JPH02209985A - Method and composition for improving energy efficiency in heat pump system - Google Patents

Method and composition for improving energy efficiency in heat pump system

Info

Publication number
JPH02209985A
JPH02209985A JP1019357A JP1935789A JPH02209985A JP H02209985 A JPH02209985 A JP H02209985A JP 1019357 A JP1019357 A JP 1019357A JP 1935789 A JP1935789 A JP 1935789A JP H02209985 A JPH02209985 A JP H02209985A
Authority
JP
Japan
Prior art keywords
heat pump
polar compound
pump system
liquid
polar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1019357A
Other languages
Japanese (ja)
Inventor
Charles H T Wilkins
チャールズ エイチ.ティー.ウイルキンス
Jack Hammack
ジャック ハンマック
Charles B Thompson
チャールス ビー.トンプソン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wilkins T C
Original Assignee
Wilkins T C
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wilkins T C filed Critical Wilkins T C
Publication of JPH02209985A publication Critical patent/JPH02209985A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/50Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing halogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M131/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing halogen
    • C10M131/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing halogen containing carbon, hydrogen and halogen only
    • C10M131/04Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing halogen containing carbon, hydrogen and halogen only aliphatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • C10M101/02Petroleum fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/008Lubricant compositions compatible with refrigerants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/104Aromatic fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/104Aromatic fractions
    • C10M2203/1045Aromatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/106Naphthenic fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/106Naphthenic fractions
    • C10M2203/1065Naphthenic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/108Residual fractions, e.g. bright stocks
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/108Residual fractions, e.g. bright stocks
    • C10M2203/1085Residual fractions, e.g. bright stocks used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/02Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only
    • C10M2211/022Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only aliphatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/06Perfluorinated compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/32Wires, ropes or cables lubricants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/34Lubricating-sealants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/36Release agents or mold release agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/38Conveyors or chain belts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/40Generators or electric motors in oil or gas winning field
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/42Flashing oils or marking oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/44Super vacuum or supercritical use
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/50Medical uses

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Lubricants (AREA)

Abstract

PURPOSE: To improve the energy efficiency of a heat pump system such as a cooling unit or a heating and air-conditioning system by introducing a liq. polar compd. in operating a heat pump.
CONSTITUTION: In operating a heat pump such as a reciprocating or rotary compressor, a liq. polar compd., pref. comprising a liq. chlorinated α-olefin, a liq. chlorinated paraffin, etc., is introduced in an amt. of 0.1-10 vol.%, optimally about 1-2.5 vol.% (based on a lubricant). Moreover, a carrier system may be added in an amt. of 5% of the total lubricants.
COPYRIGHT: (C)1990,JPO

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は冷却ユニット、暖房および空調システム等を含
む、熱を一方から他方へとポンプ移動させる、いわゆる
ヒートポンプシステムのエネルギー効率の改善に関する
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to improving the energy efficiency of so-called heat pump systems, including refrigeration units, heating and air conditioning systems, etc., which pump heat from one side to another.

〈従来の技術〉 1970年代初期からヒートポンプ原理に基づいて作動
する加熱ユニット及び冷却ユニットのエネルギー効率を
改善する努力がたゆみなく続けられている。周知のよう
にヒートポンプは圧縮性液体がコンプレッサー中におい
て加圧され、またはバルブやオリフィス等により減圧さ
れる際にエネルギーが吸収されたり放出されたりする性
質によって機能するものである。一般に、これらのシス
テムは、圧力変化の結果生じる気相から液相への相変化
が熱輸送を行なうことによっている。このようなヒート
ポンプユニットは腐敗し易い物品等を冷蔵または凍結す
るだめの大規模商業設備や、大規模商業ビルおよび一般
家庭の環境調整に使用されている。これらのユニットの
エネルギー効率はコンプレッサーやモーターの設計変更
、その他の機械的、デザイン的改良によって大きく向上
してきている。コンプレッサーに関する問題として、こ
れを潤滑するための改良法が摩擦エネルギーを低減させ
るために開発されている一方、システムのエネルギー効
率を向上させるために新しいコンプレッサー設計も開発
されつつある。 しかしながら、ヒートポンプの技術分
野においては引き続きエネルギー効率の改善が求められ
ている。
BACKGROUND OF THE INVENTION Since the early 1970's there have been continuous efforts to improve the energy efficiency of heating and cooling units operating on the heat pump principle. As is well known, a heat pump functions by the property that energy is absorbed or released when a compressible liquid is pressurized in a compressor or depressurized by a valve, orifice, etc. Generally, these systems rely on the phase change from gas to liquid phase resulting from a pressure change to effect heat transport. Such heat pump units are used in large-scale commercial facilities for refrigerating or freezing perishable items, large-scale commercial buildings, and general household environments. The energy efficiency of these units has been greatly improved through compressor and motor design changes and other mechanical and design improvements. As for compressors, improved methods for lubricating them are being developed to reduce frictional energy, while new compressor designs are also being developed to improve the energy efficiency of the system. However, improvements in energy efficiency continue to be sought in the field of heat pump technology.

