JPH02230602A - Luminescent member - Google Patents

Luminescent member

Info

Publication number
JPH02230602A
JPH02230602A JP1051086A JP5108689A JPH02230602A JP H02230602 A JPH02230602 A JP H02230602A JP 1051086 A JP1051086 A JP 1051086A JP 5108689 A JP5108689 A JP 5108689A JP H02230602 A JPH02230602 A JP H02230602A
Authority
JP
Japan
Prior art keywords
light
gas
particulates
fine particles
luminescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1051086A
Other languages
Japanese (ja)
Inventor
Hiroko Ogawa
小川 博子
Yumie Imanishi
今西 由美恵
Hirotsugu Takagi
高木 博嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1051086A priority Critical patent/JPH02230602A/en
Publication of JPH02230602A publication Critical patent/JPH02230602A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

PURPOSE:To increase the luminescent intensity by forming a luminescent part so as to include particulates of the IV group element including nitrogen at least. CONSTITUTION:The material of the IV group type such as amorphous Si, etc., is especially effective, and Ge, C and the mixed material thereof are also effective. CH4, C2H6 and other Ge type gas are used as the raw gas in addition to SiH4, Si2H4. To include N in particulates, particulates are made in N plasma, or N2 is mixed to the carrier gas, or NH3 is flowed simultaneously with the raw gas, or particulates are processed in N2 plasma atmosphere or heatprocessed in N2 after the manufacture of particulates. N inclusion quantity more than 20 atom g is desirable. Like this, when the material is particuated to include N in it, the luminescent intensity of a luminescent member can be increased to enable the light emitting of the material which never emits the light at room temperature and raise the luminescent intensity of an ordinary luminescent member rapidly. Further, a change is hardly generated with the passage of time.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は電場、電線.X線,紫外線.あるいは可視光や
赤外線などの励起エネルギーを吸収させる事により、蛍
光や燐光などの光を放出する作用を有する発光部材に関
する. 〔従来の技術1 従来、蛍光や燐光を発する発光部材としては種々のもの
が知られて来た。例えば直接遷移型の半導体であるGa
AsやInPなどの■一■族化合物の結晶やZnS, 
ZnSeなどのII〜■族化合物の結晶では、これらの
材料のバンドギャップよりも大きなエネルギーの光を照
射すると、これを吸収して照射光すなわち励起光よりも
低エネルギーの光を放出して発光する.また、いわゆる
間接遷移型の材料でも例えばSiCなどの様にバンドギ
ャップ内に再結合中心をつくってやればかなり強く発光
する。また、イオン性の強い結晶では不純物による蛍光
が生じる。例λば、KCI : Tl°ではTビイオン
が短波長の励起光により励起され、196nmおよび2
49nmに蛍光スペクトルのピークが出る.この様な発
光は電磁波だけでなく電子線によっても引き起こされる
..例えばブラウン管に用いられる蛍光体であるY*O
zSではアクヂベータ不純物としてEu3”が加えられ
、赤色の発光が電子線照射により引き起こされる.この
様な例はZnSへのAg’″による青の蛍光. ZnF
zへのMn添加によるオレンジ色の蛍光など多くの例が
知られている.また、例えばApplied Phys
ics Letters 13 210 (1968)
にみられるように発光部材に電極をつけて電場をかける
事によって発光させる方法も従来知られてきた方法であ
る.例えば、Mnを添加したZ口SやCuとC!を添加
したZnSなとの微結晶粒をバインダーに分散させたも
のを発光部材として用い、これに交流電場を印加すると
、いわゆるエレクトロルミネッセンス(EL)による発
光が見られる。こわらはディスプレーなどに利用される
。また、■一■族化合物などの直接遷移型半導体のp−
n接合を用いた注入発光も現在では良く知られた技術で
ある。さらに、このようないわゆるLEDを改良してレ
ーザー発振させる事を可能にしたものが半導体]ノーザ
ーである。これらについては例えばS. M. Sze
著のPhysjcs of Semiconducto
r Devices第12章(John Wiley 
& Sons. 1981 )などの標準的な参考書に
詳しく述べられているし、製品も市場に沢山出回ってい
る. この様に様々な形で励起エネルギーを与える事により、
紫外線、可視光、あるいは赤外線などの光を放出する発
光部材は良く知らわたものである.これらの発光特性は
一般に、まずフォト・ルミネッザンスの有無,強弱およ
びその発光波長分布を調べる事によりチェック出来る。 [発明が解決しようとしている課題] しかしながらその一方で発光強度が弱いものや実用上発
光特性を利用できる程に発光しないものも沢山あった。 また、発光の内部量子効率がかなり高い材料であっても
、その屈折率が高いために発光した光が外へ出射できる
臨界角が小さいため、内部から外へ出られず、外へ出る
前に多重反射をくり返して、減衰してしまう場合も多い
。また、発光した光の波長は吸収もされ易い場合が多い
ので内部での多重反射は発光の利用という点で不利であ
り、大きな問題となって来た。これらの問題を解決する
ためには発光部材の物性の改質という側面だけでなく、
上記の様な発光した光の効率的な外部への取り出しを工
夫していく必要があるが、個々のケースでは現象がかな
り複雑になり、これらを総合的に解決して行くのは困難
であった。 またa(アモルファス) −SiN膜やa−Si:N:
H膜の均一膜は窒素を含有することにより光学的バンド
ギャップを広げることが知られている.しかしながら、
これらの材料は低温で弱い発光を生じるのみである,(
Jap.I、of Appl. Phys.’ vol
.l20(111 1981,L811参照) 本発明の目的は、上記の様な発光の弱い材料に関してそ
の実質的な発光強度を増加さセ;、又は新たに発光特性
を付加させた新規な発光部材を提供することにある。
[Industrial Application Field] The present invention applies to electric fields and electric wires. X-rays, ultraviolet rays. Or it relates to a light-emitting member that has the function of emitting light such as fluorescence or phosphorescence by absorbing excitation energy such as visible light or infrared light. [Prior Art 1] Conventionally, various light-emitting members that emit fluorescence or phosphorescence have been known. For example, Ga, which is a direct transition type semiconductor,
