JPH02211974A - Method for purifying molten metal by reduction of pressure - Google Patents

Method for purifying molten metal by reduction of pressure

Info

Publication number
JPH02211974A
JPH02211974A JP1031105A JP3110589A JPH02211974A JP H02211974 A JPH02211974 A JP H02211974A JP 1031105 A JP1031105 A JP 1031105A JP 3110589 A JP3110589 A JP 3110589A JP H02211974 A JPH02211974 A JP H02211974A
Authority
JP
Japan
Prior art keywords
molten metal
bath
gas
pressure
bubbling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1031105A
Other languages
Japanese (ja)
Inventor
Toshio Ishii
俊夫 石井
Yoshiteru Kikuchi
良輝 菊地
Eiju Matsuno
英寿 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP63009675A priority Critical patent/JPH01188619A/en
Priority to AU28482/89A priority patent/AU601893B2/en
Priority to BR898900249A priority patent/BR8900249A/en
Priority to EP89100866A priority patent/EP0325242A3/en
Priority to KR1019890000602A priority patent/KR930005067B1/en
Priority to CA000588802A priority patent/CA1338397C/en
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP1031105A priority patent/JPH02211974A/en
Priority to CA000614559A priority patent/CA1339703C/en
Priority to AU42457/89A priority patent/AU4245789A/en
Priority to EP89118517A priority patent/EP0362851B1/en
Priority to DE8989118517T priority patent/DE68905741T2/en
Priority to BR898905068A priority patent/BR8905068A/en
Priority to KR1019890014420A priority patent/KR920006578B1/en
Priority to US07/516,478 priority patent/US5091000A/en
Publication of JPH02211974A publication Critical patent/JPH02211974A/en
Priority to AU13976/92A priority patent/AU655245B2/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

PURPOSE:To fully degas at the bath bottom part at a small power load by inverting the bath storing molten metal while pressure is reduced and moving the molten metal at the bath bottom part to the bath side. CONSTITUTION:Soluble gas (N2) is dissolved from a gas inlet 11 into molten metal X in the bath 1 in a condition below an atmospheric pressure. Thereafter, pressure is reduced quickly to generate fine gaseous bubbles and the residual bubbling gas is degassed. Suspending inclusions in the molten metal X trapped by these bubbles are removed after they float off to purify the molten metal. For that purpose, the bath 1 storing the molten metal X under a reduced pressure is inverted to move the molten metal X at the bath bottom part to the bath side. Consequently, the amount of generation of fine gas bubbles from the bath bottom part can be increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、溶融金属中に浮遊する介在物を除去する溶
融金属の減圧清浄化方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for vacuum cleaning molten metal for removing inclusions floating in the molten metal.

〔従来の技術〕[Conventional technology]

溶融金属中に浮遊する介在物(例えば溶鋼中のアルミナ
系介在物)は、製品品質欠陥の原因となるため、その低
減・除去方法が種々提案されている。
Inclusions floating in molten metal (for example, alumina inclusions in molten steel) cause product quality defects, and various methods have been proposed to reduce and remove them.

本発明者等は、高級材製造を目的とした場合、溶銅中の
トータル酸素量は15ppm以下に抑える必要があると
の要請に鑑み、次のような提案を行なった。即ち、加圧
状態にした溶融金属を、それに可溶なガスでバブリング
して該溶融金属中にガスを溶解せしめ、その後急速に減
圧して溶融金属中に微細ガス気泡を発生させるというも
のである。この方法によれば溶融金属中の通常の介在物
は最初のバブリングでそのガス気泡にトラップされ浮上
せしめられることになる。
The present inventors made the following proposal in view of the requirement that the total amount of oxygen in molten copper should be suppressed to 15 ppm or less for the purpose of producing high-grade materials. That is, pressurized molten metal is bubbled with soluble gas to dissolve the gas in the molten metal, and then the pressure is rapidly reduced to generate fine gas bubbles in the molten metal. . According to this method, normal inclusions in the molten metal are trapped in the gas bubbles and floated to the surface during the initial bubbling.

