JPH02216406A - Device and instrument for measuring solid shape - Google Patents

Device and instrument for measuring solid shape

Info

Publication number
JPH02216406A
JPH02216406A JP3888189A JP3888189A JPH02216406A JP H02216406 A JPH02216406 A JP H02216406A JP 3888189 A JP3888189 A JP 3888189A JP 3888189 A JP3888189 A JP 3888189A JP H02216406 A JPH02216406 A JP H02216406A
Authority
JP
Japan
Prior art keywords
plane
optical
measured
optical plane
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3888189A
Other languages
Japanese (ja)
Other versions
JPH07117384B2 (en
Inventor
Michiichi Onishi
大西 道一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP1038881A priority Critical patent/JPH07117384B2/en
Publication of JPH02216406A publication Critical patent/JPH02216406A/en
Publication of JPH07117384B2 publication Critical patent/JPH07117384B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To easily measure a solid shape and to quickly obtain a contour line drawing and a border line drawing by irradiating an optical plane over the whole periphery of an object to be measured and bringing an optical intersection part to image pickup by an image pickup device whose optical axis is perpendicular to the optical plane, and also, executing the image pickup, while varying the position of the optical intersection part against the object. CONSTITUTION:When an optical plane P is irradiated over the whole periphery of the object 10, and its optical intersection part S is brought to image pickup by an image pickup device 7 whose optical axis L is perpendicular to the optical plane P, the image of a border line in the optical plane P of the object 10 is obtained. Subsequently, while holding an interval between the optical plane P and the image pickup device 7 in a prescribed distance, the irradiated position of the optical plane P is moved by a necessary distance in the direction perpendicular to the optical plane P, and when the image pickup is executed again in this state, a border line drawing in a different cutting plane of the object 10 is obtained. In such a manner, by moving stepwise the irradiated position of the optical plane by a necessary distance each and executing successively its image pickup, a contour line drawing when the object 10 is brought to plane vision from the direction perpendicular to the optical plane P can be easily generated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、立体物の形状を測定する装置及び方法に関す
るものであ、て、簡単な機構の装置により、容易に立体
形状を測定して、迅速に等高線図や輪郭線図を得ること
のできる手段を提供するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an apparatus and method for measuring the shape of a three-dimensional object, and the present invention relates to a device and method for measuring the shape of a three-dimensional object, and the present invention relates to a device and method for measuring the shape of a three-dimensional object. This provides a means for quickly obtaining a contour map or a contour map.

〔従来の技術と解決課題〕[Conventional technology and problems to be solved]

種々の要請から、特定の立体物の形状を測定して、その
結果を等高線図や輪郭線図等として表現することが必要
な場合がある。
Due to various demands, it may be necessary to measure the shape of a specific three-dimensional object and express the results as a contour map, contour map, or the like.

従来、立体物の等高線図を描くには、所定間隔だけ離れ
た数個所から対象立体物を撮像し、得られた複数の画像
を立体図化器で処理して等高線図を作成するということ
が行われている。
Conventionally, in order to draw a contour map of a three-dimensional object, images of the three-dimensional object are taken from several locations separated by a predetermined interval, and the obtained images are processed by a three-dimensional plotter to create a contour map. It is being done.

ところが、従来の立体図化器は、構造が複雑で高価な装
置であるのみならず、取り扱いが難しくてその操作には
熟練を要し、作業時間も長くかかるという欠点がある。
However, conventional three-dimensional plotters have the disadvantages that they are not only complex and expensive devices, but also difficult to handle, requiring skill to operate, and requiring long working hours.

そのため、簡単な機構で、誰にでも容易に立体形状の測
定を行える手段の提供が望まれていた。
Therefore, it has been desired to provide a means by which anyone can easily measure three-dimensional shapes using a simple mechanism.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記課題に鑑みて創案されたものであって、
簡単且つ安価な装置で、迅速容易に立体の形状を測定で
きる手段を提供せんとするものである。
The present invention was created in view of the above problems, and includes:
It is an object of the present invention to provide a means for quickly and easily measuring the shape of a three-dimensional object using a simple and inexpensive device.

本発明の実施態様は、四つに大別される。Embodiments of the present invention are roughly divided into four categories.

第一の実施態様の要旨とするところは、被測定物の保持
装置と、光平面の照射装置と、撮像装置と、被測定物に
対する光平面の照射位置の変更手段とからなる測定装置
を用い、所定位置に保持した被測定物の全周に、単一平
面をなす光平面を照射し、光軸が前記光平面に垂直で且
つ前記光平面から所定距離を置いて設置した撮像装置で
被測定物を撮像した後、被測定物を前記光平面に対して
垂直な方向へ所要距離ずつ段階的に移動させながら、前
記撮像装置で順次被測定物の撮像を行うことである。又
は被測定物の位置を固定し、前記光平面と前記撮像装置
とを、両者の間隔を所定距離に保らつつ、当該光平面に
対して垂直な方向へ所要距離ずつ段階的に移動させなが
ら、前記撮像装置で順次被測定物の撮像を行うことであ
る。
The gist of the first embodiment is to use a measuring device comprising a device to hold the object to be measured, a device for irradiating the optical plane, an imaging device, and a means for changing the irradiation position of the optical plane to the object to be measured. A light plane forming a single plane is irradiated around the entire circumference of the object to be measured held at a predetermined position, and the object is illuminated with an imaging device whose optical axis is perpendicular to the light plane and installed at a predetermined distance from the light plane. After the object to be measured is imaged, the object to be measured is moved stepwise by a required distance in a direction perpendicular to the optical plane, and images of the object are sequentially taken by the imaging device. Alternatively, the position of the object to be measured is fixed, and the optical plane and the imaging device are moved step by step by a required distance in a direction perpendicular to the optical plane while maintaining a predetermined distance between the two. , the object to be measured is sequentially imaged by the imaging device.

第二の実施!3様の要旨とするところは、被測定物の保
持装置と、複数の光平面を照射する多層光平面照射装置
と、撮像装置とを用い、被測定物を所定位置に保持し、
所要間隔を置いて互いに平行に形成された複数の光平面
からなる多層光平面を被測定物の全周に照射し、光軸が
前記多層光平面に垂直で且つ前記多層光平面から所定距
離を置いて設置した撮像装置で被測定物を撮像すること
である。
Second implementation! The gist of method 3 is to hold the object to be measured in a predetermined position using a device to hold the object to be measured, a multilayer light plane irradiation device that irradiates a plurality of light planes, and an imaging device.
A multilayer optical plane consisting of a plurality of optical planes formed parallel to each other at required intervals is irradiated all around the object to be measured, and the optical axis is perpendicular to the multilayer optical plane and a predetermined distance from the multilayer optical plane. This is to take an image of the object to be measured using an imaging device that is installed at the same place.

