the response speed is seven times faster than feedback control for spin coating. Although there is no particular restriction on the incident angle of the laser, in this example, the angle of incidence was set to be nearly vertical.

さて、光検出器ill)で出力された電圧信号はモータ
制御部(6)に取込まれ、ここで制御方策が決定される
.この第一の実施例ではモーダ制御部(6)によって膜
厚を所望の値になったことを判定してモータ(5)の回
転を停止する.以下、膜厚が所望の値になったか否かを
′r11定するための基礎となる原理ヒ、モータ制御部
(6)で行う制御内容を図を用いて説明する.第2図は
、m塗布体(1)上に仔在する塗布液膜部(2)に矢印
aで示すレーザ光が入射したときの光線の様子を示した
ものであり、失印btは液膜表面で反射した反射光,矢
印b2は一度液股(2)を投下して被塗布体(1)表面
で反射した反復{光,矢印b3は2回反射した反射光で
ある.3回以上反射する反射光については図中では省略
してある.レーザ光は短波長で、かつ、可干渉の光であ
るので、bl,b2,b3・・・・の反射光は干渉する
Now, the voltage signal output from the photodetector (ill) is taken into the motor control section (6), where a control policy is determined. In this first embodiment, the moder control section (6) determines that the film thickness has reached a desired value and stops the rotation of the motor (5). Below, the basic principle for determining whether the film thickness has reached a desired value and the control contents performed by the motor control section (6) will be explained using diagrams. Fig. 2 shows the state of the laser beam when it enters the coating liquid film portion (2) present on the m coating body (1), and the mismark bt is the liquid The reflected light reflected on the film surface, arrow b2, is the repeated light that was once dropped from the liquid droplet (2) and reflected on the surface of the object to be coated (1), and the arrow b3 is the reflected light that was reflected twice. Reflected light that is reflected three or more times is omitted in the figure. Since the laser beam has a short wavelength and is coherent, the reflected lights of bl, b2, b3, . . . interfere with each other.

もちろん、液膜(2)の厚さが薄い場合には、自然光を
分光して得た単色光であっても干渉を生じる.このとき
、干渉により反射光(b)のエネルギ強度は液1!i(
21の厚さ氾の変化に伴って周期的に変動する. 以上の様子を第3図に示す.同図には3つのグラフが示
されているが、横軸はすべて回転時間を示す.縦軸はグ
ラフ(3−1)では膜厚2、グラフ(3−2)では反射
光強度■、グラフ(3−3)では光検出器fillの出
力電圧Vである.グラフ(3−1)は回転に伴い液膜(
2〕の厚さが減少してゆく様子を示している,グラフ(
3−2)は、液股厚さの減少に伴って反射光強度が周期
的に変動する様子を示している。この反射光強度の振動
は,液膜厚さが一定量Δe減少する毎に起こる。このΔ
!は ス で与えられる.えはレーザ光の波長、n,は塗布液(2
)の屈折率である6この実施例ではHe−Neレーザを
用いているので波長えは6328人であるanxを液体
の一般的な値として,例えば1.5とすると,Δβはお
よそ2l00人=0.21μmとなる.ただし、弐mは
垂直入射の場合の式であり、以下も同様に簡単のためレ
ーザビームが被塗布体(1)と垂直であるとして説明を
行う.グラフ(3−2)中の1..I.は周期的に振動
する反射光強度lの極大f直と極小値を示しておく2 り、入射光強度■。とじてそれぞれ式(2),式(3)
で与えられる。
Of course, if the liquid film (2) is thin, interference will occur even with monochromatic light obtained by dividing natural light. At this time, due to interference, the energy intensity of the reflected light (b) is 1! i(
The thickness of 21 fluctuates periodically with changes in flooding. Figure 3 shows the above situation. There are three graphs shown in the same figure, all of which show rotation time on the horizontal axis. The vertical axis is the film thickness 2 in graph (3-1), the reflected light intensity ■ in graph (3-2), and the output voltage V of the photodetector fill in graph (3-3). Graph (3-1) shows that the liquid film (
The graph (
3-2) shows how the reflected light intensity periodically fluctuates as the thickness of the liquid layer decreases. This vibration in the reflected light intensity occurs every time the liquid film thickness decreases by a certain amount Δe. This Δ
! is given by . e is the wavelength of the laser beam, n is the coating liquid (2
) is the refractive index of 6. In this example, a He-Ne laser is used, so the wavelength is 6328. If anx is a typical value for liquids, for example 1.5, Δβ is approximately 2l00 = It becomes 0.21μm. However, 弐m is an equation for the case of vertical incidence, and for the sake of simplicity, the following description will be made assuming that the laser beam is perpendicular to the object to be coated (1). 1 in graph (3-2). .. I. 2 shows the maximum value f and the minimum value of the periodically oscillating reflected light intensity l, and the incident light intensity ■. Equation (2) and Equation (3) respectively
is given by

