JPH02218554A - Inprocess electrolytic dressing method by plural electrodes - Google Patents

Inprocess electrolytic dressing method by plural electrodes

Info

Publication number
JPH02218554A
JPH02218554A JP3364589A JP3364589A JPH02218554A JP H02218554 A JPH02218554 A JP H02218554A JP 3364589 A JP3364589 A JP 3364589A JP 3364589 A JP3364589 A JP 3364589A JP H02218554 A JPH02218554 A JP H02218554A
Authority
JP
Japan
Prior art keywords
grindstone
electrodes
grinding
dressing
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3364589A
Other languages
Japanese (ja)
Inventor
Kiyoshi Suzuki
清 鈴木
Tetsutaro Uematsu
植松 哲太郎
Tatsuhito Yanase
柳瀬 辰仁
Shuji Asano
修司 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3364589A priority Critical patent/JPH02218554A/en
Publication of JPH02218554A publication Critical patent/JPH02218554A/en
Pending legal-status Critical Current

Links

Landscapes

  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Abstract

PURPOSE:To easily perform the dressing keeping the balance of the depth and width in carving by smoothly carving the wide face of a grindstone base ground, by feeding a conductive work liquid while impressing an AC voltage, flowing an AC current between a grindstone and an electrode, and eluding the base ground of the grindstone by electrolyzing. CONSTITUTION:In dressing a conductive grindstone 3 while working a work 1 by this grindstone 3, a pair of electrodes 5a, 5b are arranged at a desired insulation distance and opposed to the grindstone face at a necessary gap. A conductive work liquid is then fed by a feeding means 8 between the electrode and grindstone face while impressing an AC voltage to a part between the electrodes 5a, 5b. Thus an AC current is flowed between the grindstone 3 and electrodes 5a, 5b, the grindstone 3 base ground is electrolytically eluded and the grindstone 3 peripheral face is subjected to dressing.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は複数電極によるインプロセス電解ドレッシング
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an in-process electrolytic dressing method using multiple electrodes.

〔従来の技術及びその技術的課題〕[Conventional technology and its technical issues]

セラミックス、超硬合金などの難加工材をはじめとする
各種材料の形状付与や仕上げ方法として、鋳鉄ボンド砥
石をはじめとする各種メタルボンド砥石による研削加工
が汎用されている。
BACKGROUND ART Grinding using various metal bond grindstones including cast iron bond grindstones is widely used as a method for shaping and finishing various materials including difficult-to-process materials such as ceramics and cemented carbide.

このような研削加工においては、メタルボンド砥石が目
つぶれを生じやすい性質を持っているため、切れ味を保
つべくドレッシングを行うことが不可欠であり、その方
法としてインプロセスドレッシング(機上ドレッシング
)が各種試みられている。その代表的なものとしては、
砥石を構成する砥粒粒度より細かいGCあるいはWA砥
粒を混入した研削液を用いる方法(物理的方法)がある
が、ワークの材質や仕上げ面粗さが定まっていない場合
に、いちいち混入粒度を変更しなければならないなどの
煩わしさがある。また、他の方法としては放電ドレッシ
ング方法のような電気的ドレッシング法があるが、この
場合には高速回転する砥石への給電が離しいという問題
がある。
In this type of grinding process, the metal bonded grindstone has a tendency to become dull, so it is essential to dress it to maintain its sharpness.In-process dressing (on-machine dressing) is being attempted. Representative examples include:
There is a method (physical method) that uses a grinding fluid mixed with GC or WA abrasive grains that are finer than the abrasive grain size of the grinding wheel, but if the workpiece material or finished surface roughness is not determined, it is necessary to adjust the mixed grain size one by one. There is a hassle of having to change it. Another method is an electrical dressing method such as a discharge dressing method, but in this case there is a problem in that the power supply to the grindstone that rotates at high speed is difficult.