他方、このバブリングは加圧した溶融金属に対して行な
われるため、バブリングガスが多量に溶融金属中に溶け
込むことになる。その後の急速な減圧で、溶融金属中に
溶け込んでいたガスが微細なガス気泡となって溶融金属
全域から発生する。この時、微細な介在物は該ガス気泡
にトラップされて浮上する。
On the other hand, since this bubbling is performed on pressurized molten metal, a large amount of bubbling gas dissolves into the molten metal. Due to the subsequent rapid depressurization, the gas dissolved in the molten metal becomes fine gas bubbles and is generated from the entire area of the molten metal. At this time, fine inclusions are trapped by the gas bubbles and float up.

このように溶融金属中の介在物を除去するには、極めて
効率の良い優れた方法ではあるが。
Although this is an excellent and extremely efficient method for removing inclusions from molten metal.

溶融金属中に前記バブリングガスが多量に残っているた
め、当該処理終了後頁に脱ガスを行なう必要があった。
Since a large amount of the bubbling gas remained in the molten metal, it was necessary to degas it after the completion of the process.

そこで本発明者等は、上記方法のうちバブリングガスが
溶け残る原因となっていたバブリング時の溶融金属の加
圧処理を止め、大気圧以下で該バブリングを行ない、そ
の後に減圧処理を行なう新たな溶融金属の清浄化方法を
提案した。
Therefore, among the above methods, the present inventors stopped the pressure treatment of the molten metal during bubbling, which caused the bubbling gas to remain undissolved, and developed a new method in which the bubbling is performed below atmospheric pressure, and then the depressurization treatment is performed. A method for cleaning molten metal was proposed.

この改良型の方法では減圧処理によって微細ガス気泡が
発生せしめられるだけでなく、溶融金属中の脱ガスも一
緒に行なわれることになる。
In this improved method, the vacuum treatment not only generates fine gas bubbles, but also degasses the molten metal.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、溶融金属浴の浴深が深い程、溶融金属に静圧が
掛かるため、上記のような減圧処理方法では減圧時に浴
深部における脱ガスを行なうことが難しくなる。特に浴
深が1.5m以上となるとその傾向は強いようである。
However, the deeper the bath depth of the molten metal bath, the more static pressure is applied to the molten metal. Therefore, with the above-described pressure reduction treatment method, it becomes difficult to degas the deep part of the bath when the pressure is reduced. This tendency seems to be particularly strong when the bath depth is 1.5 m or more.

これに対し、浴深部の脱ガスに有効な手段としては、溶
融金属中に不活性ガスをバブリングせしめて該溶融金属
を撹拌しながら急速に減圧するという方法もあるが、不
活性ガスの投入に際し真空状態に保つ必要があるため、
真空ポンプ等に掛かる動力負荷が非常に大きくなるとい
う欠点を有している。
On the other hand, an effective method for degassing the deep part of the bath is to bubble inert gas into the molten metal and rapidly reduce the pressure while stirring the molten metal. Because it is necessary to maintain a vacuum state,
This has the disadvantage that the power load placed on the vacuum pump etc. is extremely large.

本発明は以上のような問題に鑑み創案されたもので、少
ない動力負荷で浴深部にある溶融金属の脱ガスが効率的
に行なうことのできる溶融金属の減圧清浄化方法を提供
せんとするものである。
The present invention was devised in view of the above-mentioned problems, and it is an object of the present invention to provide a vacuum cleaning method for molten metal that can efficiently degas the molten metal deep in the bath with a small power load. It is.

〔問題点を解決するための手段〕[Means for solving problems]

そのため第1発明は、上述のような溶融金属の減圧清浄
化方法を実施するに当り、減圧中に溶融金属を収容して
いる容器を反転させて、浴深部にあった溶融金属を浴面
側に移すことを基本的特徴としている。
Therefore, in carrying out the vacuum cleaning method for molten metal as described above, the first invention is to invert the container containing the molten metal during depressurization to remove the molten metal from the deep part of the bath to the bath surface. The basic feature is that it can be transferred to