Crystals of Group 1 compounds such as As and InP, ZnS,
When crystals of Group II to II compounds such as ZnSe are irradiated with light with energy greater than the band gap of these materials, they absorb it and emit light with lower energy than the irradiation light, that is, the excitation light. .. Furthermore, even a so-called indirect transition type material, such as SiC, emits considerably strong light if a recombination center is created within the band gap. Further, in highly ionic crystals, fluorescence occurs due to impurities. For example, λ: KCI: At Tl°, T bioions are excited by short wavelength excitation light, 196 nm and 2
The peak of the fluorescence spectrum appears at 49 nm. Such light emission is caused not only by electromagnetic waves but also by electron beams. .. For example, Y*O is a phosphor used in cathode ray tubes.
In ZS, Eu3'' is added as an activator impurity, and red light emission is caused by electron beam irradiation.An example of this is the blue fluorescence caused by Ag''' on ZnS. ZnF
Many examples are known, such as orange fluorescence due to the addition of Mn to z. Also, for example, Applied Phys.
ics Letters 13 210 (1968)
Another well-known method is to attach electrodes to a light-emitting member and apply an electric field to make it emit light, as shown in . For example, Z mouth S with Mn added, Cu and C! When microcrystalline grains such as ZnS doped with ZnS are dispersed in a binder and an alternating current electric field is applied to the light emitting member, light emission due to so-called electroluminescence (EL) is observed. Kowara is used for displays, etc. In addition, the p-
Injection light emission using an n-junction is also a well-known technology at present. Furthermore, the semiconductor Noser has improved such so-called LEDs and made it possible to generate laser oscillation. For example, S. M. Sze
Author: Physjcs of Semiconducto
r Devices Chapter 12 (John Wiley
& Sons. (1981) and other standard reference books, and there are many products on the market. By applying excitation energy in various ways like this,
Light emitting materials that emit light such as ultraviolet light, visible light, or infrared light are well known. Generally, these luminescence characteristics can be checked by first examining the presence or absence of photoluminescence, its intensity, and its emission wavelength distribution. [Problems to be Solved by the Invention] However, on the other hand, there were many products whose luminescence intensity was weak or whose luminescent properties were not emitted to the extent that they could be used for practical purposes. In addition, even if a material has a fairly high internal quantum efficiency for light emission, its high refractive index means that the critical angle at which the emitted light can exit is small, so it cannot escape from the inside and is unable to escape before exiting. In many cases, the light is attenuated due to repeated multiple reflections. Furthermore, since the wavelength of the emitted light is often easily absorbed, multiple internal reflections are disadvantageous in terms of the utilization of the emitted light, and have become a major problem. In order to solve these problems, it is necessary not only to improve the physical properties of light emitting materials, but also to
It is necessary to devise ways to efficiently extract the emitted light to the outside as described above, but the phenomena in each case are quite complex, and it is difficult to solve them comprehensively. Ta. Also, a (amorphous) -SiN film and a-Si:N:
It is known that the optical bandgap of a uniform H film is widened by containing nitrogen. however,
These materials only produce weak luminescence at low temperatures, (
Jap. I, of Appl. Phys. ' vol
.. 120 (111 1981, L811) An object of the present invention is to increase the substantial luminous intensity of materials with weak luminescence as described above; or to provide a novel luminescent member with new luminescent properties. It's about doing.