また、第三の実Ff!S様の要旨とするところは、被測
定物を保持すると共に所要角度ずつ回転させることが可
能な回転保持装置と、光平面の照射装置と、1最像装置
とからなる測定装置を用い、所定位置に保持した被測定
物の全周に光平面を照射し、光軸が前記光平面に垂直で
且つ前記光平面から所定距離を置いて設置した撮像装置
で被測定物を撮像した後、被測定物を前記光平面と平行
な軸を中心にして所要角度ずつ段階的に回転させながら
前記撮像装置で順次被測定物の撮像を行うことである。
Also, the third fruit Ff! Mr. S's point is to use a measuring device consisting of a rotation holding device that can hold the object to be measured and rotate it by the required angle, an optical plane irradiation device, and an imaging device. After irradiating the entire circumference of the object to be measured held in position with a light plane and imaging the object with an imaging device whose optical axis is perpendicular to the light plane and installed at a predetermined distance from the light plane, The object to be measured is sequentially imaged by the imaging device while the object to be measured is rotated stepwise by a required angle around an axis parallel to the optical plane.

そして、第四の実施態様の要旨とするところは、撮像装
置を、光軸を光平面又は多層光平面に対して垂直に保ち
つつ、光平面又は光多層平面から所定距離にあって平行
な仮想平面上を移動させて、被測定物の撮像を行うこと
である。
The gist of the fourth embodiment is that, while keeping the optical axis perpendicular to the optical plane or multilayer optical plane, the imaging device is placed at a virtual distance from and parallel to the optical plane or multilayer optical plane. This is to image an object to be measured by moving it on a plane.

〔作用〕[Effect]

本発明の営む作用を、実施例を示す図面を参照して説明
する。
The operation of the present invention will be explained with reference to drawings showing embodiments.

第1図乃至第3図に示すように、被測定l#ff1oの
全周に光平面Pを照射すると、被測定物100表面にお
いて光平面Pが交差する個所で光の散乱が生ずる。この
交差部Sを、光軸りが光平面Pに垂直な撮像装置7で撮
像すると、光平面Pの照射位置における被測定物IOの
切断面の輪郭線の画像が得られる0次いで、光平面Pと
撮像装置7との間隔を所定距離に保ちつつ、光平面Pの
照射位置を該光平面Pに垂直な方向へ所要距離だけ移動
させる(第3図参照)。この状態で再び撮像を行うと、
被測定物10の異なる切断面における輪郭線図が得られ
る。引き続き光平面照射位置を所要距離ずつ段階的に移
動させて順次撮像を行う、こうして得られた複数の画像
を合成すれば、被測定物lOを前記光平面Pに垂直な方
向から平面視した場合の等高線図を容易に作成すること
ができる。なお、得られる複数の画像を、一個のtie
面に多重露光させて等高線図を1#ることも可能である
As shown in FIGS. 1 to 3, when the entire circumference of the object to be measured l#ff1o is irradiated with the optical plane P, light scattering occurs at the points where the optical plane P intersects on the surface of the object to be measured 100. When this intersection S is imaged by an imaging device 7 whose optical axis is perpendicular to the optical plane P, an image of the outline of the cut surface of the object to be measured IO at the irradiation position of the optical plane P is obtained. The irradiation position of the optical plane P is moved by a required distance in the direction perpendicular to the optical plane P while maintaining the distance between the optical plane P and the imaging device 7 at a predetermined distance (see FIG. 3). If you perform imaging again in this state,
Contour diagrams of the object to be measured 10 at different cross-sections are obtained. Subsequently, the light plane irradiation position is moved stepwise by the required distance and images are taken sequentially. By combining the multiple images obtained in this way, it is possible to obtain an image of the object to be measured 1O when viewed in plan from a direction perpendicular to the light plane P. Contour maps can be easily created. Note that the multiple images obtained can be combined into one tie.
It is also possible to make one contour map by multiple exposure on the surface.

また単一な光平面に代え、第11図及び第12図に示す
如く、所要間隔を置いて互いに平行に形成した多層光平
面Qを被測定物10に照射し、これを撮像して等高線図
を得ることもできる。この場合、被測定物10と撮像装
置7との距離が充分に育り且つ操像装@7の焦点深度が
深ければ、多層光平面Qを照射した状態で被測定物10
を撮像した画像が、そのまま等高線図となる。また、撮
像装置7の焦点深度が浅い場合には、多層光平面Qの各
光平面層Ql−Q6のすべてにピントを合わせるのが難
しいので、各光平面層旧〜Q6を順番に被測定物10に
照射して順次撮像を行い、得られた複数の画像を合成し
て等高線図を作成する。なおこのとき、被測定物lOと
撮像装置7との距離が短ければ、各光平面層旧〜a6そ
れぞれと撮像装置7との距離の違いに応じた距離補正を
各画像に施す、あるいは、撮像装置7を多層光平面Qに
垂直な方向へ移動可能であるならば、各光平面層Q1〜
06と撮像装置7との間隔を所定距離に保つようにして
撮像を行うことにより、上記の距離補正を不要とするこ
とができる。
In addition, instead of a single optical plane, as shown in FIGS. 11 and 12, the object to be measured 10 is irradiated with multilayer optical planes Q formed parallel to each other at required intervals, and this is imaged to create a contour map. You can also get In this case, if the distance between the object to be measured 10 and the imaging device 7 is sufficiently large and the depth of focus of the image manipulation device @7 is deep, the object to be measured 10 is illuminated with the multilayer light plane Q.
The captured image becomes a contour map. In addition, when the depth of focus of the imaging device 7 is shallow, it is difficult to focus on all of the optical plane layers Ql-Q6 of the multilayer optical plane Q, so each optical plane layer old to Q6 is sequentially focused on the object to be measured. 10 and sequentially take images, and the obtained plural images are combined to create a contour map. At this time, if the distance between the object to be measured lO and the imaging device 7 is short, distance correction is applied to each image according to the difference in distance between each of the optical plane layers A6 to A6 and the imaging device 7. If the device 7 is movable in the direction perpendicular to the multilayer optical plane Q, each optical plane layer Q1~
06 and the imaging device 7 at a predetermined distance, the distance correction described above can be made unnecessary.

さらに第13図に示す如く、所定位置に保持した被測定
物10に光平面Rを照射し、被測定物IOを光平面Rと
平行な軸を中心にして所要角度ずつ段階的に回転させな
がら順次IIA@を行った場合には、被測定物lOを様
々な角度から見たときの輪郭線に相当する画像が得られ
る。すなわち、立体形状に関する球座標方式又は極座標
方式の情報を得ることになる。この場合にも、多重露光
により、複数の画像を一個の撮像面に納めることができ
る。
Further, as shown in FIG. 13, the object to be measured 10 held at a predetermined position is irradiated with the optical plane R, and the object to be measured IO is rotated step by step by a required angle around an axis parallel to the optical plane R. When IIA@ is performed sequentially, images corresponding to the contour lines of the object to be measured 1O when viewed from various angles are obtained. That is, information about the three-dimensional shape in spherical coordinate system or polar coordinate system is obtained. In this case as well, multiple images can be captured on one imaging surface by multiple exposure.