又、第2発明は、同じく溶融金属の減圧清浄化方法を実
施するに当り、減圧中に容器内に収容されている溶融金
属の浴深を浅くすることを特徴としている。この発明で
浴深を浅くするとは、例えば容器の側壁を水平方向にス
ライドさせて内容積を拡大せしめることにより、そこに
収容されている溶融金属の浴深を浅くするような場合(
その他該側壁の同方向のスライドと共に容器の上面・底
面を近づけて浴面面積の変化はあるが全体として内容積
の変化がない場合、或いは内容積が全体として減少する
ような場合等も別に考え得る)や、側壁によりパーティ
ションされていた容器の一方に溶融金属が入っており、
後にこの側壁を撤去することで浴深を浅くするような場
合、及び直方体のような容器を転倒せしめて内部に収容
された溶融金属の浴深を浅くするような場合等がある。
Further, the second invention is characterized in that, in carrying out the vacuum cleaning method for molten metal, the bath depth of the molten metal contained in the container is made shallow during the vacuum. In the present invention, the bath depth is made shallow when, for example, the side wall of the container is slid horizontally to expand the internal volume, thereby making the bath depth of the molten metal contained therein shallow (
In addition, cases in which the top and bottom surfaces of the container are brought closer together with sliding of the side wall in the same direction may cause a change in the bath surface area but no change in the internal volume as a whole, or cases in which the internal volume as a whole decreases are also considered separately. molten metal is contained in one side of the container, which was partitioned by a side wall.
There are cases where the bath depth is made shallower by later removing this side wall, and cases where a rectangular parallelepiped-like container is overturned to make the bath depth of the molten metal contained therein shallower.

〔作  用〕[For production]

上記2つの発明は、浴深の深い所にあった溶融金属を浅
い所に移動させるか又は浴深全体を浅くすることで、浴
深部の溶融金属に掛かっていた静圧を低くし、減圧時に
脱ガスが効率良く行なわれるようにするものである。
The above two inventions reduce the static pressure applied to the molten metal in the deep part of the bath by moving the molten metal from the deep part of the bath to a shallow part or by making the entire bath depth shallower. This is to ensure efficient degassing.

〔実施例〕〔Example〕

第1図は殻中央部の水平軸(10)を中心に反転可能な
容器(1)の−例を示している。該容器(1)は、径2
m、高さ3mの2つの取鍋状のものを。
FIG. 1 shows an example of a container (1) that is invertible about a horizontal axis (10) in the middle of the shell. The container (1) has a diameter of 2
m, two ladle-shaped objects 3 m high.

その開口部側で気密に接合せしめたものである。The opening side is airtightly joined.

そのうち1の取鍋状躯体(1b)側にはガス注入孔(1
1)が設けられ、又この容器(1)の中央接合部分の一
箇所に内部雰囲気抜出し孔(12)が設けられている。
There is a gas injection hole (1
1), and an internal atmosphere extraction hole (12) is provided at one location in the central joint portion of the container (1).

本実施例ではこのような容器(1)を用いて、以下の要
領で溶鋼の清浄化を行なった。
In this example, using such a container (1), molten steel was cleaned in the following manner.

容器(1)は最初二つ割りの状態に置かれていて、躯体
(1b)側に50ton溶鋼Xを入れ、その上方からも
う一方の躯体(1a)を重ねて気密に接合せしめる。そ
してガス注入孔(11)からN2ガスを100Q/Ia
inの流量で注入し、溶鋼X中にバブリングを開始する
。このバブリング中に容器(1)内が過加圧状態になら
ないようにするため、前記内部雰囲気抜出し孔(12)
から内部雰囲気の一部抜出しも同時に行なわれている。
The container (1) is initially placed in two halves, and 50 tons of molten steel X is poured into the main body (1b), and the other main body (1a) is stacked on top of it and joined airtightly. Then, inject N2 gas at 100Q/Ia from the gas injection hole (11).
Inject it at a flow rate of in and start bubbling into the molten steel X. In order to prevent the inside of the container (1) from becoming overpressurized during this bubbling, the internal atmosphere extraction hole (12) is provided.
At the same time, a portion of the internal atmosphere was also extracted.

20分経過後バブリングを止め、内部雰囲気抜出し孔(
12)から真空ポンプ(図示なし)を使ってその状態の
まま容器(1)内の真空引きを行ない、10−”Tor
rまで減圧する。この減圧状態でしばらく放置すると溶
aX中に溶けていたN2は微細ガス気泡となって発生し
、溶鋼X中の微細介在物等をトラップして浮上せしめる
After 20 minutes, stop bubbling and open the internal atmosphere extraction hole (
From 12) onwards, use a vacuum pump (not shown) to evacuate the inside of the container (1) to a 10-" Tor
Reduce the pressure to r. When left in this reduced pressure state for a while, the N2 dissolved in the molten aX is generated as fine gas bubbles, trapping fine inclusions in the molten steel X and causing them to float.