1+ RIR2+  2JL肩 1+RIR2+  2’RIR2 ここで,Rlは色気と塗布液(2)の界面での反射率、
R,は塗布液(2)と被塗布体(1)の界面での反射率
であり、それぞれ式!41 , 151で与えられる. ここで,n2は塗布液(2)の屈折率、Ill,klは
被塗布体(1)の屈折率と吸収指数である.いま、例え
ばシリコンウエハ(n.=3.9 , k.=0.2)
の上に屈折率1.=l,5の液を塗布する場合を計算す
ると、l ./I O =0.351 ,  I ./
I O =0. 073となる.つまり、回転塗布中に
光検出器fil)に入射する反射光の強度は,レーザ光
の強度の約7%から約35%というかなり大きな範囲で
周期的に変化することになる.そしてこの周期的変化は
、前述のように、膜厚が約2000人減少する毎に起こ
る. 第3図中のグラフ(3−3)は、光検出器(1l)によ
って出力される電圧信号の時間変化を示したものである
8すでに述べたように、この実施例で光検出器(Ill
としてフオトダイ才一ドは線形性にすぐれているので、
出力電圧Vの時間変化は、反射光強度Iの時間変化に相
似なものとなる.次に上記出力電圧信号を用いて所望の
液膜厚さを達成するための制御について、第3図および
制御のフローチャートを示す第4図を用いて具体的に説
明する.説明のまえに、説明に用いる記号について述べ
る。Qtは所望の膜厚,■,は所望の膜厚時に検出され
るべき電圧出力であり,予め実験により決定しておく.
第3図のグラフ(3一3)からわかるよー)に.TI.
圧VWは、所望膜厚2,になる迄の間に何回も1!j返
し出力される.1+は所望する膜厚Qrが得られる時間
t,と,その1回前に電圧V,が出力される時間L,−
.の間で任色に設定された時間を示している.この発萌
の目的は、供給液温や雰囲気条件の変動に起因する膜厚
のばらつきを防止することにあるが、上記変動に伴う1
1やt r−+の変動は通常わずかであり.しかもtr
とt.−,の間の時間は、例えば所望の液膜厚さ力し半
導体プロセスにおけるフォトレジスト液の塗布のような
1μm程度である場合、かなり大きいのでt1をfめ決
定してお《ことは容易である。これは,回転塗布におい
゛Cは、液膜厚さが時間に対して指数関数的に変化する
ため、液膜が薄《なるに従って同じ′fi膜厚さの減少
に対して長い時間を要するようになることや、また,フ
ォトレジスト液のように溶媒を含む液にあっては肩媒の
蒸発にけって液の粘性が急激に増加し,流れにくくなる
ことによる.次に第4図を用いて制御方法について説明
する.まず、モータ(5)の回転開始から時間t,が計
られる。反射光の検出は、モータ回転開始時、あるいは
それ以前から行われ、モータ制書部{6}に常時電圧信
号Vが取込まれる.またモータ制御部(6)には予め与
えられたV,と1+の値が記はされている. 回転塗布中、モータ制御部(6)では、時間tがtlよ
り大きいか小さいかが判定され,もし、1 < 1 +
であればモータ(5)に回転を継続するように指示を与
える.そして1>1+となり,かつ、V=V ,となっ
た時点,つまり所望の股厚となった時点でモータ(5)
の回転を停止させるように指示が出される。
1+ RIR2+ 2JL shoulder 1+RIR2+ 2'RIR2 Here, Rl is the reflectance at the interface between sex appeal and coating liquid (2),
R, is the reflectance at the interface between the coating liquid (2) and the object to be coated (1), and is expressed by the formula! 41,151. Here, n2 is the refractive index of the coating liquid (2), and Ill and kl are the refractive index and absorption index of the object to be coated (1). Now, for example, silicon wafer (n.=3.9, k.=0.2)
Above the refractive index 1. When calculating the case where a liquid of =l,5 is applied, l. /I O =0.351, I. /
I O =0. It becomes 073. In other words, the intensity of the reflected light incident on the photodetector (fil) during spin coating changes periodically over a fairly large range of about 7% to about 35% of the laser beam intensity. As mentioned above, this periodic change occurs every time the film thickness decreases by about 2000 people. The graph (3-3) in FIG. 3 shows the time change of the voltage signal output by the photodetector (1l).
Since the photodiode has excellent linearity,
The time change of the output voltage V is similar to the time change of the reflected light intensity I. Next, control for achieving a desired liquid film thickness using the above output voltage signal will be specifically explained using FIG. 3 and FIG. 4 showing a control flowchart. Before the explanation, I will explain the symbols used in the explanation. Qt is the desired film thickness, and ■ is the voltage output that should be detected at the desired film thickness, which is determined in advance by experiment.
As you can see from the graph (3-3) in Figure 3. T.I.
The pressure VW changes to 1 many times until the desired film thickness reaches 2! j is output in return. 1+ is the time t when the desired film thickness Qr is obtained, and the time L, - when the voltage V is output one time before that.
.. It shows the time set arbitrarily between. The purpose of this sprouting is to prevent variations in film thickness caused by fluctuations in the supply liquid temperature and atmospheric conditions.
The fluctuations in 1 and t r-+ are usually small. Moreover, tr
and t. -, for example, when the desired liquid film thickness is about 1 μm as in the application of photoresist liquid in a semiconductor process, it is quite long, so it is easy to determine t1 as f. be. This is because in spin coating, the liquid film thickness changes exponentially with time, so the thinner the liquid film becomes, the longer it takes to decrease the same film thickness. In addition, in liquids containing solvents such as photoresist liquids, the viscosity of the liquid increases rapidly as the shoulder medium evaporates, making it difficult to flow. Next, the control method will be explained using Fig. 4. First, a time t is measured from the start of rotation of the motor (5). Detection of reflected light is performed at or before the start of motor rotation, and a voltage signal V is constantly taken into the motor writing section {6}. Further, the pre-given values of V and 1+ are written in the motor control section (6). During spin coating, the motor control unit (6) determines whether time t is greater or less than tl, and if 1 < 1 +
If so, the motor (5) is instructed to continue rotating. Then, when 1>1+ and V=V, that is, when the desired crotch thickness is reached, the motor (5)
An instruction is given to stop the rotation of the