【課題を解決するための手段】[Means to solve the problem]

本発明は、励起エネルギーを付与することにより光を放
出する発光部材において、発光部が少なくとも窒素を含
有する■族元素の微粒子を含むことを特徴とする発光部
材である。 特に実用上は,微粒子の集合体が基体上に層状に堆積し
た微粒子膜あるいは、バインダー中に微粒子を分散した
バインダー分散膜となっている発光部材が取り扱い易さ
の点から望ましいが、しかし本発明の有効性はこの様な
微粒子膜またはバインダー分散膜のみに限定されるもの
ではない。 本発明における微粒子はその大きさが発光波長と同程度
又はそれ以下のものであれば良い。可視光の発光の場合
には大体11ノ.rn以下、望ましくは0.1μm以下
、さらに望ましくは500人以下である. 上記の微粒子の形状は特に制限されるものではないが、
比較的球に近く、大きすぎる粒子が混合しない場合の方
が効果的である。大きさの下限は不明であるが、透過電
子顕微鏡(TEM)及び電界放射型走査電子顕微鏡によ
る観察結果によれば、数lO人の平均粒子を持つ超微粒
子であっても効果が゜認められる。 実用上は上記の様な本発明の微粒子を取扱うためにはそ
れを何らかの基体上にのせて固定すれば良い,その際個
々の微粒子は必ずしも相互に接触している必要はなく基
体上で孤立していても良いが、一般的には全体としての
発光強度をかせぐため微粒子の集合体、例えば凝集体や
堆積膜などの方が望ましい. 本発明における材料の微粒子化及び微粒子が窒素を含有
することが発光強度の増大を引き起こす原因については
必ずしも明らかではない.しかし、材料の微粒子化によ
り表面積が著しく増大した事により、表面が活性になっ
たり何らかの物性変化が生じることが考えられる.また
、これとは別に発光部材中心から光が外へ放出される時
の微粒子化による反射率の減少のために、光の取出し効
率が増加した事も考えられる.さらに、発光部材が基体
上に積層した微粒子膜の場合に、膜の表面から深い部分
で放出された光が微粒子の大きさが光の波長よりもずっ
と小さいために散乱を余り受けずに膜表面へ達するため
に、見かけ上発光強度が増加して見えることも考久られ
る. よって、本発明の発光部材は、窒素を含有することによ
り低温で弱い発光を生じる材料又はほとんど発光を生じ
なかった材料を、微粒子化することにより驚異的に発光
が増大することが考えられる. 本発明に係る微粒子において、発光強度を驚異的に上げ
る材料としてはアモルファスシリコンなどの■族系の材
料であるが、Ge, Cおよびその混合材料でも効果が
ある8 本発明の発光部材に用いられる原料ガスとしては、Si
H.たけてなく、Si成膜に使われるシランの誘導体例
、たとえばSiaHsなども使用可能である.さらに、
他の■族系のガス、たとえば、CH4,C}IsOH,
 CzHaその他の炭化水素系のガス、また同様にGe
型のガスの使用も可能である.また、Si系ガスとC系
ガス、Si系のガスとGe系のガスの様に、2種,3種
のガスを混合して使用することも可能である.また、本
発明は上記材科に限定されるものではない. また、微粒子中に窒素を含有する方法としては、 ■窒素プラズマ中で微粒子を作成する。または、キャリ
アガスにN2を入れる. ■原科ガスと同時に、NH,ガスを流し、微粒子を作成
する. ■微粒子作成後、N2プラズマの存在する雰囲気中で処
理する. ■微粒子作成後、N2ガス雰囲気で加熱処理する.上述
した方法以外で微粒子に窒素を含有させても良いことは
もちろんである.含有させる窒素量は、好ましくはio
atm%(原子数としての%)以上、さらには20at
m%以上が好適である。それ以下の量では窒素含有の効
果が出にくい.いずれにしても材料を微粒子化して窒素
を含有させることが発光部材の発光強度を増大させるこ
とがわかった。 本発明の発光部材に用いる微粒子の形成方法としては一
般に超微粒子作成に用いられる種々の方法が使用可能で
ある。例えばJapanese Journalof 
Applied PhySics,  [21, 70
2、(1963)に見られる様なガス中蒸発法やChe
mistry Letters, 267,(+986
)に見られるような熱泳動CVD法、あるいは液体中で
合成する方法などが挙げられる.この様な超微粒子の製
法は超微粒子の分野で今やよく知られているものであり
、」二記の個々の製法に限定されるものではない.これ
らの種々の方法については例えば日本化学会編,化学総
説No..48r超微粒子」(+985)などに詳しく
紹介されている。 本発明の発光部材における微粒子が基体上に堆積した微
粒子膜は、その表面に保護層が設けてあっても良い.こ
の保護石は微粒子膜の機械的強度を高め、また変質によ
る発光暦の劣化その他の変化を防止するために有効であ
る。ボリスチレン,ポリカーボネートその他の有機ボリ
マーや石英や低融点ガラスなどの無機ガラス、あるいは
、SiN, a−Cその他のプラズマ重合膜などが使え
る.有機ボリマーなとでは溶剤塗布などの方法も使えて
便利である。 また、前記微粒子をバインダー分散膜の形で成膜する場
合は、合成樹脂等を加熱蒸着法等で、微粒子表面にコー
ティング後堆積させる方法、又は、微粒子をバインダー
中に分散し薄いフィルムにひきのばす方法等がある. [実施例] 以下実施例に基づき、本発明を具体的に説明する。 実施例l 第1図の装置を用いてa−Si :N:H微粒子をシリ
コンウエハの基体7上に堆積させた。 発光部材の作成は、まずシリコンウエハ基板を基板ホル
ダー6にセッ)・シた後、排気系1夏で下流室4を2 
X 10−’Torrまで減圧した。次にH2ガスで3
%に希釈したSiH.ガスをガス導入管1oから空胴共
振器5内へ流量100SCCMで流した.すると空胴共
振器5内の圧力は4 X 10”’Torrとなり、ノ
ズル1からSin.を含むガスが下流室4へ吹き出した
。 この時下流室4内の圧力は4. 5x 10−’Tor
rとなった.次にマイクロ波をマイクロ波発振器(不図
示)から導波管9および石英製の窓8を通して空胴共振
器5内へ送り込み、空胴共振器5内で放電プラズマを発
生させた。マイクロ波のパワーは150Wであった。す
るとプラズマ内で微粒子が形成されて、残りのガス成分
とともにノズル1から下流室4に吹き出し、微粒子ビー
ムとなって下流室4内の基体7上に衝突し、微粒子を基
体7上に固定した. 基体7上に付着した微粒子の堆積した層の厚さは5分間
の放電で7.5μmであった。また微粒子の堆積物の色
は黄かっ色の光沢のある膜状の堆積物であり、SEMに
よる観察の結果、粒径が!00〜200人程度の超微粒