なお、第14図に例示するように、被測定物10の表面
にくびれ20等が有るため、光軸りが被測定物10を通
るような位置からは光平面Pと被測定物10との交差部
Sを撮像できないことがある。このような場合には、撮
像装置7を、光軸りを光平面Pに対して垂直に保ちつつ
、前記光平面Pから所定距離にある平行な仮想平面M上
を移動させることにより撮像が可能である。その原理を
簡単に説明すると、被測定物10にくびれ20が有る場
合、描像装置7を平面M上で適当な距離だけ移動させる
ことにより、前記交差部Sを撮像できる位置を見いだす
ことができる。このとき、光軸りは光平面Pに垂直であ
り、且つ撮像装置7と光平面Pとは常に所定距離に保た
れている。それ故、擺像装W7をいずれの位置へ平行移
動させたとしても、得られる画像G1gは、交差部Sの
形状と相イ以な形状となり、しかも両者の相似比は一定
である。言い換えるならば、撮像装置7が平面M上のど
の位置に有っても、元の画像Gと移動後の画像gとは合
同である。但し、撮像装置7を平行移動させた場合には
、前記交差部Sの一部をfl像した画像しか得られない
、そこで、撮像装置7を光平面Pに垂直な適当軸線を中
心に周回移動させ、所要角度ごとに撮像を行う、或いは
、被測定物10を所要角度ずつ回転させて#i像を行っ
てもよい。こうして得られた複数の画像を合成すること
により、くびれ20を有するような被測定物IOでも正
確な等高線図を作成することができる。
As illustrated in FIG. 14, since there is a constriction 20 etc. on the surface of the object to be measured 10, it is difficult to see the relationship between the optical plane P and the object to be measured 10 from a position where the optical axis passes through the object to be measured 10. It may not be possible to image the intersection S. In such a case, imaging can be performed by moving the imaging device 7 on a parallel virtual plane M located at a predetermined distance from the optical plane P while keeping the optical axis perpendicular to the optical plane P. It is. To briefly explain the principle, when the object to be measured 10 has a constriction 20, by moving the imaging device 7 an appropriate distance on the plane M, a position where the intersection S can be imaged can be found. At this time, the optical axis is perpendicular to the optical plane P, and the imaging device 7 and the optical plane P are always kept at a predetermined distance. Therefore, no matter which position the imager W7 is translated in parallel, the resulting image G1g has a shape that is different from the shape of the intersection S, and the similarity ratio between the two is constant. In other words, no matter where the imaging device 7 is located on the plane M, the original image G and the moved image g are congruent. However, when the imaging device 7 is moved in parallel, only a fl image of a part of the intersection S can be obtained.Therefore, the imaging device 7 is moved around an appropriate axis perpendicular to the optical plane P. #i image may be taken by rotating the object 10 by a required angle. By combining a plurality of images obtained in this manner, an accurate contour map can be created even for the object to be measured IO having a constriction 20.

〔実施例〕〔Example〕

以下に本発明の詳細を、実施例を示す図面に基づいて説
明する。
The details of the present invention will be explained below based on the drawings showing examples.

(第一実施例) 第1図〜第3図に示す如く、本発明に係る立体形状測定
装置(以下、単に測定装置と言う)は、元手面照射装置
、、被測定物IOを保持する保持装置5及び撮像装置7
から構成されている。
(First Embodiment) As shown in FIGS. 1 to 3, the three-dimensional shape measuring device (hereinafter simply referred to as the measuring device) according to the present invention includes a base surface irradiation device, and an object to be measured IO. Holding device 5 and imaging device 7
It consists of

光重面照射装置1は、光源2.光源2から投射される光
線を平面状に拡散させる拡散器3.光平面Pを反射させ
て被測定物IOの全周に照射させるように配置した反射
鏡6よりなり、必要に応じ、拡散器3と被測定物10と
の間へ、拡散された光線から単一光平面Pを取り出すス
リット4を設ける。
The light heavy surface irradiation device 1 includes a light source 2. A diffuser 3 that diffuses the light beam projected from the light source 2 into a plane. It consists of a reflecting mirror 6 arranged to reflect the light plane P and irradiate it all around the object to be measured IO, and if necessary, direct the diffused light beam between the diffuser 3 and the object to be measured 10. A slit 4 is provided to take out one optical plane P.

光′fE2には指向性の良いレーザーを用いるのが望ま
しいが、限定的なものではない。
Although it is desirable to use a laser with good directivity as the light 'fE2, this is not limiting.

光線の拡散器3とは、例えば光源1がレーザーの場合に
は、図示の如き柱状レンズや柱状の平凸レンズ或いはポ
リゴンミラーを用いればよい、レーザー光を上記レンズ
を通過させたり、ミラーに反射させたりすることにより
、容易に光平面Pを発生させることができる。なお、こ
の場合、光平面Pも指向性が高いから、前記スリット4
は必ずしも必要ではない。また、光源lとして電球等の
通常光源を使用する場合には、凹面鏡やレンズ等を用い
て集光したのち、図示したスリット4を通過させて光平
面を得ることができる。このように、拡散器3の種類は
、用いられる光源1の種類によって適宜のものがi!訳
される。さらに図面では、一個の光源2と複数の反射鏡
6とで、被測定物10の全周に光平面Pが照射されるよ
うに構成したが、複数の光源2を使用することも勿論可
能である。
For example, when the light source 1 is a laser, the light beam diffuser 3 may be a columnar lens, a columnar plano-convex lens, or a polygon mirror as shown in the figure. By doing so, the optical plane P can be easily generated. In this case, since the optical plane P also has high directivity, the slit 4
is not necessarily necessary. Further, when a normal light source such as a light bulb is used as the light source 1, a light plane can be obtained by condensing the light using a concave mirror, a lens, etc., and then passing the light through the illustrated slit 4. In this way, the type of diffuser 3 is determined as appropriate depending on the type of light source 1 used. translated. Further, in the drawing, the light plane P is irradiated to the entire circumference of the object to be measured 10 using one light source 2 and a plurality of reflecting mirrors 6, but it is of course possible to use a plurality of light sources 2. be.

反射鏡6には平面鏡のほか、第4図に示す凸面鏡6 (
60)、第5図の凹面5J16 (61)のいずれでも
用いることができる。さらには第6図(al及び(b)
に示す如き、平面鏡63の表面に柱状の平凸レンズ64
を取着したような反射i 6 (62)も使用可能であ
る。
In addition to a plane mirror, the reflecting mirror 6 includes a convex mirror 6 (
60) or the concave surface 5J16 (61) in FIG. 5 can be used. Furthermore, Fig. 6 (al and (b)
As shown in FIG.
A reflective i 6 (62) such as the one attached thereto can also be used.