〈発明が解決しようとする課題〉 従って、本発明の目的はヒートポンプシステムのエネル
ギー効率を大幅に向上させうる組成物を提供する事であ
る。
<Problems to be Solved by the Invention> Therefore, an object of the present invention is to provide a composition that can significantly improve the energy efficiency of a heat pump system.

本発明の他の目的は空調ユニット右よび冷却ユニットの
両者において、それらのエネルギー効率を改善するのに
役立つ組成物を提供することである。
Another object of the present invention is to provide a composition that helps improve the energy efficiency of both air conditioning units and refrigeration units.

さらに、本発明はヒートポンプシステムのエネルギー効
率を改善する方法を提供する事も目的とする。
Furthermore, it is an object of the present invention to provide a method for improving the energy efficiency of a heat pump system.

く課題を解決するための手段〉 上記およびその他の本願発明の目的はヒートポンプシス
テムに、分子の一部が低電子密度状態であり他部が高電
子密度状態であるような極性サイトを有する化合物を含
有する。11I成物を導入する事によ、って達成される
。添加されるべき化合物として:まヒートポンプサイク
ルのどの段階においても′液状であるものだ選択される
Means for Solving the Problems> The above and other objects of the present invention are to provide a heat pump system with a compound having a polar site in which part of the molecule is in a low electron density state and the other part is in a high electron density state. contains. This is achieved by introducing the 11I compound. The compounds to be added are selected to be those which are 'liquid' at any stage of the heat pump cycle.

今日用いられているヒートポンプシステムの典型的なも
のは圧縮性液体によって熱を一方から他方へと輸送l、
ている。最も一般的な熱輸送媒体はフレオン類とアンモ
ニアである。アンモニアはとりわけ冷蔵保管ユニットな
どの大規模冷却システムに使用される。熱輸送媒体ない
し圧縮性液体としては、これら二つのグループに加えて
、他にも相当量の圧力変化に応じて相変化する圧縮性液
体が使用され得る。このように圧力変化に応じて、液相
から気相へと相変化する圧縮性液体は本技術分野におい
てよく知られており、二酸化炭素もそのうちの一つであ
る。−船釣に熱輸送媒体の選択は多くの設計規準を考慮
して決められるが、このような設計規準についてもよく
知られている。通常、商業規模の設備においてはフレオ
ンかアンモニアが熱輸送媒体として最も好適であるが、
特殊な設備においては二酸化炭素のような媒体も使用さ
れる。
Heat pump systems in use today typically transport heat from one side to another using a compressible liquid.
ing. The most common heat transport media are freons and ammonia. Ammonia is used inter alia in large scale cooling systems such as cold storage units. In addition to these two groups, other compressible liquids whose phase changes in response to a considerable pressure change can be used as heat transport medium or compressible liquid. Compressible liquids that change phase from a liquid phase to a gas phase in response to changes in pressure are well known in the art, and carbon dioxide is one of them. - The selection of a heat transport medium for boat fishing is determined by considering many design criteria, and these design criteria are also well known. Freon or ammonia are usually the most preferred heat transport media in commercial-scale installations;
Media such as carbon dioxide are also used in special equipment.

本発明の極性有機化合物は分子の一領域が高電子密度、
他領域が低電子密度であるような分子内電子領域を実現
するのに充分な極性基を含有する。
The polar organic compound of the present invention has one region of the molecule with high electron density,
Contains sufficient polar groups to provide an intramolecular electronic region where other regions have low electron density.

当然のことながら、選択された化合物は熱輸送媒体とし
ての圧縮性液体、および熱輸送システムの種々の部品を
構成する材料と適合するものでなければならない。さら
に、用いられるべき化−合物はシステムの運転時におい
て基本的に液状であり続けなければならない。すなわち
、ヒートポンプシステムの冷熱部ないし膨張部において
は実質的に固化が起こってはならないし、また、システ
ムの高圧側においては高温時でも気化は最小であるべき
である。いいかえると、極性化合物は基本的にシステム
作動下において非圧縮性でなければならない。熱輸送媒
体とヒートポンプシステムの構成材料の両者と適合性が
あることのほかに、極性化合物はヒートポンプシステム
に用いられる潤滑剤とも適合するものでなくてはならな
い。よく知られているように、ヒートポンプシステムに
は潤滑剤が用いられており、連続的にシステム内を循環
してコンプレッサーの可動部材を潤滑している。
Naturally, the selected compound must be compatible with the compressible liquid as the heat transport medium and with the materials constituting the various parts of the heat transport system. Furthermore, the compounds to be used must remain essentially liquid during operation of the system. That is, substantially no solidification should occur in the cold or expansion section of the heat pump system, and vaporization should be minimal on the high pressure side of the system, even at high temperatures. In other words, the polar compound must be essentially incompressible under system operation. In addition to being compatible with both the heat transport medium and the materials of construction of the heat pump system, the polar compound must also be compatible with the lubricant used in the heat pump system. As is well known, heat pump systems utilize lubricants that are continuously circulated through the system to lubricate the moving parts of the compressor.