最後に、この発明のおける膜厚制御精度について述べる
.前述のように、シリコンウエハ(1)にフォトレジス
ド液(2)を塗布する場合には、電圧出力値の極小と極
大の比は約1:5である.これをフルスケール100m
Vのレンジの電圧計によって計測するものとする.電圧
出力レベルを適当に調整すると、極大lロOmV.I小
20+mVとすることができる。ユ.らに、所望11q
J!l!,や塗布液(2)の屈折率02に対し,光源(
1ロ)の波長えや光の入射角を適当に選択することによ
り、Qt時に出力電圧が60mVになるようにする.こ
の様子を示しているのが第5図である。図中、点Pは所
望の模厚による時間し,直前の極小電圧の点、点Qはt
r直後の極大電圧の点(むろん運転時はt,で回転が停
止する)を示している。
Finally, we will discuss the film thickness control accuracy of this invention. As mentioned above, when applying the photoresist liquid (2) to the silicon wafer (1), the ratio between the minimum and maximum voltage output values is about 1:5. Full scale 100m
Measurement shall be made with a voltmeter in the V range. If the voltage output level is adjusted appropriately, the maximum value of 0mV. I can be set to 20+mV. Yu. Furthermore, the desired 11q
J! l! , and the refractive index of the coating liquid (2) is 02, the light source (
1) By appropriately selecting the wavelength and incident angle of light, the output voltage is set to 60 mV at Qt. FIG. 5 shows this situation. In the figure, point P is the time depending on the desired thickness, the point of the previous minimum voltage, and point Q is t.
It shows the point of maximum voltage immediately after r (of course, during operation, rotation stops at t).