5分経過後、容器(1)を第2図(a)(b)に示すよ
うに左廻りに180°回転させ、再び真空引きする。こ
の回転で溶鋼Xはある程度撹拌されながら、それまで浴
深の深い所にあって静圧の掛かっていた部分が逆に浴深
の浅い位置に変わるため、そこに掛かる静圧が急激に低
くなり、真空引き後しばらく放置していると、微細ガス
気泡がその部分から多量に発生することになる。
After 5 minutes, the container (1) is rotated 180° counterclockwise as shown in FIGS. 2(a) and 2(b) and evacuated again. While the molten steel If it is left for a while after vacuuming, a large amount of fine gas bubbles will be generated from that part.

そうして5分間放置した後、今度は反対方向に180°
回転させ、再び第1図の状態に戻して真空引きする。こ
の場合においても溶鋼Xは再度撹拌され、又浴深さ方向
の位置の反転もあるため、同じくそれまで静圧の掛かっ
ていた部分が急激にその静圧から開放され、放置してい
ると溶鋼X中に残っていたN2ガスが微細ガス気泡とな
って現れた。この場合も真空引き後5分間放置した。
After leaving it for 5 minutes, turn it 180 degrees in the opposite direction.
Rotate it, return it to the state shown in Figure 1, and evacuate it. In this case as well, the molten steel The N2 gas remaining in X appeared as fine gas bubbles. In this case as well, it was left to stand for 5 minutes after being evacuated.

第3図は、本実施例における溶鋼Xのトータル酸素量の
変化を経時的に示している。同図によれば溶#IX中の
トータル酸素量は当初の80ρpa+から最終的に12
ppmまで減少せしめることができた。
FIG. 3 shows changes in the total oxygen content of molten steel X over time in this example. According to the same figure, the total amount of oxygen in the melt #IX was changed from the initial 80ρpa+ to the final 12
It was possible to reduce the amount to ppm.

第4図(a)(b)は前記実施例で使用した容器(1)
を用いて行なった第2発明の実施方法を示すものである
。この方法では、N2ガスバブリング後1回目の真空引
きを行なって5分間放置後、同図(b)に示すように左
廻り方向に90°容器(1)を回転せしめている。この
回転によって。
Figures 4(a) and 4(b) show the container (1) used in the above example.
This shows a method of carrying out the second invention using the following. In this method, after N2 gas bubbling, the first evacuation is performed, and after leaving the container for 5 minutes, the container (1) is rotated 90° counterclockwise as shown in FIG. 2(b). By this rotation.

溶鋼Xの浴面面積が拡大し、且つ全体の浴深も浅くなっ
た。その結果、それまで浴深部にあった溶鋼Xに静圧が
掛からなくなるため、その部分からも微細ガス気泡の発
生が活発になる。加えて浴面面積が増大したことに伴っ
て減圧効果が溶鋼X全体に及ぶため、上記微細ガス気泡
の発生がより一層活発化する。
The bath surface area of molten steel X has expanded, and the overall bath depth has also become shallower. As a result, static pressure is no longer applied to the molten steel X that had been in the deep part of the bath, and the generation of fine gas bubbles becomes active from that part as well. In addition, as the bath surface area increases, the decompression effect extends to the entire molten steel X, so that the generation of the fine gas bubbles becomes even more active.

第5図は、当該実施例における溶鋼Xのトータル酸素量
の変化を時間の経過と共に示すグラフ図である。この図
から溶鋼X中のトータル酸素量は当初の80ppmから
最終的に15ppmまで減少し、その効果の優れている
ことがわかる。又、容器(1)の回転を伴う前記実施例
において、該容器(1)を90°回転させた所で一時的
にその回転を止めれば、併せて本実施例を実施したこと
にもなる。
FIG. 5 is a graph showing changes in the total oxygen content of molten steel X over time in this example. From this figure, it can be seen that the total amount of oxygen in the molten steel X decreased from the initial 80 ppm to 15 ppm in the end, and the effect was excellent. Furthermore, in the above-mentioned embodiment involving rotation of the container (1), if the rotation of the container (1) is temporarily stopped at a point where the container (1) has been rotated by 90 degrees, this embodiment can also be implemented.