この反射&#I82は、拡散光Jを反射する際に、第6
図fblに示す如く、平凸レンズ64部分がさらに広角
度に光をfJ2;Mさせる作用を有している。
This reflection &#I82 is the 6th when reflecting the diffused light J.
As shown in Figure fbl, the plano-convex lens 64 has the effect of making the light spread over a wider angle fJ2;M.

反射鏡6の配置は、第7ryJ〜第10図に例示するよ
うに、被測定物10の全周を隙間無く取り囲むように設
置するか、又は全周に適宜の間隔を置いて多数配置する
のが好ましい、なお、全周に適宜間隔を置いて多数の反
射鏡6を配置するときには、第1O図の如く、各反射鏡
6に角度調節機構70を取りつけ、それぞれの面角度を
、被測定物10の形状等に応じて変更できるようにする
とよい。
The reflective mirrors 6 may be arranged so as to surround the entire circumference of the object to be measured 10 without gaps, as illustrated in FIGS. In addition, when a large number of reflecting mirrors 6 are arranged at appropriate intervals around the entire circumference, an angle adjustment mechanism 70 is attached to each reflecting mirror 6 as shown in FIG. It is preferable to allow the configuration to be changed depending on the shape of the item 10, etc.

このように、光源2の数、反射鏡6の数及び配置等は、
決して限定されるものではない。勿論、使用する光の波
長や強度等も、測定条件に応じて適宜設定される。いず
れにしても、被測定物lOの全周に光平面Pが確実に照
射されるようにすることが肝要である。
In this way, the number of light sources 2, the number and arrangement of reflecting mirrors 6, etc.
It is by no means limited. Of course, the wavelength, intensity, etc. of the light used are also appropriately set according to the measurement conditions. In any case, it is important to ensure that the optical plane P is irradiated all around the object to be measured 1O.

前記保持装置5は、被測定物10を保持すると共に、被
測定物10を光平面照射装置1により形成される元手面
Pに対して垂直な方向へ所要距離ずつ段階的に移動させ
ることができるようになされている。移動距離は一定で
あっても、変更可能であってもよい。
The holding device 5 can hold the object to be measured 10 and move the object to be measured 10 step by step by a required distance in a direction perpendicular to the base plane P formed by the optical plane irradiation device 1. It is made possible. The moving distance may be constant or changeable.

前記撮像装置7は、その光軸りが元手面Pに対して垂直
であって、且つ元手面P上の像に焦点が合う距離に設置
されている。この撮像装置7の例としては、光学レンズ
とフィルムとを備えた通常のカメラの他、CCD素子を
用いたCCDカメラとフロッピィディスクや磁気テープ
等の記録媒体との組合せ等を採用することができる。
The imaging device 7 is installed at such a distance that its optical axis is perpendicular to the base surface P and that the image on the base surface P is in focus. As an example of the imaging device 7, in addition to a normal camera equipped with an optical lens and film, a combination of a CCD camera using a CCD element and a recording medium such as a floppy disk or magnetic tape can be adopted. .

次に、上述の測定装置により、被測定物10の等高線図
を作成する手順を説明する。
Next, a procedure for creating a contour map of the object to be measured 10 using the above-mentioned measuring device will be explained.

はじめに、保持装置5により被測定物10を保持せしめ
、元手面Pが被測定物10の測定基準位置を通るように
設定する。次いで、光平面照射装置1から元手面Pを被
測定物10に向けて照射する。被測定物10における光
源2側は直接光で照射されるが、反対側及び側方は、反
射鏡6で反射された二次光で照射され、結果的に被測定
物lOの全周が元手面Pにより照射される。この状態で
、描像装置7により、元手面Pと被測定物lOとの交差
部Sを撮像する。前記交差部Sでは、被測定物IOの表
面に沿って光が散乱しており、これが第2図に示す如く
、元手面Pの位置における被測定物10の断面の輪郭線
として撮像される。続いて保持装置5を操作し、第3図
に示すように、被測定物10を元手面Pに対して垂直な
方向へ所要距離だけ移動させる。移ωJ距離は、作成し
ようとする等高線図の間隔に応じて適宜設定される。被
測定物IOの移動が終わったならば、上述と同様にして
撮像を行う。
First, the object to be measured 10 is held by the holding device 5 and set so that the base surface P passes through the measurement reference position of the object to be measured 10 . Next, the light plane irradiation device 1 irradiates the base surface P toward the object to be measured 10 . The light source 2 side of the object to be measured 10 is irradiated with direct light, but the opposite side and sides are irradiated with secondary light reflected by the reflector 6, and as a result, the entire circumference of the object to be measured 10 is It is irradiated by the hand surface P. In this state, the imaging device 7 images the intersection S between the base surface P and the object to be measured 1O. At the intersection S, light is scattered along the surface of the object to be measured IO, and this is imaged as a contour line of the cross section of the object to be measured 10 at the position of the base surface P, as shown in FIG. . Subsequently, the holding device 5 is operated to move the object to be measured 10 by a required distance in a direction perpendicular to the base surface P, as shown in FIG. The displacement ωJ distance is appropriately set depending on the interval of the contour map to be created. Once the movement of the object to be measured IO is completed, imaging is performed in the same manner as described above.

このようにして、被測定物10を所要距離ずつ移動させ
ては順次撮像を行うことにより、被測定物IOを所要間
隔ごとに断面した図形の輪郭線の画像がi写られる。そ
して、得られた複数の画像を重ね合わせれば、目的とす
る被測定物10の等高線図を作成することができる。ま
た、複数の画像を一枚のフィルムに多重露光して、等高
線図を作成することも可能である。
In this way, by moving the object to be measured 10 by the required distance and sequentially taking images, images of the outline of the figure obtained by cross-sectioning the object to be measured IO at each required interval are captured. Then, by superimposing the plurality of obtained images, a contour map of the target object to be measured 10 can be created. It is also possible to create a contour map by multiple exposure of multiple images onto a single film.

なお、被測定物10を移動させる代わりに、光平面照射
装置lと描像装置7とを、両者の相互位置関係は変更し
ないようにして、元手面Pに対して垂直な方向へ所要距
離ずつ段階的に移動させることにより、元手面Pの照射
位置を変更するようにしても全く差し支えない。
Note that instead of moving the object to be measured 10, the optical plane irradiation device l and the imaging device 7 are moved by a required distance in a direction perpendicular to the base plane P without changing their mutual positional relationship. There is no problem even if the irradiation position of the base hand surface P is changed by moving it in stages.

(第二実施例) 前記第一実施例は、単一な元手面Pを被測定物10に照
射するというものであったが、これに代えて、複数の元
手面を用いることも可能である。
(Second Embodiment) In the first embodiment, the object to be measured 10 is irradiated with a single base surface P, but instead of this, it is also possible to use a plurality of base surfaces. It is.