典型的にはこれらの潤滑剤はナフテン油をベースとする
ものである。最も一般的な潤滑剤は3GSおよび4GS
と呼称される冷却油である。本発明の実施にあたっては
、基本的に下記の規準に合致するすべての極性化合物が
使用できる。
Typically these lubricants are based on naphthenic oils. The most common lubricants are 3GS and 4GS
It is a cooling oil called. In the practice of the present invention, essentially all polar compounds that meet the following criteria can be used.

本発明に使用される極性化合物は液状ハロゲン化アルフ
ァ−オレフィンおよび液状ハロゲン化パラフィンであり
、とりわけ、ハロゲンが塩素であるものが好ましい。最
も好適な極性化合物は液状塩素化アルファ−オレフィン
である。液状塩素化アルファ−オレフィンは、カルチノ
ーゲン活性試験結果の良好性から特に食品を保存するた
めの冷却システムに好んで使用される。よって、液状塩
素化アルファ−オレフィンを含有する冷却システムは食
品の保存に有用である。
The polar compounds used in the present invention are liquid halogenated alpha-olefins and liquid halogenated paraffins, particularly those in which the halogen is chlorine. The most preferred polar compounds are liquid chlorinated alpha-olefins. Liquid chlorinated alpha-olefins are preferred for use in cooling systems, particularly for food preservation, because of their good carcinogen activity test results. Thus, refrigeration systems containing liquid chlorinated alpha-olefins are useful for food preservation.

液状塩素化アルファ−オレフィンおよび液状塩素化パラ
フィンはL−トポンプシステムの種々の運転状態を通し
て液状でなければならない。これらの物質の分子量や塩
素化度は特に決定的要因ではないが、ヒートポンプシス
テムの膨張部において固化する可能性のある、高ワック
ス含量の物質を用いることを避けることが必要である。
The liquid chlorinated alpha-olefins and liquid chlorinated paraffins must remain liquid throughout the various operating conditions of the L-pump system. Although the molecular weight and degree of chlorination of these materials are not particularly critical, it is necessary to avoid using materials with a high wax content, which can solidify in the expansion section of the heat pump system.

このような高ワックス物質はシステムのバルブ等に蓄積
し、故障や保守回数増加の原因になる。さらに、これら
の固体成分の存在は所望のエネルギー効率改善達成の障
害になる場合がある。典型的代表例としては、液状塩素
化アルファ−オレフィンおよび液状塩素化パラフィンの
両者とも6〜24個の炭素原子と1〜12個、好ましく
は1〜lO個の塩素原子とを含有する。塩素化度および
分子量は化合物の相対揮発度と固化点を決定する。塩素
化アルファ−オレフィンのなかで特に好ましいものとし
てはダイヤモンドシャムロツタ社から商品名Chlor
omax−500AOとして販売されているものがあり
、これは、C+Ji。C1mという化学式であられされ
る塩素化アルファ−オレフィンである。好ましい塩素化
液状パラフィンとしてはダイヤモンドジャムロック社か
ら商品名Chlorowax 5760およびChlo
rowax 5960として販売されるものがある。
These high-wax substances can accumulate on the system's valves and the like, causing breakdowns and increased maintenance. Furthermore, the presence of these solid components can be an obstacle to achieving the desired energy efficiency improvements. As a typical representative, both liquid chlorinated alpha-olefins and liquid chlorinated paraffins contain 6 to 24 carbon atoms and 1 to 12, preferably 1 to 10, chlorine atoms. The degree of chlorination and molecular weight determine the relative volatility and solidification point of the compound. Particularly preferred among the chlorinated alpha-olefins is the product name Chlor from Diamond Shamrotsuta Co., Ltd.
There is one sold as omax-500AO, which is C+Ji. It is a chlorinated alpha-olefin with the chemical formula C1m. Preferred chlorinated liquid paraffins include those available from Diamond Jamrock under the trade names Chlorowax 5760 and Chlo
There is one sold as rowax 5960.

Chlorowix 5760は一綴代C+sL*C1
mであられされ、一方、Chlorowax 5960
は一綴代C+*H,,Ct、で表わされる。
Chlorowix 5760 has one binding C+sL*C1
m, while Chlorowax 5960
is expressed by one binding margin C+*H,,Ct.

本発明で用いつる他の塩素化アルファ−オレフィン右よ
び塩素化パラフィンは、その化合物分子の一部分が高電
子密度、他の部分が低電子密度である二つの領域を有す
るように電子密度が選択された極性化合物である。高電
子密度と低電子密度とは相対的なものであり、二つの領
域間の塩素化度の差が大きい必要はない。重要な点は分
子中に電荷分布があることである。
Other chlorinated alpha-olefins and chlorinated paraffins used in the present invention have electron densities selected such that one portion of the compound molecule has two regions of high electron density and the other portion of the compound has low electron density. It is a polar compound. High and low electron density are relative, and the difference in degree of chlorination between the two regions does not need to be large. The important point is that there is a charge distribution within the molecule.