第6図(a)(b)は、第2発明方法の他の実施例を示
しており、ここでは3mX3mX8mの直方体状の容器
(2)が用いられている。又その内部には取外し可能な
3m X 2.3m X 0.5mの大きさのゲート(
3)が設置されており、内部を2部屋(2a) (2b
)に分けている。更に容器(2)の天井には内部雰囲気
抜出し孔(22)が、又前記部m(2a)側の容器(2
)底面にはガス注入孔(21)が、及び部屋(2b)側
の同じく容器(2)底面には溶鋼流出口(23)が夫々
穿設されている。
FIGS. 6(a) and 6(b) show another embodiment of the second invention method, in which a rectangular parallelepiped container (2) measuring 3 m x 3 m x 8 m is used. There is also a removable gate (3m x 2.3m x 0.5m) inside.
3) has been installed, and the interior is divided into two rooms (2a) (2b
). Furthermore, there is an internal atmosphere extraction hole (22) in the ceiling of the container (2), and there is also an internal atmosphere extraction hole (22) in the ceiling of the container (2) on the side of the part m (2a).
) A gas injection hole (21) is provided on the bottom surface, and a molten steel outlet (23) is provided on the bottom surface of the container (2) on the side of the chamber (2b).

本実施例では、このような容器(2)を用いて。In this example, such a container (2) is used.

以下の要領で溶鋼の清浄化を実施した。Molten steel was cleaned in the following manner.

まずゲート(3)は容器(2)の左側面から2m離れた
位置に設置されており、これによって分けられた部屋(
2a)側に約90tonの溶鋼Xを入れる(溶@Xの占
める体積は3m X 2m X 2mで12m3となる
)、そしてガス注入孔(21)からN2ガスを1001
/sinの流量で注入し、溶rlX中にバブリングを開
始する(このバブリング中容器(2)内が過加圧状態に
ならないようにするため、前記抜出し孔(22)から内
部雰囲気の抜出しも同時に行なわれている)。20分後
バブリングを中止し、内部雰囲気抜出し孔(22)から
真空ポンプ(図示なし)を使ってその状態のまま容器(
2)内の真空引きを行ない、10−”Torrまで減圧
したところでゲート(3)を上方に持ち上げて外す。
First, the gate (3) is installed 2 meters away from the left side of the container (2), and the room (
2a) Pour approximately 90 tons of molten steel
/sin and starts bubbling into the molten rlX (in order to prevent the inside of the container (2) from becoming overpressurized during this bubbling, the internal atmosphere is also extracted from the extraction hole (22) at the same time. is being carried out). After 20 minutes, stop bubbling and use a vacuum pump (not shown) to drain the container (
2) Evacuate the inside and when the pressure is reduced to 10-'' Torr, lift the gate (3) upward and remove it.

すると該ゲートによって堰止められていた溶鋼Xは容器
(2)いっばいに広がる。この結果、当該2mあった溶
fllXの浴深は0.5mとなる。
Then, the molten steel X that had been dammed up by the gate spreads all the way into the container (2). As a result, the bath depth of the melt flIX, which was 2 m, becomes 0.5 m.

このように急激に浴深が浅くなり、且つ浴面面積も拡大
するため、微細ガス気泡が活発に発生した。そして前記
Is鋼滴流出口23)から溶鋼Xが排出され、15分後
には略全量が容器(2)から流出した。
As the bath depth suddenly became shallower and the bath surface area expanded, fine gas bubbles were actively generated. Then, the molten steel X was discharged from the Is steel droplet outlet 23), and approximately the entire amount flowed out of the container (2) after 15 minutes.

以上の溶鋼清浄化処理を行なった結果、当初トータル酸
素量80ppmの溶繞Xが12ppmに減り、その効果
の高いことが明らかとなった。
As a result of the above molten steel cleaning treatment, the initial total oxygen content of 80 ppm was reduced to 12 ppm, and it became clear that the treatment was highly effective.