第11図及び第12図は、所要間隔を置いて互いに平行
な複数の元手面からなる多層光平面Qを用いて等高線図
を作成する実施例を示すものである。
FIGS. 11 and 12 show an embodiment in which a contour map is created using a multilayer optical plane Q consisting of a plurality of mutually parallel original planes at required intervals.

当該実施例において、多層光平面Qを形成する多層光平
面照射装置11は、光源12と、該光R12から投射さ
れる光線を所要間隔をおいて平行な複数の光線に分割す
る光線分割器18と、複数の光線それぞれを平面状に拡
散する拡散器13と、反射鏡16とからなっている。こ
の場合、所望により、各光平面層Ql−06相互の間隔
を調節できるようにしてもよい。また、この実施例では
、拡散器13として柱状の平凸レンズを使用しである。
In this embodiment, the multilayer light plane irradiation device 11 forming the multilayer light plane Q includes a light source 12 and a light beam splitter 18 that splits the light beam projected from the light R12 into a plurality of parallel light beams at required intervals. , a diffuser 13 that diffuses each of the plurality of light rays in a planar shape, and a reflecting mirror 16. In this case, the distance between the optical plane layers Ql-06 may be adjusted as desired. Further, in this embodiment, a columnar plano-convex lens is used as the diffuser 13.

さらに、光平面層を選択的に被測定物10へ照射できる
ようにすると至便である。
Furthermore, it is convenient if the optical plane layer can be selectively irradiated onto the object 10 to be measured.

次に、上記多層光平面照射装置11を用いた等高線図の
作成要領を説明する。
Next, a procedure for creating a contour map using the multilayer optical plane irradiation device 11 will be explained.

撮像装面7の焦点深度が充分に深く、且つ多層元手面Q
から描像装置7までの距離が充分にある場合には、所定
位置に保持した被測定物10に多層光平面Qを照射し、
各光平面層Q1〜06と被測定物10との各交差部T1
〜T6を、多層光平面Qに対して光軸りを垂直に保持し
た墨像装置7で撮像すればよい。この場合、−度の撮像
で、目的とする等高線図を得ることができる。
The depth of focus of the imaging device surface 7 is sufficiently deep, and the multilayer original surface Q
If there is a sufficient distance from
Each intersection T1 between each optical plane layer Q1 to 06 and the object to be measured 10
~T6 may be imaged by the ink image device 7 whose optical axis is held perpendicular to the multilayer optical plane Q. In this case, the desired contour map can be obtained by imaging at -degrees.

それ以外の場合、例えば撮像装置7の焦点深度が浅いと
きには、全光平面層O1〜06に同時にピントを合わせ
るのが難しい。そこで光平面層01〜口6・を順番に被
測定物10へ照射し、形成される各交差部TI−T6に
その都度ピントを合わせて撮像を行う。
In other cases, for example, when the depth of focus of the imaging device 7 is shallow, it is difficult to focus on all the optical plane layers O1-06 at the same time. Therefore, the optical plane layer 01 to the opening 6 are sequentially irradiated onto the object to be measured 10, and each intersection TI-T6 that is formed is focused and imaged each time.

そして、得られた複数の画像を合成するか又は−枚のフ
ィルムに多重露光することにより、等高線図を得ること
ができる。
Then, a contour map can be obtained by composing the plurality of obtained images or by performing multiple exposure on two sheets of film.

さらに、多層光平面Qと撮像装置7との距離が短い場合
には、撮像装置7に近い光垂直13i Q 1と則れた
光平面層Ω6とで、得られる画像の縮倍率が大きく異な
る。そこで、通常は、等高線図を作成するにあたり、得
られた各画像に距離補正を施すことが必要である。しか
し、撮像装置7を、多層光平面Qに対して垂直方向に移
動させることができるときには、各光平面層(11−0
6からの距離が一定となるように撮像装置7を移動させ
て順次撮像を行えばよい。このようにすれば、得られる
画像の縮倍率が常に一定となるから、上記の距離補正は
不要となる。
Furthermore, when the distance between the multilayer optical plane Q and the imaging device 7 is short, the magnification of the obtained image differs greatly between the optical vertical 13i Q 1 near the imaging device 7 and the normal optical plane layer Ω6. Therefore, when creating a contour map, it is usually necessary to perform distance correction on each obtained image. However, when the imaging device 7 can be moved in the direction perpendicular to the multilayer optical plane Q, each optical plane layer (11-0
The image capturing device 7 may be moved so that the distance from the image capturing device 6 is constant, and images may be captured sequentially. If this is done, the magnification of the obtained image will always be constant, so the distance correction described above will not be necessary.

(第三実施例) 本発明に係る測定装置は、等高線図を作成するためばか
りでなく、極座標方式又は球座標方式の輪!1−線図を
得る場合にも通用される。これを、第13図を用いて説
明する。
(Third Embodiment) The measuring device according to the present invention can be used not only for creating contour maps, but also for polar coordinate system or spherical coordinate system. It is also applicable when obtaining a 1-line diagram. This will be explained using FIG. 13.

同図に示す測定装置において、前述の実施例と大きく異
なるところは、被測定物10を光垂直Rと平行な軸の回
りに所要角度ずつ回転させるように構成されていること
である6図示した測定装置の基本的構成は前記実施例と
同様である。但し、被測定物10を保持すると共に所要
角度ずつ回転させる回転保持装置25が用いられ、光平
面照射装置1は被測定物10の鉛直上方に配置され、こ
れによって形成される光垂直Rに対して光軸りが垂直と
なるように撮像装置7が設置されている。そして、回転
1y持装置25の回転軸は、光垂直Rと平行になされて
いる。
The measuring device shown in the same figure differs greatly from the previous embodiment in that it is configured to rotate the object to be measured 10 by a required angle around an axis parallel to the light perpendicular R. The basic configuration of the measuring device is the same as that of the previous embodiment. However, a rotation holding device 25 is used that holds the object to be measured 10 and rotates it by a required angle, and the optical plane irradiation device 1 is placed vertically above the object to be measured 10, so that the light perpendicular R formed thereby is The imaging device 7 is installed so that its optical axis is vertical. The rotation axis of the rotation 1y holding device 25 is parallel to the light perpendicular R.

このように構成された測定装置により、被測定物lOに
光垂直Rを照射し、被測定物10を所要角度ずつ段階的
に回転させながら、光垂直Rとの交差部Uを撮像装置7
で順次撮像する。これにより、回転角度に対応した輪郭
線の画像が得られる。即ち、被測定物10の立体形状に
関する極座標方式で表された情報を得ることができる。
Using the measuring device configured in this manner, the object to be measured 10 is irradiated with the vertical light R, and while the object to be measured 10 is rotated step by step by a required angle, the intersection U with the vertical light R is detected by the imaging device 7.
images in sequence. As a result, an image of the contour line corresponding to the rotation angle is obtained. That is, information regarding the three-dimensional shape of the object to be measured 10 expressed in polar coordinates can be obtained.