子が堆積した構造がはっきりと認められた. また、この微粒子膜を窒素ガス中で2時間加熱処理した
. 比較例1 通常のグローディスチャージ(GD)法により、S i
 . H ,とN,を用いて基板水冷状態で、a−Si
:N:}Iの均一膜を得た。 実施例2 実施例1と同様な方法でSiLを希釈するガスをN2を
20%含む1{2ガスに変更した以外はまったく同様に
して超微粒子膜を得た6 堆積した膜の厚さはlO分間の放電で6.1μであった
。またSEM観察の結果、粒径が50〜100人程度の
微粒子であることが確認された。 実施例3 実施例1と同様な方法で、流すガスをSiHaとNH3
の比1:1の混合ガスをH2ガスで3%に希釈したもの
にして流fil II)OSCCMに変更l7た以外は
、まったく同様にして微粒子膜を得た. SEMで観察
したところ、粒径80〜150人の微粒子であることが
確認できた。 以上のように作成した膜を以下の2項目について評価し
た。 ■フォトルミネセンス(PL) 室温で、Arイオンレーザー(λ= 4F!r8nm)
の青色の光を照射し、光電子増倍管を用いてこの時の蛍
光スペクトルを測定した。 ■窒素含有量 島津社製EPMA型式EMX−SMを使用し、EPMA
(Electron Probe Micro Ana
lysis)にて、膜中の窒素含有量を測定した。 評価の結果のまとめを表−1に示す。 (以 下 余 白) 表−1 *1) 相対強度 *2) 代表的なPLスペクトルを第2図に示した。 【発明の効果〕 以上説明したように、本発明にJ:れば、通常は室温で
発光しない材料を発光させたり、又は通常発光するもの
であっても発光強度を飛躍的に高めたりすることがでる
。 更に、本発明の発光部材は経時的変化がほとんどなく、
常に安定した発光を行うことができるものである.
The present invention is a light-emitting member that emits light upon application of excitation energy, in which the light-emitting portion contains fine particles of a group Ⅰ element containing at least nitrogen. Particularly in practical use, it is desirable to use a light-emitting member that is a fine particle film in which aggregates of fine particles are deposited in a layer on a substrate, or a binder-dispersed film in which fine particles are dispersed in a binder, from the viewpoint of ease of handling. The effectiveness of the present invention is not limited to such fine particle membranes or binder-dispersed membranes. The fine particles used in the present invention may have a size comparable to or smaller than the emission wavelength. In the case of visible light emission, approximately 11. rn or less, preferably 0.1 μm or less, and more preferably 500 or less. Although the shape of the above-mentioned fine particles is not particularly limited,
It is more effective if the particles are relatively spherical and do not contain too large particles. The lower limit of the size is unknown, but according to observation results using a transmission electron microscope (TEM) and a field emission scanning electron microscope, even ultrafine particles with an average particle size of several 100° can be effective. In practice, in order to handle the fine particles of the present invention as described above, it is sufficient to place them on some kind of substrate and fix them.In this case, the individual fine particles do not necessarily have to be in contact with each other, but rather isolated on the substrate. However, in general, it is preferable to use an aggregate of fine particles, such as an aggregate or a deposited film, in order to increase the overall emission intensity. In the present invention, it is not necessarily clear why the fine particles of the material and the fact that the fine particles contain nitrogen cause an increase in the luminescence intensity. However, due to the significant increase in surface area due to the micronization of the material, it is thought that the surface