〔発明の効果〕〔Effect of the invention〕

以上詳述した本発明法によれば、浴深の深い所にあった
溶融金属を浅い所に移動させるか又は浴深全体を浅くす
ることで、浴深部の溶融金属に掛かっていた静圧を低く
することができるため、小さい動力負荷で浴深部まで脱
ガスが十分になされることになる。特に減圧処理のみに
よって溶鋼の清浄化を行なおうとする時に浴深が深い場
合でも浴深部からの微細ガス気泡の発生量を多くするこ
とができ、その効果は大なるものがある。
According to the method of the present invention described in detail above, the static pressure applied to the molten metal in the deep part of the bath is reduced by moving the molten metal from the deep part of the bath to a shallow part or by making the entire bath depth shallow. Since it can be lowered, gas can be sufficiently degassed to the deep part of the bath with a small power load. In particular, even when the bath depth is deep when attempting to clean molten steel only by decompression treatment, it is possible to increase the amount of fine gas bubbles generated from the deep part of the bath, which has a great effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明法の実施例に用いられた容器の概略と所
定の操作を示す説明図、第2図(a)(b)は本実施例
の操作手順を示す説明図、第3図は本実施例において溶
鋼中のトータル酸素量が経時的にどのように変化したか
を示すグラフ図、第4図(a)(b)は前実施例で用い
られた容器と同一の容器を用いて行なわれた第2発明法
の一実施例の操作手順を示す説明図、第5図は本実施例
における溶鋼中のトータル酸素量の変化を示すグラフ図
、第6図(a) (b)は前2つの実施例とは異なる容
器を用いて行なわれた第2発明法に係る他の実施例の操
作手順を示す説明図である。 図中、(1)(2)は容器、(11)(21)はガス注
入孔、(12) (22)は内部雰囲気抜出し孔を各示
す。 第4図 s5F!jA 時 間  (刺
Fig. 1 is an explanatory diagram showing an outline of the container used in the embodiment of the method of the present invention and the prescribed operations, Fig. 2 (a) and (b) are explanatory diagrams showing the operating procedure of the present embodiment, and Fig. 3 are graphs showing how the total amount of oxygen in molten steel changed over time in this example, and Figures 4(a) and 4(b) are graphs showing how the total oxygen content in molten steel changed over time. An explanatory diagram showing the operating procedure of an embodiment of the second invention method carried out, FIG. 5 is a graph diagram showing changes in the total amount of oxygen in molten steel in this embodiment, and FIGS. 6(a) (b) FIG. 6 is an explanatory diagram showing the operating procedure of another example of the second invention method, which was carried out using a container different from the previous two examples. In the figure, (1) and (2) indicate a container, (11) and (21) indicate a gas injection hole, and (12) and (22) indicate an internal atmosphere extraction hole, respectively. Figure 4 s5F! jA time

Claims (2)