極性化合物はその極性によりヒートポンプシステムの金
属壁に物理的に付着すると考えられている。ヒートポン
プシステムの金属表面は、極性分子がこれに対して配向
配列し、金属表面之ファン・デル・ワールス結合を形成
するような高電荷を有すると考えられている。特定の理
論によるわけではないが、極性化合物が金属壁に付着し
たとき、このことがチューブ壁を通して行われるチュー
ブ内の液体から周囲の液体への熱輪、送時に発生する墳
界相現象を抑える効果をもたらす。この境界相現象は熱
輸送係数を低下させ、さらには効率の低下をもたらす。
Polar compounds are believed to physically adhere to the metal walls of heat pump systems due to their polarity. The metal surfaces of heat pump systems are believed to have a high charge such that polar molecules align with them and form metal surface van der Waals bonds. Although it is not a specific theory, when a polar compound is attached to a metal wall, this suppresses the thermal phase phenomenon that occurs when the liquid inside the tube is transferred to the surrounding liquid through the tube wall. bring about an effect. This boundary phase phenomenon reduces the heat transport coefficient and further leads to a reduction in efficiency.

今日まで行なった実験の結果から、上記極性化合物を使
用することにより境界相現象がもたらす問題を顕著に低
減できるようである。
From the results of the experiments carried out to date, it appears that the use of the above polar compounds can significantly reduce the problems posed by boundary phase phenomena.

実験によるとエネルギー消費がより少なくなるのみなら
ず、熱輸送が行われる表面間における熱の移動は実質的
に増大する。このような改善された熱輸送は、システム
の熱輸送係数の増大およびシステムサイクルの短縮とし
てあられれる。熱輸送が改善される結果、ヒートポンプ
システムにおいて電力消費は顕著に低減する。また熱輸
送が増大することからエネルギーの節約が可能となり、
さらにヒートポンプシステム全体のサイズを与えられた
負荷にたいして小さくすることにより、より小さなコン
プレッサー等が使用できるため一層熱効率の向上をはか
る事ができる。
Experiments have shown that not only is the energy consumption lower, but the transfer of heat between the surfaces where heat transport takes place is substantially increased. Such improved heat transport is manifested as an increase in the heat transport coefficient of the system and a shortened system cycle. As a result of improved heat transport, power consumption is significantly reduced in heat pump systems. Energy can also be saved by increasing heat transport,
Furthermore, by reducing the size of the entire heat pump system relative to a given load, a smaller compressor can be used, which can further improve thermal efficiency.

本発明においてヒートポンプシステムに用いられるべき
極性化合物の量はエネルギー効率を所望量増大するのに
充分なだけでよい。一般に、改善されたエネルギー効率
は極性化合物を加えてすぐには得る事はできず、当該化
合物が全システム内に分散するまでの時間的遅れがある
。この遅れの長さはシステムに添加される極性化合物の
量によってきまる。従って、極性化合物の量はシステム
の大きさ$よびシステム内に化合物が分散する速さをど
の程度にしたいかによってきまる。一般的には、極性化
合物の量はシステムに用いられる潤滑油の体積によって
決まる。極性化合物の割合は一般に潤滑油の0.1vo
1%〜10vo1%、好ましくは0.5vol%〜5 
vo1%である。より好適には極性化合物の量は総潤滑
剤体積の約1〜2.5%vo1%である。極性化合物は
、これが使用される濃度においてシステム内に存在する
潤滑剤に可溶であることが好ましい。即ち、極性化合物
の溶解度は潤滑油中におけるその濃度より大きい事が好
ましい。前述した物理的および化学的性質に加えて、極
性化合物は潤滑油と相溶性がある事が必要である。
The amount of polar compound to be used in the heat pump system in the present invention need only be sufficient to increase energy efficiency by the desired amount. Generally, improved energy efficiency cannot be obtained immediately by adding a polar compound; there is a time delay until the compound is dispersed throughout the system. The length of this delay depends on the amount of polar compound added to the system. The amount of polar compound therefore depends on the size of the system and how quickly the compound is desired to disperse within the system. Generally, the amount of polar compound will depend on the volume of lubricant used in the system. The proportion of polar compounds is generally 0.1 vol of lubricating oil.
1% to 10vol%, preferably 0.5vol% to 5
vo1%. More preferably, the amount of polar compound is about 1-2.5% vol. of the total lubricant volume. Preferably, the polar compound is soluble in the lubricant present in the system at the concentrations in which it is used. That is, the solubility of the polar compound is preferably greater than its concentration in the lubricating oil. In addition to the physical and chemical properties described above, the polar compound must be compatible with the lubricating oil.

極性化合物をヒートポンプシステム内に導入するにあた
っては特に制限はない。システム組み立て時に潤滑油に
配合することもできるし、システム運転時に細光ること
もできる。極性化合物をシステム運転時に加える場合に
は、一般的にはコンプレッサーの吸引側に注入する。特
に好適な態様においては極性化合物はその注入をたやす
(し、加えられるべき全潰をよりよくコントロールする
ためにまず担体化合物に溶解し、濃縮液とする。
There are no particular restrictions on introducing polar compounds into the heat pump system. It can be added to the lubricating oil when assembling the system, and it can also be added to the lubricant during system operation. If polar compounds are added during system operation, they are typically injected into the suction side of the compressor. In a particularly preferred embodiment, the polar compound is first dissolved in a carrier compound to form a concentrated solution to facilitate its injection (and to better control the volume to be added).