becomes active or some physical property changes occur. In addition to this, it is also possible that the light extraction efficiency increased due to a decrease in reflectance due to the atomization of light particles when the light is emitted from the center of the light emitting member to the outside. Furthermore, when the light-emitting member is a particulate film laminated on a substrate, the light emitted from a deep part of the surface of the film is not scattered much because the size of the particulates is much smaller than the wavelength of the light. It is also considered that the luminescence intensity appears to increase in order to reach this point. Therefore, in the light-emitting member of the present invention, it is thought that the luminescence of a material that emits weak light at low temperatures or hardly emits light at low temperatures due to nitrogen content is reduced to fine particles, thereby increasing the luminescence amazingly. In the fine particles according to the present invention, materials of group Ⅰ such as amorphous silicon are used as materials that surprisingly increase the luminescence intensity, but Ge, C, and mixed materials thereof are also effective8. As the raw material gas, Si
H. Examples of silane derivatives used in Si film formation, such as SiaHs, can also be used. moreover,
Other group II gases, such as CH4, C}IsOH,
CzHa and other hydrocarbon gases, as well as Ge
It is also possible to use mold gas. It is also possible to use a mixture of two or three types of gas, such as Si-based gas and C-based gas, or Si-based gas and Ge-based gas. Furthermore, the present invention is not limited to the above materials. Further, as a method for containing nitrogen in fine particles, (1) fine particles are created in nitrogen plasma. Alternatively, add N2 to the carrier gas. ■At the same time as raw gas, NH and gas are flowed to create fine particles. ■After creating fine particles, process in an atmosphere where N2 plasma exists. ■After creating the particles, heat them in an N2 gas atmosphere. Of course, it is also possible to incorporate nitrogen into the fine particles by methods other than those described above. The amount of nitrogen to be contained is preferably io
atm% (% as number of atoms) or more, even 20at
m% or more is suitable. If the amount is less than that, the effect of nitrogen content will be difficult to achieve. In any case, it has been found that making the material fine and containing nitrogen increases the luminous intensity of the light emitting member. As a method for forming the fine particles used in the light-emitting member of the present invention, various methods generally used for producing ultrafine particles can be used. For example, Japanese Journal of
Applied PhySics, [21, 70
2, (1963) and Che.
Mistry Letters, 267, (+986