【特許請求の範囲】[Claims] (1)大気圧もしくはそれ以下の状態で溶融金属をそれ
に可溶なガスでバブリングして該溶融金属中にガスを溶
解せしめ、その後急速に減圧して溶融金属中に微細ガス
気泡を発生させると共に、この減圧で該溶融金属中に溶
け残っているバブリングガスの脱ガスを併せて行ない、
溶融金属中に浮遊する介在物をバブリングによるガス気
泡及び減圧により発生した微細ガス気泡にトラップせし
めて、浮上後これを除去する溶融金属の減圧清浄化方法
において、減圧中に溶融金属を収容している容器を反転
させて、浴深部にあった溶融金属を浴面側に移すことを
特徴とする溶融金属の減圧清浄化方法。
(1) Bubbling the molten metal with a gas soluble in it at atmospheric pressure or lower to dissolve the gas in the molten metal, and then rapidly reducing the pressure to generate fine gas bubbles in the molten metal. , At the same time, the bubbling gas remaining dissolved in the molten metal is degassed by this reduced pressure,
In a vacuum cleaning method for molten metal in which inclusions floating in molten metal are trapped in gas bubbles caused by bubbling and fine gas bubbles generated by depressurization and removed after floating, the molten metal is contained during depressurization. A vacuum cleaning method for molten metal, which is characterized by inverting the container in which the molten metal is placed and transferring the molten metal from the deep part of the bath to the surface of the bath.
(2)大気圧もしくはそれ以下の状態で溶融金属をそれ
に可溶なガスでバブリングして該溶融金属中にガスを溶
解せしめ、その後急速に減圧して溶融金属中に微細ガス
気泡を発生させると共に、この減圧で該溶融金属中に溶
け残っているバブリングガスの脱ガスを併せて行ない、
溶融金属中に浮遊する介在物をバブリングによるガス気
泡及び減圧により発生した微細ガス気泡にトラップせし
めて、浮上後これを除去する溶融金属の減圧清浄化方法
において、減圧中に容器内に収容されている溶融金属の
浴深を浅くすることを特徴とする溶融金属の減圧清浄化
方法。
(2) Bubbling the molten metal with a gas soluble in it at atmospheric pressure or lower to dissolve the gas in the molten metal, and then rapidly reducing the pressure to generate fine gas bubbles in the molten metal. , At the same time, the bubbling gas remaining dissolved in the molten metal is degassed by this reduced pressure,
In a vacuum cleaning method for molten metal in which inclusions floating in molten metal are trapped in gas bubbles caused by bubbling and fine gas bubbles generated by depressurization and removed after floating, inclusions contained in a container during depressurization are used. A vacuum cleaning method for molten metal characterized by reducing the bath depth of the molten metal.
JP1031105A 1987-12-25 1989-02-13 Method for purifying molten metal by reduction of pressure Pending JPH02211974A (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
JP63009675A JPH01188619A (en) 1988-01-21 1988-01-21 Method for rh vacuum degasification
AU28482/89A AU601893B2 (en) 1988-01-21 1989-01-13 Method for refining molten steel in a vacuum
BR898900249A BR8900249A (en) 1988-01-21 1989-01-19 PROCESS FOR REFINING CAST STEEL IN A VACUUM
EP89100866A EP0325242A3 (en) 1988-01-21 1989-01-19 Method for refining molten steel in a vacuum
KR1019890000602A KR930005067B1 (en) 1988-01-21 1989-01-20 Method for refining molten steel in a vacuum
CA000588802A CA1338397C (en) 1988-01-21 1989-01-20 Method for refining molten steel in a vacuum
JP1031105A JPH02211974A (en) 1988-01-21 1989-02-13 Method for purifying molten metal by reduction of pressure
CA000614559A CA1339703C (en) 1988-10-06 1989-09-29 Method for cleaning molten metal
AU42457/89A AU4245789A (en) 1988-10-06 1989-10-02 Method for cleaning molten metal
EP89118517A EP0362851B1 (en) 1988-10-06 1989-10-05 Method for cleaning molten metal
DE8989118517T DE68905741T2 (en) 1988-10-06 1989-10-05 METHOD FOR CLEANING METAL.
BR898905068A BR8905068A (en) 1988-10-06 1989-10-05 METAL FUSION CLEANING PROCESS
KR1019890014420A KR920006578B1 (en) 1988-10-06 1989-10-06 Method for cleaning molten metal and apparatus therefor
US07/516,478 US5091000A (en) 1987-12-25 1990-04-30 Method for cleaning molten metal and apparatus therefor
AU13976/92A AU655245B2 (en) 1988-10-06 1992-04-02 Method for cleaning molten metal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP63009675A JPH01188619A (en) 1988-01-21 1988-01-21 Method for rh vacuum degasification
JP1031105A JPH02211974A (en) 1988-01-21 1989-02-13 Method for purifying molten metal by reduction of pressure

Publications (1)

Publication Number Publication Date
JPH02211974A true JPH02211974A (en) 1990-08-23

Family

ID=39689269

Family Applications (2)

Application Number Title Priority Date Filing Date
JP63009675A Pending JPH01188619A (en) 1988-01-21 1988-01-21 Method for rh vacuum degasification
JP1031105A Pending JPH02211974A (en) 1987-12-25 1989-02-13 Method for purifying molten metal by reduction of pressure

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP63009675A Pending JPH01188619A (en) 1988-01-21 1988-01-21 Method for rh vacuum degasification

Country Status (6)