一般に、担体成分はヒートポンプシステムに適合するも
のならどのような成分でもよい。典型例においては、担
体はシステム゛を潤滑するのに使われる潤滑剤を含有す
る。より好適には、担体は白油、高純度ナフテン鉱油で
ある。このような白油は一般に販売されてふり、たとえ
ばTexaco CapellalIPのような物質や
その均等物である。白油の使用は冷却と空調の両者を含
むどのようなヒートポンプシステムとも基本的に適合す
る利点がある。冷却システムは低温であるがゆえに最も
条件が厳しい。1体化合物は全ヒートポンプサイクルを
通して液状でなければならず、運転時に固化するワック
スを実質的に含有してはならない。担体としての白油の
利用は、極性化合物を含有する単一の組成物を基本的に
どのようなヒートポンプシステムにも用いられるように
できるという利点がある。
Generally, the carrier component can be any component that is compatible with heat pump systems. Typically, the carrier contains a lubricant used to lubricate the system. More preferably, the carrier is white oil, high purity naphthenic mineral oil. Such white oils are commonly commercially available, such as materials such as Texaco Capellal IP or equivalents thereof. The use of white oil has the advantage of being essentially compatible with any heat pump system, including both refrigeration and air conditioning. Cooling systems have the most severe requirements because of their low temperatures. The one-body compound must be liquid throughout the entire heat pump cycle and must be substantially free of waxes that solidify during operation. The use of white oil as a carrier has the advantage that a single composition containing polar compounds can be used in essentially any heat pump system.

担体中の極性化合物の濃度は決定的要因ではないが20
〜8・(l vo1%の範囲であり、代表的にはおよそ
等体積混合物である。
Although the concentration of polar compounds in the carrier is not a determining factor, 20
~8.(1 vol.), typically a roughly equal volume mixture.

極性化合物と担体の等体積混合物を含有する担体系を、
既存のオイル系にシステムに含まれる総潤滑剤の5%看
加える事ができる。それが加えられるべき比率は担体物
質中の極性化合物濃度とヒートポンプシステム中の極性
化合物の所望最終濃度により大きくも小さくもすること
ができる。
A carrier system containing an equal volume mixture of polar compound and carrier,
5% of the total lubricant contained in the system can be added to the existing oil system. The proportion at which it is added can be larger or smaller depending on the concentration of polar compound in the carrier material and the desired final concentration of polar compound in the heat pump system.

ハロゲン含有極性化合物を用いる時には、システム内の
湿気が遊離ハロゲンを形成することを防ぐために安定剤
を用いることが好ましい。遊離ハライドの存在は腐食の
問題を引き起こす。塩化物にたいして好適な安定剤は市
場にて販売されており代表的にはハロゲンと結合してこ
れを無害にする緩衝剤である。このような安定剤は多く
の会社から販売されており、例えば、塩素化炭化水素と
白鉱油、保湿剤およびインヒビターの混合物である、ダ
イヤモンドシャムロツタ社のX−Ch for−XCが
ある。ハロゲンインヒビターを含有する、市場より人手
可能な他の化合物も同様に用いることができる。安定剤
の量は決定的要因ではないが極性化合物に対し0〜20
vo1%、好ましくは0.O1〜〜20vo1%、さら
に好ましくは0.01〜10vo1%である。安定剤と
しては遊離塩化物に対し緩衝剤として働き、極性化合物
や潤滑剤と相溶性があり運転時に溶解している限りどの
様なものでもよい。
When using halogen-containing polar compounds, it is preferred to use stabilizers to prevent moisture in the system from forming free halogens. The presence of free halides causes corrosion problems. Suitable stabilizers for chloride are commercially available buffers that typically bind to the halogen and render it harmless. Such stabilizers are sold by many companies, such as Diamond Shamlottuta's X-Ch for-XC, which is a mixture of chlorinated hydrocarbons, white mineral oil, humectants and inhibitors. Other commercially available compounds containing halogen inhibitors can be used as well. The amount of stabilizer is not a critical factor, but for polar compounds 0-20
vo1%, preferably 0. O1 to 20vol%, more preferably 0.01 to 10vol%. Any stabilizer may be used as long as it functions as a buffer for free chloride, is compatible with polar compounds and lubricants, and is dissolved during operation.