すでに述べたように、出力電圧のサイクルは膜厚が約2
000人減少する毎に起こるから,点Pと点()の膜厚
差は1000八である.従って点P−Q間の膜厚計測感
度Sは、概略 となる.いま、フルスケール1ロ0■Vの電圧計による
計澗を考えているから,例えばlmVの計測精度は容易
に得ることができ、従ってl2.5人の制mM度を容易
に達成できる.実際,さらに精度を上げることも現在の
電気A1測技術をもってすれば容易である. 以上により、この発明は十分な膜厚制御精度を有してい
ることがわかる. 以上,この発明の第一の実施例について述べた、そこで
は膜厚が所定の値になったことを検知するのに,予め定
められた峙間と電圧出力値を用いた. 第6図は、この第二の実施例の制御を示すフローチャー
トである.図中、■は反射光強度検出器(!l)によっ
て得られる出力゛電圧を、Vは出力電圧Vの時間微分を
表わしている.ところで第3図に示したように回転塗布
においては股厚の変化は時間の好遇と共に次第に小さく
なってくる6例えば3μ一から2 11 I1まで1μ
−減少するのに要する時間と、そこからさらにl It
 tm減少しlumの股厚が形成されるのに要する時間
は、溶媒の蒸発がなく液体の粘性が変化しない場合でも
五倍以上異なる.そして液膜の厚さの減少に伴う反q+
光の強度の変化も時間の経過と共にゆるやかになってゆ
く.従って.所望の股厚I2fのときの反射光の強度V
,を定められた回転速度などの条件の下に予め実験によ
り決定しておけば、VとVがそれぞれvfとV,に等し
いか否かの判定を行うことにより.そのときの液膜厚さ
か所望の値l,かどうかを判断することができる.■の
検出値からMの値を知るにはモータ制御部(6)にメモ
リとタイマが内蔵されていればよい。
As already mentioned, the output voltage cycle is approximately 2
This happens every time the number of people decreases by 000, so the difference in film thickness between point P and point () is 10008. Therefore, the film thickness measurement sensitivity S between points P and Q is approximate. Now, since we are considering measurement using a voltmeter with a full scale of 1 0 0 V, it is easy to obtain a measurement accuracy of, for example, 1 mV, and therefore it is easy to achieve a 12.5 mm accuracy. In fact, it is easy to further improve accuracy using current electrical A1 measurement technology. From the above, it can be seen that the present invention has sufficient film thickness control accuracy. The first embodiment of this invention has been described above, in which a predetermined distance and voltage output value are used to detect when the film thickness has reached a predetermined value. FIG. 6 is a flowchart showing the control of this second embodiment. In the figure, ■ represents the output voltage obtained by the reflected light intensity detector (!l), and V represents the time differential of the output voltage V. By the way, as shown in Fig. 3, in spin coating, the change in crotch thickness gradually becomes smaller with time.
- the time required to decrease and from there further l It
The time required for tm to decrease and lum to increase in thickness differs by more than five times even when there is no evaporation of the solvent and the viscosity of the liquid does not change. And as the thickness of the liquid film decreases, the reaction q+
Changes in light intensity also become more gradual over time. Therefore. Intensity V of reflected light when desired crotch thickness I2f
, is determined in advance through experiments under conditions such as a predetermined rotational speed, then it is possible to determine whether V and V are equal to vf and V, respectively. It is possible to judge whether the liquid film thickness at that time is the desired value l. In order to know the value of M from the detected value in (2), it is sufficient that the motor control section (6) has a built-in memory and a timer.