この対策として、特開昭62−39175号公報に1対
の電極を用いた放電加工法が提案されている。しかしこ
の方法は、加工原理上、砥石と電極間のギャップを0.
01■というような微小に保ち、かつ電極の損耗に応じ
て微妙なサーボ制御を行わなければならないため作業性
、操作性が悪い点、微小ギャップのため研削屑が砥石表
面に付着し、帯同回転した場合に電極を損傷する危険が
あり、ドレッシングの安定性を損いやすい点、ドレッシ
ング作用が電極と砥石間のスパークによる衝撃的除去で
行われ、そのドレッシング領域がきわめて局所的である
ためドレッシング能率が低く、かつ母地を深く彫り込ん
で砥粒の突出し量を不必要に増しやすい点に問題があっ
た。さらに電源装置として特殊なものを用いることが必
要となり、装置コストが高くなるという問題があった。
As a countermeasure to this problem, an electric discharge machining method using a pair of electrodes is proposed in Japanese Patent Laid-Open No. 62-39175. However, in this method, due to the processing principle, the gap between the grindstone and the electrode is set to 0.
01 ■, and delicate servo control must be performed according to the wear and tear of the electrode, resulting in poor workability and operability.The small gap also causes grinding debris to adhere to the grinding wheel surface, causing the band to rotate simultaneously. There is a risk of damaging the electrode and the stability of the dressing is likely to be impaired if The problem is that the amount of the abrasive grains is low, and the amount of protrusion of the abrasive grains tends to increase unnecessarily by carving deeply into the base material. Furthermore, it is necessary to use a special power supply device, resulting in an increase in device cost.

本発明は前記のようなrDJM点を解消するために研究
して創案されたもので、その目的とするところは、ブラ
シによる給電を不要にするだけでなく、メタルボンド砥
石をきわめて簡易、確実かつ安定的にインプロセスドレ
ッシングすることができ。
The present invention was developed through research to solve the above rDJM problem, and its purpose is not only to eliminate the need for power supply by brushes, but also to make metal bond grinding wheels extremely simple, reliable, and Can be stably in-process dressed.

電源装置もきわめて安価にすることができるこの種複数
電極によるインプロセスドレッシング方法を提供するこ
とにある。
It is an object of the present invention to provide an in-process dressing method using multiple electrodes of this kind, which allows the power supply device to be extremely inexpensive.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため本発明は、ワークを導電性砥石
で加工しながらこれをドレッシングする方法であって、
所要の絶縁間距離をおいて配した少なくとも一対の電極
を用い、それら電極を導電性砥石面と所要の間隙をおい
て対峙させ、交流電圧を印加しつつ導電性加工液を供給
することにより、砥石と電流との間に交流電流を流させ
、それにより砥石母地を電解溶出させる方法としたもの
である。
In order to achieve the above object, the present invention provides a method for dressing a workpiece while processing it with a conductive grindstone, comprising:
By using at least a pair of electrodes arranged with a required distance between the insulation parts, by arranging the electrodes to face the conductive grinding wheel surface with the required gap, and supplying the conductive machining fluid while applying an alternating voltage, This method involves passing an alternating current between the whetstone and the current, thereby electrolytically eluting the whetstone matrix.

以下本発明を添付図面に基いて説明する。The present invention will be explained below based on the accompanying drawings.

第1図と第2図は本発明による複数電極によるドレッシ
ング方法を原理的に示している。
1 and 2 show the principle of the dressing method using multiple electrodes according to the present invention.

1はワークテーブル2に取付けられたワーク、3は導電
性のある砥石、一般にメタルボンド砥石であり、この例
ではストレート砥石が用いられており、主軸により高速
回転されるようになっている64は本発明で用いる電解
ドレッシング装置であり、1対ないし3本あるいはそれ
以上の電極5a、5bと、これらの間に電解が生ずるの
を防ぐため所要の距@Lだけ離して支持する絶縁材製の
支持体6と、前記電極5a、5bに電解電流を印加する
給電手段7とを備えている。
1 is a work mounted on a work table 2, 3 is a conductive grinding wheel, generally a metal bonded grinding wheel; in this example, a straight grinding wheel is used, and 64 is designed to be rotated at high speed by a main shaft. This is an electrolytic dressing device used in the present invention, which consists of one to three or more electrodes 5a, 5b and an insulating material that is supported at a required distance @L to prevent electrolysis from occurring between them. It includes a support 6 and a power supply means 7 for applying an electrolytic current to the electrodes 5a and 5b.