(第四実施例) 第14図に例示する如く、被測定物10の表面にくびれ
20が有るために、撮像装置7の光軸りが被測定物lO
のほぼ中心を通るような位置からは、光垂直Pと被測定
物10との交差部Sを撮像することができないことがあ
る。そのような場合には、次のようにして等高線図等を
作成する。
(Fourth Example) As illustrated in FIG. 14, since there is a constriction 20 on the surface of the object to be measured 10, the optical axis of the imaging device 7 is
It may not be possible to image the intersection S of the light vertical P and the object to be measured 10 from a position where the light passes approximately through the center of the object 10 . In such a case, create a contour map etc. as follows.

まず撮像装置7を、光軸りを光垂直Pに対して垂直に保
ちつつ、光垂直Pから一定の距離にある平行な仮想乎面
M上を適当距離だけ移動させ、前記交差部Sを撮像でき
る位置を見いだす。このとき得られる画像gは、元の位
置における画像Gと合同である。その理由を以下に説明
する0図面において、交差部Sを線分AB、画@Gを線
分8F画像gを線分e〔で表し、AFとBEとが平面M
上で交わる点をり、AfとBeとが平面M上で交わる点
をdとする。但し、画1jJG、gはいずれも、光垂直
Pに対して平行な仮想平面N上にある。図面から容易に
わかるように、△DABとへDFEとは相似であり、△
dABと△dfeもまた相似である。ところで、それぞ
れの相似比は、いずれも各三角形の高さの比、つまり光
垂直Pと平面Mとの距離I(に対する平面Mと平面Nと
の距1hの比であるから、互いに等しい。故に、線分A
Bに共1JIlシて対応する線分FBと線分「eの長さ
は等しくなる。従って、撮像装置7が平面M上を平行移
動する限りは、ilられる画像はすべて合同である。
First, while keeping the optical axis perpendicular to the light perpendicular P, the imaging device 7 is moved by an appropriate distance on a parallel virtual plane M located at a certain distance from the light perpendicular P, and the intersection S is imaged. Find a possible position. The image g obtained at this time is congruent with the image G at the original position. The reason for this will be explained below.In the drawing, the intersection S is represented by a line segment AB, the image @G is represented by a line segment 8F, the image g is represented by a line e[, and AF and BE are represented by a plane M
Let the point where Af and Be intersect on the plane M be d. However, the images 1jJG and g are both on a virtual plane N parallel to the light perpendicular P. As can be easily seen from the drawing, △DAB and HeDFE are similar, and △
dAB and Δdfe are also similar. By the way, the respective similarity ratios are equal to each other because they are the ratio of the height of each triangle, that is, the ratio of the distance 1h between the plane M and the plane N to the distance I (between the light perpendicular P and the plane M). , line segment A
The lengths of the corresponding line segment FB and the line segment "e" are equal to each other. Therefore, as long as the imaging device 7 moves in parallel on the plane M, the captured images are all congruent.

(IIL、撮像装置7を平行移動させたときの画像gの
結像位置は、もとの画@!Gの位置とは異なる。
(IIL, the imaging position of image g when the imaging device 7 is translated in parallel is different from the position of the original image @!G.

そこで、撮像装W7に蛇腹機構8を設け、光学レンズ7
aとフィルム、 CCO素子等のl!像面7bとを相対
移動できるように構成する。こうずれば、撮像面7bに
おける結像位置を一定に保つことができる。
Therefore, a bellows mechanism 8 is provided in the imaging device W7, and the optical lens 7
a, film, CCO element, etc. l! It is configured to be able to move relative to the image plane 7b. With this shift, the imaging position on the imaging surface 7b can be kept constant.

また実際に撮像し得る画像は、交差部Sのうちの一部で
ある。そこで、撮像装置7を、平面M上において光垂直
Pに垂直な軸の回りを適当角度ずつ周回させなから描像
を行い、得られた複数枚の画像を合成すれば目的の等高
線図を得ることができる。
Further, the image that can actually be captured is a part of the intersection S. Therefore, by rotating the imaging device 7 at appropriate angles around an axis perpendicular to the light vertical P on the plane M, and by composing the plurality of images obtained, the desired contour map can be obtained. Can be done.

なお116像装置7を周回させるのに代え、描像装置7
を平面M上で適当距離だけ平行移動させたのち、被測定
物lOを光平面Pに垂直な軸の回りに適当角度ずつ回転
さセながら撮像することにより、等高線図を作成しても
よい。
Note that instead of rotating the 116 image device 7, the image device 7
A contour map may be created by translating the object lO by an appropriate distance on the plane M, and then imaging the object lO while rotating it by an appropriate angle around an axis perpendicular to the optical plane P.

本発明の実施例は、以上のものに限定されるものではな
く、実施のf!様に応じて適宜変更することが可能であ
る。
The embodiments of the present invention are not limited to the above, and the embodiments of the present invention are not limited to the above embodiments. It is possible to change it as appropriate depending on the situation.

(発明の効果) 本発明に係る立体形状測定装置は、構成が簡単であるか
ら、安価に提供することができる。そして、その操作が
非常に容易であるから、本発明に係る立体形状測定方法
を用いれば、等高線図や極座標方式の輪郭線図等を、熟
練を要することなく迅速に作成することができる。
(Effects of the Invention) Since the three-dimensional shape measuring device according to the present invention has a simple configuration, it can be provided at low cost. Since the operation is very easy, by using the three-dimensional shape measuring method according to the present invention, contour maps, polar coordinate contour maps, etc. can be quickly created without requiring any skill.