続いてこの発明の塗市装置の信頼性をさらに向上させた
,他の実施例について述べる。まず、第三の実施例では
、回転塗布中に反射光強度を検出しながら,回転塗布中
に繰返し光検出器から出力される極大値Vpを制御部で
記憶する.そして所定の膜厚β,が達成されたときの電
圧出力Vrを代 予め決定しておく (まえの実施例)−j##りに,所
定の膜厚a,のときのVtのv,,に対する比X,をや
はり実験等により予め与えておく。そして出力電圧Vに
代えてx = V / V pをモニタし、この値がx
rに等しいか否かをモータ停止の判断基準とする.もち
ろん、Xは周期的にX,に等しくなるから、もう1つの
別の判定基準が必要なことは第一,第二の実施例と同様
である. 上記のような判断が行える制御部を備えたことにより,
第三の実施例では、例λばレーザの出力変動や反射光検
出器の検出面の汚れ等による信号レベルの長期的な変化
に対して、制御部のメモリ値の変更が不要になるという
効果があり、さらに信頼性を高めることができる。
Next, another embodiment will be described in which the reliability of the coating device of the present invention is further improved. First, in the third embodiment, while detecting the reflected light intensity during spin coating, the control unit stores the maximum value Vp repeatedly output from the photodetector during spin coating. Then, the voltage output Vr when the predetermined film thickness β is achieved is determined in advance. The ratio X to Then, instead of the output voltage V, monitor x = V / V p, and this value becomes x
The criterion for stopping the motor is whether it is equal to r. Of course, since X is periodically equal to X, another criterion is required, as in the first and second embodiments. By being equipped with a control unit that can make the above decisions,
The third embodiment has the effect that it is not necessary to change the memory value of the control unit in response to long-term changes in the signal level due to, for example, fluctuations in the laser output or dirt on the detection surface of the reflected light detector. , which can further improve reliability.

また,第四の実施例として、第三の実施例と同様の発想
にで,電圧出力の極大値の代りに極小値を用いてもよい
し、さらには(極大(直一極小値)を用いてもよい. さらに,第五の実施例として,被塗布体(1)が特にシ
リコンウエハのように吸収指数k2が小さい場合には塗
布中の反射光強度の極大値は、液膜のない被塗布体表面
からの反射光強度に、ほとんど等しいことが判っている
ため、塗布中に極大値を検出する代りに、塗布液滴した
前に反射光強度を検出して制御部に記憶させておき、そ
の値と塗布中検出される反射光強度との比によって制御
を行ってもよく、同様の効果が得られる。
In addition, as a fourth embodiment, using the same idea as the third embodiment, a local minimum value may be used instead of the local maximum value of the voltage output, or even a local maximum (direct minimum value) may be used. Furthermore, as a fifth embodiment, when the object to be coated (1) has a small absorption index k2, such as a silicon wafer, the maximum value of the reflected light intensity during coating may be determined by a coating without a liquid film. It is known that the intensity of the reflected light from the surface of the coating material is almost equal to that of the coating material, so instead of detecting the maximum value during coating, the intensity of the reflected light is detected before the coating droplets are applied and stored in the control unit. The same effect can be obtained by controlling the ratio of the value of , and the intensity of reflected light detected during coating.