前記支持体6は図示しない装置本体に取付けられると共
に、ねじ式など任意の調整手段11に組合わされ、電極
5a、5bの端面50と砥石面30との間に所要の隙間
Q、たとえばQ=0.03〜0.07m5を形成するよ
うになっている。
The support body 6 is attached to the device main body (not shown), and is combined with an arbitrary adjustment means 11 such as a screw type, so that a required gap Q, for example, Q=0, is established between the end surfaces 50 of the electrodes 5a, 5b and the grinding wheel surface 30. It is designed to form .03 to 0.07 m5.

8は前記電極5a、5bの端面50と砥石面30間に適
度の導電性を有する加工液を供給する手段、9はワーク
1と砥石3との間に加工液を供給する手段である。
8 is means for supplying a machining liquid having appropriate conductivity between the end faces 50 of the electrodes 5a, 5b and the grindstone surface 30, and 9 is means for supplying a machining liquid between the workpiece 1 and the grindstone 3.

前記電極5a、5bは好ましくはグラファイト系のもの
が用いられ、砥石形状に即応した形状に加工されており
、給電手段7の電源としては何ら特別な電源装置を必要
とせず、交流(単相交流、3相交流)などの商用電源で
足りる。直流を採用した場合、一方の電極に電解生成物
が付着し、他方は電解除去されて極間が拡がりすぎるた
めである。給電回路はたとえば砥石3および機械本体の
アースから浮かせるためトランス12を挿入し、2次側
から給電すればよく、また電解電流の調整と砥石−電極
間の短絡時の過電流防止のため好ましくは可変抵抗13
を介在させる。また、必要に応じ電源とトランス12の
1次側との間にインバータを挿入してもよく、これによ
り電解電流の周波数を広範囲に変えることが可能である
The electrodes 5a and 5b are preferably made of graphite, and are processed into a shape that corresponds to the shape of the grinding wheel, and do not require any special power supply device as the power supply for the power supply means 7, and are powered by alternating current (single-phase alternating current). , 3-phase AC) or other commercial power sources are sufficient. This is because when direct current is used, electrolytic products adhere to one electrode and are removed by electrolysis from the other, resulting in an excessively wide gap between the electrodes. For example, the power supply circuit may be configured by inserting a transformer 12 so as to float it from the ground of the grinding wheel 3 and the machine body, and supplying power from the secondary side, and preferably in order to adjust the electrolytic current and prevent overcurrent in the event of a short circuit between the grinding wheel and the electrode. Variable resistance 13
intervene. Furthermore, an inverter may be inserted between the power source and the primary side of the transformer 12 if necessary, thereby making it possible to vary the frequency of the electrolytic current over a wide range.

本発明においては、第1図のようにワーク1を砥石3で
研削しながら、これと変位した位置で電極5a、5bを
砥石面50と所要の間隙Qをおいて対峙させ、その間隙
Qに導電性加工液を供給しながら給電手段7により電極
5a、5bに交流電解電圧を印加するものである。これ
により電解電流は加工液を介して電極5aφ砥石3a電
極5bのように流れ、従ってブラシによる給電を行わず
して砥石を構成する母地は電解溶出され、砥粒が突き出
す。
In the present invention, while grinding the workpiece 1 with the grindstone 3 as shown in FIG. An AC electrolytic voltage is applied to the electrodes 5a and 5b by the power supply means 7 while supplying the conductive working fluid. As a result, the electrolytic current flows through the machining fluid to the electrodes 5a, 3a, and 5b, so that the base material forming the grindstone is electrolytically eluted and the abrasive grains protrude without power being supplied by the brush.

この場合、電解溶出は局所的でなく広い面積で一度に行
われ、従って母地を必要以上に彫り込むことがなく、母
地面は滑らかな性状に保たれる。
In this case, the electrolytic elution is performed not locally but over a wide area at once, and therefore the matrix is not carved more than necessary, and the matrix is kept smooth.

前記電極面と砥石面との間隙悲は大きくてもよいため、
微妙な調整操作は必要とせず、ねじ送りというようなご
く単純な方法で支持体6を前進させることで足りる。そ
して、砥石面と電極との間隙を大きくできるため研削屑
の連れ回りや振動等による電極との衝突も回避でき、ト
ラブルなしに安定したドレッシングが行える。
Since the gap between the electrode surface and the grinding wheel surface may be large,
There is no need for delicate adjustment operations, and it is sufficient to advance the support body 6 by a very simple method such as screw feeding. Furthermore, since the gap between the grinding wheel surface and the electrode can be increased, collisions with the electrode caused by rotation of grinding debris and vibrations can be avoided, and stable dressing can be performed without trouble.