要するに、本発明は、立体物の形状測定を容易且つ確実
に行える実用性に冨んだ手段を提供するものである。
In short, the present invention provides highly practical means for easily and reliably measuring the shape of a three-dimensional object.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はいずれも本発明に係るものであって、第1図乃至
第3図は第−実施例を示す斜視図、平面図、 1ll1
面図、第4図及び第5図は反射鏡の実施例を示す斜視図
、第6図fat及び(b)は反射鏡のその他の実施例を
示す斜視図及び平面図、第7図乃至第1θ図は反射鏡の
配置例を示す平面図である。第11図及び第12図は第
二実施例を示す斜視図及び側面図、第13図は第三実施
例を示す斜視図、第14図は第四実施例を示す側面図で
ある。 P・光平面 Q−多層光平面 Ql−02−・−光平面
層R−・光平面 S−交差部 T (Tl〜T6)・−
交差部U−交差部 L−光軸 l−先手面照射装置 2−光源 3・−拡散器4−スリ
ット 5−保持装置 6−反射鏡7−・撮像装置 l〇
−被測定物 11−一多層光平面照射装置 12−・光m  13−
・拡散器14・−スリット 16−反射i1 1B−光
線分割器25一回転保持装置 特許出願人 鐘淵化学工業株式会社 出願代理人  弁理士 内 田敏彦 ・−一 区 一一−ノ 第 図(b) 第10図
The drawings are all related to the present invention, and FIGS. 1 to 3 are a perspective view and a plan view showing the first embodiment.
4 and 5 are perspective views showing an embodiment of the reflecting mirror, FIGS. 6 and 6(b) are perspective views and plan views showing other embodiments of the reflecting mirror, and The 1θ diagram is a plan view showing an example of arrangement of reflecting mirrors. 11 and 12 are a perspective view and a side view showing the second embodiment, FIG. 13 is a perspective view showing the third embodiment, and FIG. 14 is a side view showing the fourth embodiment. P-Optical plane Q-Multilayer optical plane Ql-02-・-Optical plane layer R-・Optical plane S-Intersection T (Tl~T6)・-
Intersection U - Intersection L - Optical axis l - Front surface irradiation device 2 - Light source 3 - Diffuser 4 - Slit 5 - Holding device 6 - Reflector 7 - Imaging device l〇 - Object to be measured 11 - One Layered light plane irradiation device 12-・Light m 13-
- Diffuser 14 - Slit 16 - Reflection i1 1B - Light beam splitter 25 - One rotation holding device Patent applicant Kanebuchi Chemical Industry Co., Ltd. Application agent Patent attorney Toshihiko Uchida - 1st ward 11th figure (b ) Figure 10

Claims (1)

【特許請求の範囲】 1、被測定物を保持する保持装置と、被測定物の全周に
光平面を照射する光平面照射装置と、光軸が前記光平面
照射装置の形成する光平面に垂直で且つ該光平面から所
定距離を置いて設置された撮像装置と、被測定物に対す
る前記光平面の照射位置を前記光平面に対して垂直な方
向に所要距離ずつ変更する照射位置変更手段とからなる
ことを特徴とする立体形状測定装置。 2、被測定物を保持する保持装置と、被測定物の全周に
所要間隔を置いて互いに平行に形成された複数の光平面
を照射する多層光平面照射装置と、光軸が多層光平面照
射装置により形成される多層光平面に垂直で且つ該多層
光平面から所定距離を置いて設置された撮像装置とから
なることを特徴とする立体形状測定装置。 3、被測定物を保持すると共に所要角度ずつ回転させる
ことが可能な回転保持装置と、被測定物の回転軸に平行
な光平面を被測定物の全周に照射する光平面照射装置と
、光軸が前記光平面照射装置により形成される光平面に
垂直で且つ該光平面から所定距離を置いて設置される撮
像装置とからなることを特徴とする立体形状測定装置。 4、、記光平面照射装置は、一個の光源と、該光源から
投射される光線を平面状に拡散する拡散器と、反射鏡と
からなる請求項第1項又は第3項に記載の立体形状測定
装置。 5、前記多層光平面照射装置は、一個の光源と、該光源
から投射される光線を複数の平行光線に分割する光線分
割器と、前記複数光線それぞれを平面状に拡散する拡散
器と、反射鏡とからなる請求項第2項に記載の立体形状
測定装置。 6、、前記撮像装置は、光平面照射装置により形成され
る光平面又は多層光平面照射装置により形成される多層
光平面に対して光軸を垂直に保ちつつ、前記光平面又は
多層光平面と所定距離にあって平行な仮想平面上を移動
可能になされている請求項第1項乃至第5項のいずれか
一項に記載の立体形状測定装置。 7、被測定物を所定位置に保持し、単一平面をなす光平
面を被測定物の全周に照射し、光軸が前記光平面に垂直
で且つ前記光平面から所定距離を置いて設置された撮像
装置で被測定物を撮像した後、被測定物を前記光平面に
対して垂直な方向へ所要距離ずつ段階的に移動させなが
ら前記撮像装置で順次被測定物の撮像を行うことを特徴
とする立体形状測定方法。 8、被測定物の位置を固定し、前記光平面と前記撮像装
置とを、両者の間隔を所定距離に保ちつつ、前記光平面
に対して垂直な方向へ所要距離ずつ段階的に移動させな
がら前記撮像装置で順次被測定物の撮像を行う請求項第
7項に記載の立体形状測定方法。 9、被測定物を所定位置に保持し、所要間隔を置いて互
いに平行に形成された多層光平面を被測定物の全周に照
射し、光軸が前記多層光平面に垂直で且つ前記多層光平
面から所定距離を置いて設置した撮像装置で被測定物を
撮像することを特徴とする立体形状測定方法。 10、被測定物を所定位置に保持し、光平面を被測定物
の全周に照射し、光軸が前記光平面に垂直で且つ前記光
平面から所定距離を置いて設置された撮像装置で被測定
物を撮像した後、被測定物を前記光平面と平行な軸を中
心にして所要角度ずつ段階的に回転させながら前記撮像
装置で順次被測定物の撮像を行うことを特徴とする立体
形状測定方法。 11、得られる複数の画像を一個の撮像面に多重露光す
る請求項第7項、第8項又は第10項のいずれか一項に
記載の立体形状測定方法。 12、前記撮像装置を、光軸を前記光平面又は多層光平
面に対して垂直に保ちつつ、前記光平面又は多層光平面
から所定距離にあって平行な仮想平面上を移動させて、
被測定物の撮像を行う請求項第7項乃至第11項のいず
れか一項に記載の立体形状測定方法。
[Scope of Claims] 1. A holding device that holds an object to be measured, a light plane irradiation device that irradiates a light plane to the entire circumference of the object to be measured, and an optical axis that is aligned with the light plane formed by the light plane irradiation device. an imaging device installed perpendicularly and at a predetermined distance from the optical plane; and an irradiation position changing means for changing the irradiation position of the optical plane onto the object to be measured by a required distance in a direction perpendicular to the optical plane. A three-dimensional shape measuring device comprising: 2. A holding device that holds the object to be measured, a multilayer optical plane irradiation device that irradiates a plurality of optical planes formed parallel to each other at required intervals around the entire circumference of the object to be measured, and a multilayer optical plane whose optical axis is the multilayer optical plane. A three-dimensional shape measuring device comprising: an imaging device installed perpendicular to a multilayer light plane formed by an irradiation device and at a predetermined distance from the multilayer light plane. 3. A rotation holding device that can hold the object to be measured and rotate it by a required angle, and a light plane irradiation device that irradiates the entire circumference of the object with a light plane parallel to the rotation axis of the object to be measured; A three-dimensional shape measuring device comprising: an imaging device whose optical axis is perpendicular to the optical plane formed by the optical plane irradiation device and installed at a predetermined distance from the optical plane. 4. The three-dimensional device according to claim 1 or 3, wherein the light plane irradiation device comprises one light source, a diffuser that diffuses the light beam projected from the light source in a planar shape, and a reflecting mirror. Shape measuring device. 5. The multilayer light plane irradiation device includes a light source, a light beam splitter that divides the light beam projected from the light source into a plurality of parallel light beams, a diffuser that diffuses each of the plurality of light beams into a planar shape, and a reflector. 3. The three-dimensional shape measuring device according to claim 2, comprising a mirror. 6. The imaging device is configured to maintain the optical axis perpendicular to the optical plane formed by the optical plane irradiation device or the multilayer optical plane formed by the multilayer optical plane irradiation device, and to The three-dimensional shape measuring device according to any one of claims 1 to 5, wherein the three-dimensional shape measuring device is movable on a parallel virtual plane at a predetermined distance. 7. Hold the object to be measured in a predetermined position, irradiate the entire circumference of the object with a single plane of light, and set the optical axis perpendicular to the optical plane and at a predetermined distance from the optical plane. After the object to be measured is imaged by the image pickup device, the object to be measured is moved stepwise by a required distance in a direction perpendicular to the optical plane, and images of the object are sequentially taken by the image pickup device. Characteristic three-dimensional shape measurement method. 8. Fixing the position of the object to be measured, and moving the optical plane and the imaging device step by step by a required distance in a direction perpendicular to the optical plane while maintaining a predetermined distance between the two; 8. The three-dimensional shape measuring method according to claim 7, wherein the image capturing device sequentially captures images of the object to be measured. 9. Hold the object to be measured in a predetermined position, and irradiate the entire circumference of the object with multilayer optical planes formed parallel to each other at required intervals, so that the optical axis is perpendicular to the multilayer optical plane and the multilayer A three-dimensional shape measuring method characterized by capturing an image of an object to be measured with an imaging device installed at a predetermined distance from an optical plane. 10. An imaging device that holds the object to be measured in a predetermined position, irradiates the entire circumference of the object with an optical plane, and has an optical axis perpendicular to the optical plane and installed at a predetermined distance from the optical plane. After taking an image of the object to be measured, the object to be measured is sequentially imaged by the imaging device while rotating the object stepwise by a required angle around an axis parallel to the optical plane. Shape measurement method. 11. The three-dimensional shape measuring method according to any one of claims 7, 8, and 10, wherein a plurality of obtained images are multiple-exposed on one imaging surface. 12. Moving the imaging device on a virtual plane parallel to and at a predetermined distance from the optical plane or multilayer optical plane while keeping the optical axis perpendicular to the optical plane or multilayer optical plane,
The three-dimensional shape measuring method according to any one of claims 7 to 11, wherein an image of the object to be measured is taken.
JP1038881A 1989-02-17 1989-02-17 Three-dimensional shape measuring device and measuring method Expired - Lifetime JPH07117384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1038881A JPH07117384B2 (en) 1989-02-17 1989-02-17 Three-dimensional shape measuring device and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1038881A JPH07117384B2 (en) 1989-02-17 1989-02-17 Three-dimensional shape measuring device and measuring method