[発明の効果] 以上のように、この発明によれば、被塗布体表面からの
単色光の反射強度をモータして被塗布体の回転を停止す
るという簡単な装置で、高速に、しかも,高精度に膜厚
制書を行うことができるため、回転塗布時の膜厚のばら
つきを小さくすることができ,例えば、半導体製品の品
質向上や歩留り向上に寄与するところ大である.
[Effects of the Invention] As described above, according to the present invention, the rotation of the object to be coated can be stopped at high speed using a simple device that uses the reflection intensity of monochromatic light from the surface of the object to be coated as a motor to stop the rotation of the object to be coated. Since film thickness can be determined with high precision, it is possible to reduce variations in film thickness during spin coating, which greatly contributes to improving the quality and yield of semiconductor products, for example.

【図面の簡単な説明】 第1図〜第5図はこの本発明の第一の実施例を示し、第
1図は概略側面図、第2図は液膜部での光線の光路を説
明するための模式図、第3図は膜厚、反射光強度、出力
電圧の時間変化特性線図、第4図は動作説明のためのフ
ローチャート、第5図は制御精度を説明するための線図
である.第6図は第二の実施例の動作説明のためのフロ
ーチャ一ト図である. 第7図は従来の塗布装置の概略側面図、第8のは先行発
明による塗布装置の概略側面図、第9図は第8図のもの
の膜厚、反射光強度の時間変化特性線図,第10図は第
8図のものの動作/説明のためのフローチャート図であ
る, (1)は被塗布体,(2)は塗布液,(5)はモータ、
(6)はモータ制御部(制御手段),(1ロ)は単色光
源.  +11+は光検出器.なお、図中、同一符号は
同一、又は相当部分を示す. 代  理  人    曽   我   道   照昂
1図 1 : 2: 6・ 10: 11: 枝塗11本 1半夜 t一タ 乍1リtさp子J1冫 t−r (I+! ’ltH ) ηi檜占己」コミ yf)3図 (b) 革9図 舒 同 (τノ 肩10図
[Brief Description of the Drawings] Figures 1 to 5 show a first embodiment of the present invention, with Figure 1 being a schematic side view and Figure 2 explaining the optical path of the light ray in the liquid film section. Fig. 3 is a time variation characteristic diagram of film thickness, reflected light intensity, and output voltage, Fig. 4 is a flowchart to explain the operation, and Fig. 5 is a diagram to explain control accuracy. be. FIG. 6 is a flowchart for explaining the operation of the second embodiment. FIG. 7 is a schematic side view of a conventional coating device, FIG. 8 is a schematic side view of a coating device according to the prior invention, and FIG. Figure 10 is a flowchart for explaining the operation of Figure 8. (1) is the object to be coated, (2) is the coating liquid, (5) is the motor,
(6) is a motor control unit (control means), and (1ro) is a monochromatic light source. +11+ is a photodetector. In addition, the same reference numerals in the figures indicate the same or equivalent parts. Representative Person So Ga Michi Teruaki 1 Figure 1: 2: 6・ 10: 11: Branch coating 11 pieces 1 half night t 1 ta 5 1 lit Sap child J 1 Chit-r (I+!'ltH) ηi Hinoki divination ``Myself'' comic yf) Figure 3 (b) Leather figure 9 Shudo (τ shoulder figure 10)

Claims (1)

【特許請求の範囲】 被塗布体に塗布液を適下し、前記被塗布体を回転させて
前記塗布液を遠心力により拡げて上記被塗布体上に塗布
液膜を形成させる塗布装置において、 単色光を被塗布体表面に入射させる単色光源と、この入
射光の反射光強度を検出する光検出器と、この光検出器
で塗布時に検出された光強度に基いて前記被塗布体の回
転を停止する制御手段を備えてなることを特徴とする塗
布装置。
[Scope of Claims] A coating device that drops a coating liquid onto an object to be coated, rotates the object to be coated, and spreads the coating liquid by centrifugal force to form a film of the coating liquid on the object to be coated, A monochromatic light source that makes monochromatic light incident on the surface of the object to be coated, a photodetector that detects the reflected light intensity of this incident light, and a rotation of the object to be coated based on the light intensity detected by the photodetector during coating. A coating device characterized by comprising a control means for stopping.
JP5185389A 1989-03-06 1989-03-06 Coating apparatus Pending JPH02233174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5185389A JPH02233174A (en) 1989-03-06 1989-03-06 Coating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5185389A JPH02233174A (en) 1989-03-06 1989-03-06 Coating apparatus