なお本発明はストレート砥石に適用されるだけでなく、
他の砥石にも容易に適用できる。第3図はカップ砥石へ
の適用例を示しており、この場合には電極5a、5bは
たとえば板状のものが用いられ、カップロ端を構成する
平たい砥石3とクロスするように配置される。第4図は
ラップ砥石への適用例を示しており、ワーク1は盤状の
ラップ面30′上に配され、所定の加圧力が付与される
Note that the present invention is not only applicable to straight whetstones, but also
It can be easily applied to other grindstones. FIG. 3 shows an example of application to a cup grindstone. In this case, the electrodes 5a and 5b are plate-shaped, for example, and are arranged so as to cross the flat grindstone 3 constituting the cupro end. FIG. 4 shows an example of application to a lapping grindstone, in which the workpiece 1 is placed on a disc-shaped lapping surface 30' and a predetermined pressing force is applied.

そして電極5a、5bは板状または棒状ものが用いられ
、ラップ面30′とクロスする関係に配置される。
The electrodes 5a and 5b are plate-shaped or rod-shaped, and are arranged in a relationship that crosses the lapped surface 30'.

〔実 施 例〕〔Example〕

次に本発明の実施例を示す。 Next, examples of the present invention will be shown.

■00本発明ストレート砥石による研削時のドレッシン
グに適用した。研削装置は平面研削盤、砥石は鋳鉄ボン
ドダイヤモンド砥石(φ200I1幅10111I1粒
度#120、集中度100)を用い、ワークは窒化けい
素(Hvl 700)、2ホウ化チタン(Hv2700
) 、超硬合金(HVlooO)の3種とした。
■00 Applied to dressing during grinding using the straight grindstone of the present invention. The grinding device is a surface grinder, the grindstone is a cast iron bonded diamond grindstone (φ200I1 width 10111I1 grain size #120, concentration 100), and the workpiece is silicon nitride (Hvl 700), titanium diboride (Hv2700).
) and cemented carbide (HVlooO).

電極はグラファイト製の−・対のものを用い、各電極は
最大長さ55m、円弧50m、高さ40■、厚さ18m
、1個あたりの単位幅当り対向面積50mm”/mとし
、これら電極を絶縁材に60−の間隔で取付け、ねじに
より砥石面との間隙aを0.05mに設定した。印加電
圧E。
A pair of electrodes made of graphite are used, and each electrode has a maximum length of 55 m, an arc of 50 m, a height of 40 cm, and a thickness of 18 m.
, the opposing area per unit width of each electrode was 50 mm''/m, these electrodes were attached to an insulating material at intervals of 60 mm, and the gap a with the grinding wheel surface was set to 0.05 m using screws. Applied voltage E.

=50V、電M電流Ip=25Aとして使用した。加工
液は比抵抗ρ=7oOΩ−1の低比抵抗研削加工液を使
用した。
= 50V, electric current Ip = 25A. As the machining fluid, a low resistivity grinding fluid with a resistivity ρ=7oOΩ−1 was used.

■、窒化けい素の研削 研削速度1000 m/a+in、送りf = 12 
m / l5in、研削幅W=10mm、切込み深さを
Z=10pm及び20um、UP−DOWNで交互研削
としたときの結果をインプロセスドレッシングなしの通
常研削(IDなしと表記)と比較して第5図に示す。
■ Grinding of silicon nitride Grinding speed 1000 m/a+in, feed f = 12
m / l5in, grinding width W = 10mm, depth of cut Z = 10pm and 20um, and the results of alternate grinding with UP-DOWN are compared with normal grinding without in-process dressing (denoted as no ID). It is shown in Figure 5.

通常研削ではZ=10μ■において徐々に、Z=20μ
履では急激に研削抵抗が増加しているが1本発明によれ
ば、研削初期に抵抗が若干増加するものの、研削量R=
350++m”以後は安定しており、砥石の切れ味が適
切に持続できていることがわかる。
In normal grinding, gradually Z = 10μ■, Z = 20μ
However, according to the present invention, although the resistance increases slightly in the initial stage of grinding, the amount of grinding R=
After 350 ++ m'', it is stable, and it can be seen that the sharpness of the whetstone can be maintained appropriately.