Publications (2)

Publication Number Publication Date
JPH02216406A true JPH02216406A (en) 1990-08-29
JPH07117384B2 JPH07117384B2 (en) 1995-12-18

Family

ID=12537554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1038881A Expired - Lifetime JPH07117384B2 (en) 1989-02-17 1989-02-17 Three-dimensional shape measuring device and measuring method

Country Status (1)

Country Link
JP (1) JPH07117384B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005189204A (en) * 2003-12-26 2005-07-14 Fuji Xerox Co Ltd Three-dimensional shape measuring instrument and method
JP2008164572A (en) * 2007-01-05 2008-07-17 Nikon Corp Measurement device and measurement method
CN104390598A (en) * 2013-12-30 2015-03-04 北京中天荣泰科技发展有限公司 A method for measuring straight lines in different planes based on machine vision
JP2017040505A (en) * 2015-08-18 2017-02-23 ブラザー工業株式会社 Three-dimensional object reading system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118399A (en) * 1983-12-01 1985-06-25 Kawasaki Heavy Ind Ltd Method and device for forming object having the same shape as shape of target object from target object
JPS6298204A (en) * 1985-10-25 1987-05-07 Omron Tateisi Electronics Co Recognizing method for object

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118399A (en) * 1983-12-01 1985-06-25 Kawasaki Heavy Ind Ltd Method and device for forming object having the same shape as shape of target object from target object
JPS6298204A (en) * 1985-10-25 1987-05-07 Omron Tateisi Electronics Co Recognizing method for object

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005189204A (en) * 2003-12-26 2005-07-14 Fuji Xerox Co Ltd Three-dimensional shape measuring instrument and method
JP2008164572A (en) * 2007-01-05 2008-07-17 Nikon Corp Measurement device and measurement method
CN104390598A (en) * 2013-12-30 2015-03-04 北京中天荣泰科技发展有限公司 A method for measuring straight lines in different planes based on machine vision
JP2017040505A (en) * 2015-08-18 2017-02-23 ブラザー工業株式会社 Three-dimensional object reading system

Also Published As

Publication number Publication date
JPH07117384B2 (en) 1995-12-18

Similar Documents

Publication Publication Date Title
KR20010005974A (en) Microscopy imaging apparatus and method
JP2001512237A5 (en)
JPH07509782A (en) Validation method for optical distance measurement of target surfaces in turbulent environments
US6909513B1 (en) Shape measuring device
JP2000509842A (en) Polarizer for multiaxial inspection in microscope
CN105758381A (en) Method for detecting inclination of camera die set based on frequency spectrum analysis
US4932781A (en) Gap measuring apparatus using interference fringes of reflected light
JP2005147715A (en) Light wave interference measuring method for winding surface, and interferometer device for winding surface measurement
JPS597111B2 (en) Method and device for reproducing cross-sectional images of three-dimensional objects
JPH02216406A (en) Device and instrument for measuring solid shape
JPH0375846B2 (en)
KR101722495B1 (en) Confocal surface profiler and measuring method using the same
JPH095046A (en) Three-dimensional shape measuring apparatus
JP3574044B2 (en) Shape measuring device
JP2006308452A (en) Method and apparatus for measuring three-dimensional shape
JP4934274B2 (en) Coordinated polarization for glossy surface measurement
JPH10176906A (en) Measuring device
Altschuler et al. Laser electro-optic system for three-dimensional (3D) topographic mensuration
JP2504944B2 (en) Three-dimensional information processing method
JP3299144B2 (en) Position detecting apparatus and position detecting method applied to proximity exposure
JP3333759B2 (en) Measuring method and setting method of distance between mask and wafer
JP3265546B2 (en) Position detection method and apparatus applied to proximity exposure
JPH1138298A (en) Method for adjusting optical system
JPH0643893B2 (en) Distance measuring device
JP2597711B2 (en) 3D position measuring device