〈発明の効果〉 今日までの実験から、本発明組成物および方法はレシプ
ロコンプレッサーおよびロータリーコンプレッサーのど
ちらに基づくヒートポンプシステムでもそのエネルギー
効率を改善できる事が判明した。エネルギー効率の実質
的な改善はユニットの大きさが1トンのものから800
トンのものに至るまで得られた。また本発明により10
%以上のエネルギー消費の改善が達成された。
EFFECTS OF THE INVENTION Experiments to date have shown that the compositions and methods of the present invention can improve the energy efficiency of heat pump systems based on both reciprocating and rotary compressors. Substantial improvement in energy efficiency from unit size of 1 ton to 800 ton
Obtained ranging from tons of stuff. In addition, according to the present invention, 10
An improvement in energy consumption of more than % was achieved.

〈実施例〉 以下に実施例を挙げて本発明を更に説明する。<Example> The present invention will be further explained with reference to Examples below.

下記試験を水冷式自己収納型空調装置、ヨーク・モデル
354を用いて行なった。このモデルは冷却能力が3.
3トンであり、Chlorowax 500^0による
強化処理は、208/220ボルト、3相、60ヘルツ
のモータによって駆動される30馬力コンプレツサ一使
用条件下でおこなった。これらの試験は約7200立方
フイートの実験室にて行なった。
The following tests were conducted using a York Model 354 water-cooled self-contained air conditioner. This model has a cooling capacity of 3.
The 3 ton, Chlorowax 500^0 intensification process was carried out using a 30 horsepower compressor driven by a 208/220 volt, 3 phase, 60 hertz motor. These tests were conducted in an approximately 7200 cubic foot laboratory.

1、 装置の選択 製造元のオリジナルコンデンサー、エクスパンション・
バルブ、エバポレータ、右よびフレオンR−22コント
ロールシステムを備えよく使用された密封シールコンプ
レッサーが特にこの実験のために選ばれた。試験に供さ
れたユニットの購入、最初の使用は1962年である。
1. Equipment selection Manufacturer's original capacitor, expansion
A well-used hermetic seal compressor equipped with a valve, evaporator, right hand and Freon R-22 control system was chosen specifically for this experiment. The units tested were purchased and first used in 1962.

このユニットには密封シール潤滑剤として0.875ガ
ロンのヨーク”C″オイル封入されていた。本試験にお
いて測定されたデータと製造業者による初期定格値との
比較を表−1に示す。
This unit contained 0.875 gallons of Yoke "C" oil as a hermetic seal lubricant. Table 1 shows a comparison between the data measured in this test and the manufacturer's initial rating values.

以下余白 2、 モータのモニタリング KVA需要、KW、および反応性KVA (ないしKV
AR)を連続記録するための3−ベンキャパシティを有
するとともに、即時KVAおよび出力因子について読み
だし能力のあるエステリン−アンガス S−22904
ミニサーボ■パワーサーベイユニツトからなるモニター
装置を使用した。
Margin 2 below, Motor Monitoring KVA Demand, KW, and Reactivity KVA (or KV
Esterine-Angus S-22904 with 3-venn capacity for continuous recording of AR) and readout capability for instant KVA and power factors.
A monitoring device consisting of a mini servo power survey unit was used.

また、モータが励起されているとき常に累積にηH油消
費示すリセット可カウンターを使用した。クランプオン
式電流トランスフォーマを用い、モータの3相のそれぞ
れのフル・ライン・アンペアを記録用ワットメータへの
転送時にファクター100で減少させた。
Also, a resettable counter was used that indicates the cumulative ηH oil consumption whenever the motor is energized. A clamp-on current transformer was used to reduce the full line amperage of each of the three phases of the motor by a factor of 100 upon transfer to the recording wattmeter.

3、  Chlorowax−500AOの添加IJI
□rowax液を密封シール潤滑油システムに注入した
。コンプレッサからの高圧液体フレオン系統とコンプレ
ッサの吸引口へとつながる低圧フレオン蒸気系統のそれ
ぞれに気体チエツクバルブを設置した。コンプレッサの
稼働中、これらのバルブは15+nlの液体Chlor
owaxの入った銅製カートリッジ内に少量の高圧フレ
オンを回収するために用いられた。加圧カートリッジは
その後コンプレッサの高圧側から切り離され、その内容
を適当なニードルバルブ配列によって低圧フレオン蒸気
系統に導入し、冷却剤フローの中でコンプレッサの吸引
口に戻した。約5 vo1%のChlorowaxと9
5vo1%のオイルとして最終的に潤滑システムに添加
を要した1 80mlを整除する量として15m1が選
択された。即ち、実験中12回にわたって15m1ずつ
の注入を繰り返し行ない、添加した。
3. Addition IJI of Chlorowax-500AO
□ Rowax fluid was injected into the hermetic seal lube system. Gas check valves were installed in each of the high-pressure liquid Freon system from the compressor and the low-pressure Freon vapor system leading to the compressor suction port. When the compressor is running, these valves contain 15+nl of liquid Chlor
It was used to collect small amounts of high pressure Freon in a copper cartridge containing owax. The pressurized cartridge was then disconnected from the high pressure side of the compressor and its contents were introduced into the low pressure Freon vapor system by a suitable needle valve arrangement and returned to the compressor suction in the refrigerant flow. Approximately 5 vo1% Chlorowax and 9
15 ml was selected as an amount to eliminate the 180 ml that ultimately required addition to the lubrication system as 5 vol. 1% oil. That is, the injection was repeated 12 times during the experiment in 15 ml portions.