Publications (1)

Publication Number Publication Date
JPH02233174A true JPH02233174A (en) 1990-09-14

Family

ID=12898421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5185389A Pending JPH02233174A (en) 1989-03-06 1989-03-06 Coating apparatus

Country Status (1)

Country Link
JP (1) JPH02233174A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234278A (en) * 2002-02-08 2003-08-22 Toshiba Corp Liquid film treatment method and device thereof
US7312018B2 (en) 2002-01-30 2007-12-25 Kabushiki Kaisha Toshiba Film forming method, film forming apparatus, pattern forming method, and manufacturing method of semiconductor apparatus
WO2020044883A1 (en) * 2018-08-31 2020-03-05 株式会社Screenホールディングス Substrate processing method and substrate processing device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7312018B2 (en) 2002-01-30 2007-12-25 Kabushiki Kaisha Toshiba Film forming method, film forming apparatus, pattern forming method, and manufacturing method of semiconductor apparatus
US7604832B2 (en) 2002-01-30 2009-10-20 Kabushiki Kaisha Toshiba Film forming method, film forming apparatus, pattern forming method, and manufacturing method of semiconductor apparatus
US8071157B2 (en) 2002-01-30 2011-12-06 Kabushiki Kaisha Toshiba Film forming method, film forming apparatus, pattern forming method, and manufacturing method of semiconductor apparatus
JP2003234278A (en) * 2002-02-08 2003-08-22 Toshiba Corp Liquid film treatment method and device thereof
WO2020044883A1 (en) * 2018-08-31 2020-03-05 株式会社Screenホールディングス Substrate processing method and substrate processing device
JP2020035961A (en) * 2018-08-31 2020-03-05 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus
KR20210031951A (en) * 2018-08-31 2021-03-23 가부시키가이샤 스크린 홀딩스 Substrate processing method and substrate processing apparatus

Similar Documents

Publication Publication Date Title
US4851311A (en) Process for determining photoresist develop time by optical transmission
US8716039B2 (en) Monitoring apparatus and method for in-situ measurement of wafer thicknesses for monitoring the thinning of semiconductor wafers and thinning apparatus comprising a wet etching apparatus and a monitoring apparatus
CA1238987A (en) Interferometric methods for device fabrication
US4317698A (en) End point detection in etching wafers and the like
JPS63147327A (en) Detection of end point during surface treatment
US6617079B1 (en) Process and system for determining acceptibility of a fluid dispense
JPH02233174A (en) Coating apparatus
JPH0729809A (en) Photoresists coater
US6077350A (en) System and method for curing polymeric/photoresist coatings
JP2770060B2 (en) Warp sizing machine
JP2768720B2 (en) Coating device
US5216487A (en) Transmissive system for characterizing materials containing photoreactive constituents
DE60030007T2 (en) METHOD AND SYSTEM FOR DETERMINING THE ACCEPTABILITY OF A FLUID DELIVERY
JPH02233175A (en) Coating apparatus
KR100667125B1 (en) Process and system for determining acceptability of a fluid dispense
JPH02233177A (en) Coating apparatus
JPH05234869A (en) Coater
US5905017A (en) Method for detecting microscopic differences in thickness of photoresist film coated on wafer
RU2158897C1 (en) Method testing thickness of film in process of its deposition and device for its realization
JP2970020B2 (en) Method of forming coating thin film
JPS6268570A (en) Resist coating apparatus
JPS6370424A (en) Resist applying apparatus
JP2734242B2 (en) Gas concentration monitoring method and apparatus
JPH01105535A (en) Method for development
JPH01232202A (en) Film thickness measuring method