Examples include the thermophoretic CVD method as seen in ), and the method of synthesis in a liquid. This type of method for producing ultrafine particles is now well known in the field of ultrafine particles, and is not limited to the individual production methods described in the above. These various methods are described in, for example, Chemistry Review No. 1, edited by the Chemical Society of Japan. .. 48r Ultrafine Particles" (+985) etc. A protective layer may be provided on the surface of the fine particle film in which fine particles are deposited on a substrate in the light emitting member of the present invention. This protective stone is effective in increasing the mechanical strength of the particulate film and preventing deterioration and other changes in the ephemeris due to alteration. Organic polymers such as polystyrene and polycarbonate, inorganic glasses such as quartz and low-melting glass, and plasma polymerized films such as SiN and a-C can be used. With organic polymers, it is convenient to use methods such as solvent coating. In addition, when forming the fine particles in the form of a binder-dispersed film, the fine particles may be coated and deposited on the surface of the fine particles using a heating vapor deposition method or the like, or the fine particles may be dispersed in a binder and stretched into a thin film. There are methods etc. [Examples] The present invention will be specifically described below based on Examples. Example 1 Using the apparatus shown in FIG. 1, a-Si:N:H fine particles were deposited on a silicon wafer substrate 7. To create the light-emitting member, first set the silicon wafer substrate on the substrate holder 6, then install the downstream chamber 4 in the exhaust system in one summer.
The pressure was reduced to X 10-'Torr. Next, use H2 gas to
SiH. Gas was flowed from the gas introduction pipe 1o into the cavity resonator 5 at a flow rate of 100 SCCM. Then, the pressure inside the cavity resonator 5 became 4.times.10"' Torr, and the gas containing Sin. was blown out from the nozzle 1 into the downstream chamber 4. At this time, the pressure inside the downstream chamber 4 became 4.5.times.10"' Torr.
It became r. Next, microwaves were sent from a microwave oscillator (not shown) into the cavity resonator 5 through the waveguide 9 and the quartz window 8 to generate discharge plasma within the cavity resonator 5. The power of the microwave was 150W. Then, fine particles are formed in the plasma and blown out from the nozzle 1 into the downstream chamber 4 along with the remaining gas components, and collide with the base 7 in the downstream chamber 4 as a fine particle beam, fixing the fine particles on the base 7. The thickness of the layer of fine particles deposited on the substrate 7 was 7.5 μm after 5 minutes of discharge. In addition, the color of the fine particle deposits is yellowish-brown and shiny film-like deposits, and as a result of observation with SEM, the particle size is! A structure in which ultrafine particles of about 0.00 to 200 particles were deposited was clearly recognized. Further, this particulate film was heat treated in nitrogen gas for 2 hours. Comparative Example 1 By the usual glow discharge (GD) method, Si