Country Link
EP (1) EP0325242A3 (en)
JP (2) JPH01188619A (en)
KR (1) KR930005067B1 (en)
AU (1) AU601893B2 (en)
BR (1) BR8900249A (en)
CA (1) CA1338397C (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077255A (en) * 1986-09-09 1991-12-31 Exxon Chemical Patents Inc. New supported polymerization catalyst
US5221326A (en) * 1990-05-17 1993-06-22 Kawasaki Steel Corporation Method of producing ultra-low-carbon steel
DE19856073A1 (en) * 1998-12-04 2000-06-15 Technometal Ges Fuer Metalltec Process for denitrifying molten steel
GB2410253B (en) * 2000-06-05 2005-09-14 Sanyo Special Steel Co Ltd High-cleanliness steel and process for producing the same
GB2381537B (en) * 2000-06-05 2005-09-14 Sanyo Special Steel Co Ltd High-cleanliness steel and process for producing the same
GB2406580B (en) * 2000-06-05 2005-09-07 Sanyo Special Steel Co Ltd High-cleanliness steel and process for producing the same
EP1568790A1 (en) * 2004-02-24 2005-08-31 Paul Wurth S.A. Apparatus for the treatment of liquid metal in a ladle
CN102296159B (en) * 2010-06-25 2013-05-01 鞍钢股份有限公司 Method for treating blockage of insertion tube
KR101881971B1 (en) * 2016-11-09 2018-08-24 주식회사 포스코 Casting apparatus and casging method using the same
CN113957203B (en) * 2021-12-21 2022-03-15 太原科技大学 Multifunctional non-centrosymmetric vacuum refining equipment

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE593968A (en) * 1959-08-14 1960-12-01 Heraeus Gmbh W C Improvements in degassing by circulation of metals, in particular steel
DE1222090B (en) * 1960-09-09 1966-08-04 Heraeus Gmbh W C Process for degassing molten steel
US3320053A (en) * 1964-09-25 1967-05-16 Bethlehem Steel Corp Method of injecting gases into steel melts
JPS6021207B2 (en) * 1981-05-26 1985-05-25 川崎製鉄株式会社 Manufacturing method of ultra-low carbon molten steel
JPS57200514A (en) * 1981-06-03 1982-12-08 Nippon Kokan Kk <Nkk> Method for degassing molten steel
JPS5837112A (en) * 1981-08-29 1983-03-04 Kawasaki Steel Corp Vacuum refining method of molten steel
JPS60184619A (en) * 1984-02-29 1985-09-20 Sumitomo Metal Ind Ltd Production of low-nitrogen steel
AU601602B2 (en) * 1987-06-29 1990-09-13 Kawasaki Steel Corporation Method and apparatus for degassing molten metal utilizing RH method
AU605949B2 (en) * 1987-12-25 1991-01-24 Nkk Corporation Method for cleaning molten metal and apparatus therefor

Also Published As

Publication number Publication date
EP0325242A2 (en) 1989-07-26
CA1338397C (en) 1996-06-18
EP0325242A3 (en) 1990-02-14
AU601893B2 (en) 1990-09-20
KR930005067B1 (en) 1993-06-15
AU2848289A (en) 1989-08-10
BR8900249A (en) 1989-09-19
JPH01188619A (en) 1989-07-27
KR890012009A (en) 1989-08-23

Similar Documents

Publication Publication Date Title
JPH02211974A (en) Method for purifying molten metal by reduction of pressure
JPH01127624A (en) Method and apparatus for refining molten metal by ultrasonic wave
KR920006578B1 (en) Method for cleaning molten metal and apparatus therefor
JP2712402B2 (en) Method for cleaning molten metal using closed container with variable inner volume
JP3654181B2 (en) Method for refining molten metal
JP2718097B2 (en) Vacuum cleaning method for molten metal using two-tiered container
JP3348988B2 (en) Cleaning method for molten steel in tundish
JPH0754034A (en) Production of ultralow carbon steel
KR930005065B1 (en) Method for cleaning molten metal and apparatus therefor
JPH05271748A (en) Vacuum degassing method
JPH0610028A (en) Production of ultralow carbon steel
JPH0299263A (en) Method for cleaning molten metal under reduced pressure
JPH05318027A (en) Casting method
JPS5873716A (en) Vacuum degassing method of molten steel
JPH0459915A (en) Method for degassing from molten metal
SU1736673A1 (en) Method of continuous ingot casting vertical and curvilinear installations
JPH055575B2 (en)
JPS5562117A (en) Dh vacuum degassing method for molten steel
RU2026367C1 (en) Method of injection of inert gas into metal jet through porous refractory insert at vacuum treatment
Hasegawa et al. Production of clean steel by pressure elevating and reducing method
JPH07185772A (en) Device for treating molten metal
JPH0317225A (en) Method for treating and refining of molten steel before continuous casting
JPH0742524B2 (en) Method for cleaning molten metal
JPH07179931A (en) Vacuum-refining method of molten steel having high decarburizing characteristic
JPH0317220A (en) Method for purifying molten metal