4、 冷却負荷試験 空調ユニットに供された冷却負荷は外界の温度によって
変化した。冷却されるべき実験室は建屋の通常の温度コ
ントロールシステムから切りはなした。
4. Cooling load test The cooling load applied to the air conditioning unit varied depending on the outside temperature. The laboratory to be cooled was disconnected from the building's normal temperature control system.

試験中のビル内の温度を廊下、付属ラボ、および実験室
のすぐ上と下のラボで測定した所、77°Fから84”
F(軟球/DB) 、69@Fから74”F(湿球/W
B)の範囲であった。実験室の空調サーモスタットは試
験中常に71°Fにセットされこのセツティングにより
全測定期間を通じて実験室ハフ0〜7rF (11B)
および64〜65°F (11B)に保たれた。
Temperatures within the building during testing ranged from 77°F to 84” in the hallway, attached lab, and labs directly above and below the lab.
F (soft ball/DB), 69@F to 74”F (wet ball/W
B). The laboratory air conditioning thermostat was set at 71°F throughout the test, and this setting kept the laboratory huff from 0 to 7 rF (11B) throughout the entire measurement period.
and 64-65°F (11B).

サーモスタットセツティング73°Fでのサイクル時間
についてもユニットの冷却能力に影響するChl−or
owax 2.5valX/オイル97.5%比の効果
の試験ののち較正のために調査した。
The cycle time at thermostat setting 73°F also affects the cooling capacity of the unit.
After testing the effectiveness of the owax 2.5valX/oil 97.5% ratio, it was investigated for calibration.

これらの条件のもとて改良ヨーク354ユニツトは実験
室が得た実質熱利得を除去する必要が生じた。外部壁(
および窓の存在)を通じての熱移動は外界の温度が71
”F以下の時自然的熱損失を生じ、外界の温度がそれ以
上のときは室内の熱利得に加わった。実験室への熱負荷
のこのような要因は24時間をとおしてm#を温度と共
に変化する(7)テ空11ユニットのパーフォーマンス
モ同様のエネルギー消費パターンを示した。このように
、試験システムは太陽と天候の状況によって調整(チュ
ーニング)された。
These conditions necessitated a modified yoke 354 unit to eliminate the substantial heat gain obtained in the laboratory. External wall (
and the presence of windows), the external temperature is 71
``Natural heat loss occurs when the outside temperature is below F, and adds to the indoor heat gain when the outside temperature is above.'' (7) The performance of the sky 11 units showed a similar energy consumption pattern varying with the solar and weather conditions.Thus, the test system was tuned according to the solar and weather conditions.

結果 表−3に空調ユニットにあける、各冷却デイグリ−アワ
ーに対するコンプレッサーモータの毎日のエネルギー消
費を示す。これらのデータは表−2に示す各日付でのC
hlorowaxの注入に引き続いて得られた。
Results Table 3 shows the daily energy consumption of the compressor motor for each cooling day hour in the air conditioning unit. These data are C on each date shown in Table-2.
Obtained following injection of hlorowax.

以下余白 コンプレッサーモータによって消費されるにWHとデイ
グリ−アワーについての毎日のデータを表−3に示す。
Table 3 below shows daily data regarding the WH and day hours consumed by the margin compressor motor.

以下余白 これらは夜12時から次の夜12時までを単位とし、中
央標準時で測定された。KWHにおける日毎の変化はモ
ータが励起されている(サーモスタット信号によって)
ときの測定ライン電流や測定ワット数変化よりむしろ2
4時間を通しての総サイクル時間の変化の結果である。
The following margins are measured from 12:00 pm to 12:00 pm the following night, based on central standard time. The daily variation in KWH is that the motor is energized (by the thermostat signal)
Rather than measuring line current or measuring wattage change when
Results of changes in total cycle time over 4 hours.

モータへの出力は基本的に2..79KWで一定であっ
た。この試験を通してサーモスタットのセツティングは
71°Fに固定された。この試験の結果、Chloro
−WJIXは4.?vo1%が最適濃度であることがわ
かる。
The output to the motor is basically 2. .. It was constant at 79KW. The thermostat setting was fixed at 71°F throughout this test. As a result of this test, Chloro
-WJIX is 4. ? It can be seen that vo1% is the optimum concentration.

明らかに、本発明については上記開示に基づき、多くの
変化や修正が可能である。よって本願特許請求の範囲に
おいて、ここに例として記載した特定例のほかにも実施
され得るものである。
Obviously, many variations and modifications of the present invention are possible in light of the above disclosure. Therefore, within the scope of the appended claims, other implementations than the specific examples described herein are possible.