.. Using H, and N, a-Si
:N:}I uniform film was obtained. Example 2 An ultrafine particle film was obtained in the same manner as in Example 1 except that the gas for diluting SiL was changed to 1{2 gas containing 20% N2.6 The thickness of the deposited film was lO It was 6.1μ after a minute of discharge. Further, as a result of SEM observation, it was confirmed that the particles were fine particles with a particle size of about 50 to 100 particles. Example 3 In the same manner as in Example 1, the flowing gas was changed to SiHa and NH3.
A fine particle film was obtained in exactly the same manner except that the mixed gas at a ratio of 1:1 was diluted to 3% with H2 gas and the flow was changed to OSCCM. When observed with SEM, it was confirmed that the particles were fine particles with a particle size of 80 to 150 particles. The membrane prepared as described above was evaluated on the following two items. ■Photoluminescence (PL) At room temperature, Ar ion laser (λ = 4F!r8nm)
was irradiated with blue light, and the fluorescence spectrum at this time was measured using a photomultiplier tube. ■Nitrogen content Using EPMA model EMX-SM manufactured by Shimadzu Corporation,
(Electron Probe Micro Ana
The nitrogen content in the film was measured using lysis. A summary of the evaluation results is shown in Table-1. (Left below) Table 1 *1) Relative intensity *2) A typical PL spectrum is shown in Figure 2. [Effects of the Invention] As explained above, the present invention makes it possible to make materials that normally do not emit light at room temperature emit light, or to dramatically increase the luminous intensity of materials that normally emit light. comes out. Furthermore, the light-emitting member of the present invention hardly changes over time,
It is capable of emitting stable light at all times.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の発光部材を作成するのに用いた装置の
例を示す図、第2図はArイオンレーザー488nmの
励起光によるけい光スペクトルを示す図である, l・・・・・・縮小拡大ノズル 2・・・・・・ノズルののど部 2a, 2b・・・ノズルの開口部 3・・・・・・磁石 4・・・・・・下流室 5・・・・・・空胴共振器 6・・・・・・基体ホルダー 7・・・・・・基体 8・・・・・・マイクロ波導入窓 9・・・・・・マイクロ波導波管 lO・・・・・・ガス導入口 11・・・・・・排気系 特許出願人  キヤノン株式会社
Fig. 1 is a diagram showing an example of the apparatus used to create the light emitting member of the present invention, and Fig. 2 is a diagram showing a fluorescence spectrum caused by excitation light of an Ar ion laser of 488 nm.・Reduction/enlargement nozzle 2...Nozzle throat 2a, 2b...Nozzle opening 3...Magnet 4...Downstream chamber 5...Empty Body resonator 6...Base holder 7...Base 8...Microwave introduction window 9...Microwave waveguide lO...Gas Inlet port 11... Exhaust system patent applicant Canon Inc.