Ill、 2はう化チタンの研削 研削速度V−= 2000 m/win、送りf=12
m/m111、研削幅W=5mの条件で行った。その結
果を第6図に示す、この第6図から、切込みがZ=20
μ層と大きくなると、通常研削では研削抵抗(FV)が
急増し、R=1000+m’/mの時点では、Fv==
約26 kg f / mに達した。しかし本発明を適
用した場合には、Fvが約l Q kg f / rr
mで安定すると共に、研削比も70%程度増加し、0R
=122と゛なった。
Ill, 2 Grinding of titanium poride Grinding speed V-= 2000 m/win, feed f=12
The grinding was carried out under the conditions of m/m111 and grinding width W=5 m. The results are shown in Fig. 6. From this Fig. 6, the depth of cut is Z = 20.
When the μ layer becomes large, the grinding resistance (FV) increases rapidly in normal grinding, and at the time of R=1000+m'/m, Fv==
It reached about 26 kg f/m. However, when the present invention is applied, Fv is approximately l Q kg f / rr
In addition to being stable at m, the grinding ratio increased by about 70%, and 0R
It became =122.

この第6図には実ピーク電流値Irも示しており、Ir
が徐々に減少していることは砥石と電極との隙間が増加
していること、すなわち砥粒の突出し量が増加している
ことを意味している。
This FIG. 6 also shows the actual peak current value Ir.
Gradually decreasing means that the gap between the grinding wheel and the electrode is increasing, that is, the amount of protrusion of the abrasive grains is increasing.

■、超硬合金の研削 前記2はう化チタンと同じ条件で行った。その結果を第
7図に示す、この場合、切込みがZ=10μ瓢において
通常研削時の研削抵抗が急増するが1本発明によれば約
5 kg f / mで安定して切れ味が持続している
(2) Grinding of cemented carbide Grinding was carried out under the same conditions as for titanium uride. The results are shown in Figure 7. In this case, when the depth of cut is Z = 10μ, the grinding resistance during normal grinding increases rapidly, but according to the present invention, the sharpness remains stable at about 5 kg f / m. There is.

〔発明の効果〕〔Effect of the invention〕

以上説明した本発明によるときには、ツイン電極方式の
ためブラシによ“る給電が不要になることに加え1次の
ようなすぐれた効果が得られる。
According to the present invention as described above, the twin electrode system eliminates the need for power supply using a brush, and in addition, excellent effects such as the first order can be obtained.

■難加工材の加工における研削抵抗の低減化と安定化を
微妙な調整操作を行わずに簡易に達成できる。
■Reducing and stabilizing grinding resistance when machining difficult-to-process materials can be easily achieved without making delicate adjustments.

■電極と砥石とのギャップを広く設定できるため、電極
の振れや研削屑の帯同による電極の損傷などのトラブル
を防止でき、ドレッシング作業の安定性が良い。
■Since the gap between the electrode and the grinding wheel can be set wide, troubles such as damage to the electrode due to vibration of the electrode or entrainment of grinding debris can be prevented, resulting in better stability of dressing work.

■ドレッシングが電解溶出であり、砥石母地の広い面を
なだらかに削るため、彫り深さと広さとのバランスのと
れたドレッシング効果を容易に得ることができる。
■Dressing is done by electrolytic elution, and since the wide surface of the whetstone is ground gently, it is easy to achieve a dressing effect with a good balance between engraving depth and width.

■電源装置がきわめて安価であると共に、適用可能な砥
石に制約がないため汎用性に富む。
■The power supply device is extremely inexpensive, and there are no restrictions on the grindstones that can be used, making it highly versatile.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の概要を示す側面図、第2図本発明の給
電方法を併示した拡大図、第3図と第4図は本発明の適
用例を示す斜視図、第5図ないし第7図は本発明と通常
研削による研削量と法線研削抵抗の関係を示すグラフで
ある。
Fig. 1 is a side view showing an overview of the present invention, Fig. 2 is an enlarged view also showing the power supply method of the present invention, Figs. 3 and 4 are perspective views showing application examples of the present invention, and Figs. FIG. 7 is a graph showing the relationship between the amount of grinding and normal grinding resistance according to the present invention and conventional grinding.