Claims (1)

【特許請求の範囲】[Claims]  励起エネルギーを付与することにより光を放出する発
光部材に於いて、発光部材が少なくとも窒素を含有する
IV族元素の微粒子を含むことを特徴とする発光部材。
In a light-emitting member that emits light by applying excitation energy, the light-emitting member contains at least nitrogen.
A light-emitting member characterized by containing fine particles of a group IV element.
JP1051086A 1989-03-03 1989-03-03 Luminescent member Pending JPH02230602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1051086A JPH02230602A (en) 1989-03-03 1989-03-03 Luminescent member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1051086A JPH02230602A (en) 1989-03-03 1989-03-03 Luminescent member

Publications (1)

Publication Number Publication Date
JPH02230602A true JPH02230602A (en) 1990-09-13

Family

ID=12877010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1051086A Pending JPH02230602A (en) 1989-03-03 1989-03-03 Luminescent member

Country Status (1)

Country Link
JP (1) JPH02230602A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188654A (en) * 1993-12-27 1995-07-25 Nec Corp Luminescent material
WO2008126540A1 (en) * 2007-03-23 2008-10-23 Ube Industries, Ltd. α-SILICON NITRIDE PHOSPHOR AND PROCESS FOR PRODUCITON THEREOF

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188654A (en) * 1993-12-27 1995-07-25 Nec Corp Luminescent material
WO2008126540A1 (en) * 2007-03-23 2008-10-23 Ube Industries, Ltd. α-SILICON NITRIDE PHOSPHOR AND PROCESS FOR PRODUCITON THEREOF
JP5136547B2 (en) * 2007-03-23 2013-02-06 宇部興産株式会社 α-type silicon nitride phosphor and method for producing the same
US8613869B2 (en) 2007-03-23 2013-12-24 Ube Industries, Inc. α-type silicon nitride phosphor and production method thereof

Similar Documents

Publication Publication Date Title
EP0312383B1 (en) Luminescing member, process for preparation thereof, and electroluminescent device employing same
Wang et al. High-efficiency visible photoluminescence from amorphous silicon nanoparticles embedded in silicon nitride
EP1034233B1 (en) Diamond-like carbon coatings on inorganic phosphors
Orii et al. Tunable, narrow-band light emission from size-selected Si nanoparticles produced by pulsed-laser ablation
Tong et al. Intense violet-blue photoluminescence in as-deposited amorphous Si: H: O films
Ma et al. Absorption spectra of nanocrystalline silicon embedded in SiO2 matrix
Zhou et al. Hybrid quadrupole plasmon induced spectrally pure ultraviolet emission from a single AgNPs@ ZnO: Ga microwire based heterojunction diode
Sharma et al. Highly stabilized monodispersed citric acid capped $\hbox {ZnO: Cu}^{2+} $ nanoparticles: synthesis and characterization for their applications in white light generation from UV LEDs
Panda et al. Surface enhanced Raman scattering and photoluminescence properties of catalytic grown ZnO nanostructures
Abrarov et al. Effect of photonic band-gap on photoluminescence of ZnO deposited inside the green synthetic opal
JPH02230602A (en) Luminescent member
JPH02234302A (en) Luminous material
JPH02234301A (en) Luminous material
JP2572023B2 (en) Light emitting member
JP2733228B2 (en) Light emitting member manufacturing method
Gao et al. Structural and photoluminescence properties of nc-SiO X: H/a-SiO X: H multilayer films deposited at low temperature by VHF-PECVD technique
JP6777246B2 (en) Optical conversion member and its manufacturing method, solar cell module and solar cell
Sa'Ar On the origin of photoluminescence from silicon nanostructures: a new perspective
JPH01100917A (en) Adjusting method of wavelength of emitted light
JPH03212625A (en) Optical material
Gao et al. Strong visible photoluminescence from Ge/porous Si structure
JP6520245B2 (en) METHOD FOR PRODUCING SILICON NANOPARTICLE LUMINESCENT AND LIGHT EMITTING DEVICE USING THE SAME
JPH07119404B2 (en) Light emitting member and manufacturing method thereof
JPH02236901A (en) Light emitting member
JPH02218786A (en) Light-emitting member