Claims (2)

【特許請求の範囲】[Claims] (1)ワークを導電性砥石で加工しながらこれをドレッ
シングする方法であって、所要の絶縁間距離をおいて配
した少なくとも一対の電極を用い、それら電極を導電性
砥石面と所要の間隙をおいて対峙させ、交流電圧を印加
しつつ導電性加工液を供給することにより、砥石と電極
との間に交流電流を流させ、それにより砥石母地を電解
溶出させることを特徴とする複数電極によるインプロセ
ス電解ドレッシング方法。
(1) A method of dressing a workpiece while it is being processed with a conductive grindstone, using at least one pair of electrodes arranged with a required distance between the insulators, and separating the electrodes from the surface of the conductive grindstone with the required gap. A plurality of electrodes characterized in that an alternating current is caused to flow between the grinding wheel and the electrode by making them face each other while applying an alternating voltage and supplying a conductive working fluid, thereby electrolytically dissolving the grinding wheel matrix. In-process electrolytic dressing method.
(2)電極がグラファイト製であり、電極と砥石面との
間に3/100以上の間隙を設けて行う特許請求の範囲
第1項記載の複数電極によるインプロセス電解ドレッシ
ング方法。
(2) The in-process electrolytic dressing method using multiple electrodes according to claim 1, wherein the electrodes are made of graphite and a gap of 3/100 or more is provided between the electrodes and the grinding wheel surface.
JP3364589A 1989-02-15 1989-02-15 Inprocess electrolytic dressing method by plural electrodes Pending JPH02218554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3364589A JPH02218554A (en) 1989-02-15 1989-02-15 Inprocess electrolytic dressing method by plural electrodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3364589A JPH02218554A (en) 1989-02-15 1989-02-15 Inprocess electrolytic dressing method by plural electrodes

Publications (1)

Publication Number Publication Date
JPH02218554A true JPH02218554A (en) 1990-08-31

Family

ID=12392181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3364589A Pending JPH02218554A (en) 1989-02-15 1989-02-15 Inprocess electrolytic dressing method by plural electrodes

Country Status (1)

Country Link
JP (1) JPH02218554A (en)

Similar Documents

Publication Publication Date Title
US4849599A (en) Machining method employing cutting or grinding by conductive grindstone
JP3344558B2 (en) Electric dressing grinding method and apparatus
US6117001A (en) Electrolytic in-process dressing method, electrolytic in-process dressing apparatus and grindstone
JPH10175165A (en) Centerless grinding method using metal bond grinding wheel, and its device
WO2024003977A1 (en) Electrolytic dressing device and electrolytic dressing method suited for cylindrical grinding of steel roll
JPH02218554A (en) Inprocess electrolytic dressing method by plural electrodes
JPH11262860A (en) Extremely precise grinding method and device
JPH04115867A (en) Electrolytic interval dressing grinding method
JPH01188266A (en) Electrolytic dressing for electric conductive grindstone and device thereof
JPS61146467A (en) Cutting-off grinding method by conductive grindstone and cutting-off grinding device
JP3251610B2 (en) Mirror polishing method and apparatus using electrolytic products
JP2846056B2 (en) Grinding device and grinding method
JP3136169B2 (en) Double-sided lap grinding machine
JPH06114732A (en) Grinding wheel side surface shaping method by on-machine discharge truing method
JP3274592B2 (en) Electrolytic in-process dressing grinding method and apparatus
JPH06134671A (en) Grinding wheel dressing and device therefor
JPH05318313A (en) Grinding machining method of compound material
JP2717438B2 (en) Method and apparatus for truing and dressing conductive grindstone by electrolytic dressing grinding
Ohmori et al. Efficient grinding technique utilizing electrolytic in-process dressing for precision machining of hard materials
JPH10225865A (en) Grinding device using metal bond grinding wheel
JP3356693B2 (en) Ultra-precision grinding method and grinding device
JPH01121172A (en) Grinding attachment equipped with electric discharge forming area for blade edge
JP3169631B2 (en) Method and apparatus for electrolytic dressing with semiconductor contact electrode
JPS6239175A (en) Truing and dressing methods by antielectrode discharge
JP2684624B2 (en) Grinding cutting device