以上that's all

Claims (1)

【特許請求の範囲】 1、ヒートポンプの作動時において液状である極性化合
物をヒートポンプシステムに導入することを特徴とする
、ヒートポンプシステムの効率を改善する方法。 2、ヒートポンプシステムにおいて、当システム全体に
わたって液状で存在する極性化合物を、当システムのエ
ネルギー効率を改善するのに充分な量使用することを特
徴とするヒートポンプシステムの効率改善方法。 3、極性化合物と液状担体を含有することを特徴とする
ヒートポンプシステム添加剤。 4、極性化合物がハロゲン化アルファ−オレフィンまた
はハロゲン化パラフィンであることを特徴とする請求項
1記載の方法。 5、極性化合物が塩素化アルファ−オレフィンまたは塩
素化パラフィンであることを特徴とする請求項1記載の
方法。 6、極性化合物が6〜24個の炭素原子及び1〜12個
のハロゲン原子を有するハロゲン化炭化水素であること
を特徴とする請求項1記載の方法。 7、極性化合物の化学式が C_1_2H_2_0Cl_6 であることを特徴とする請求項1記載の方法。 8、ヒートポンプシステムが潤滑剤を含有し、且つ極性
化合物が、潤滑剤の体積の0.1〜10vol%存在す
ることを特徴とする請求項1記載の方法。 9、液状担体が白油であることを特徴とする請求項3記
載の添加剤。 10、極性化合物が液状ハロゲン化アルファ−オレフィ
ンまたはハロゲン化パラフィンであることを特徴とする
請求項3記載の添加剤。 11、極性化合物が化学式 C_1_2H_2_0Cl_6 で表わされる液状塩素化アルファ−オレフィンであるこ
とを特徴とする請求項10記載の添加剤。 12、緩衝剤を含有することを特徴とする請求項11記
載の添加剤。 13、担体がナフテン油であることを特徴とする請求項
3記載の添加剤。
[Scope of Claims] 1. A method for improving the efficiency of a heat pump system, characterized by introducing a polar compound that is in a liquid state into the heat pump system during operation of the heat pump. 2. A method for improving the efficiency of a heat pump system, comprising using a polar compound present in liquid form throughout the heat pump system in an amount sufficient to improve the energy efficiency of the system. 3. A heat pump system additive characterized by containing a polar compound and a liquid carrier. 4. The method according to claim 1, wherein the polar compound is a halogenated alpha-olefin or a halogenated paraffin. 5. Process according to claim 1, characterized in that the polar compound is a chlorinated alpha-olefin or a chlorinated paraffin. 6. Process according to claim 1, characterized in that the polar compound is a halogenated hydrocarbon having 6 to 24 carbon atoms and 1 to 12 halogen atoms. 7. The method according to claim 1, wherein the polar compound has a chemical formula of C_1_2H_2_0Cl_6. 8. The method of claim 1, wherein the heat pump system contains a lubricant, and the polar compound is present in an amount of 0.1 to 10 vol% of the volume of the lubricant. 9. The additive according to claim 3, wherein the liquid carrier is white oil. 10. The additive according to claim 3, wherein the polar compound is a liquid halogenated alpha-olefin or a halogenated paraffin. 11. The additive according to claim 10, wherein the polar compound is a liquid chlorinated alpha-olefin represented by the chemical formula C_1_2H_2_0Cl_6. 12. The additive according to claim 11, which contains a buffering agent. 13. The additive according to claim 3, wherein the carrier is naphthenic oil.
JP1019357A 1988-01-29 1989-01-27 Method and composition for improving energy efficiency in heat pump system Pending JPH02209985A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/149,737 US4963280A (en) 1988-01-29 1988-01-29 Method and composition for improving the energy efficiency of heat pump systems
US149,737 1988-01-29

Publications (1)

Publication Number Publication Date
JPH02209985A true JPH02209985A (en) 1990-08-21

Family

ID=22531585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1019357A Pending JPH02209985A (en) 1988-01-29 1989-01-27 Method and composition for improving energy efficiency in heat pump system

Country Status (6)

Country Link
US (1) US4963280A (en)
JP (1) JPH02209985A (en)
KR (1) KR900700581A (en)
AU (1) AU3068789A (en)
WO (1) WO1989007127A1 (en)
ZA (1) ZA89672B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018177967A (en) * 2017-04-13 2018-11-15 パナソニックIpマネジメント株式会社 Refrigeration cycle device
JP2022122870A (en) * 2017-04-13 2022-08-23 パナソニックIpマネジメント株式会社 Refrigeration cycle device

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4240733A1 (en) * 1992-09-03 1994-03-10 Linde Ag Process for operating a compressor heat pump or refrigeration system with ammonia as the refrigerant
US5826436A (en) * 1996-09-03 1998-10-27 Mainstream Engineering Corporation Additive for improving performance and cooling capacity of vapor compression systems
US6267907B1 (en) 1999-06-03 2001-07-31 The Lubrizol Corporation Lubricant composition comprising an aliphatic substituted naphthalene alone or in combination refrigeration systems
US6286323B1 (en) * 2000-05-02 2001-09-11 Antonio Pio Sgarbi Air conditioning and refrigeration system using a sulfonate containing calcium salt of dialkyl aromatic sulfonic acid and nonylated phenylamine derivatives in a polar compound
US6276147B1 (en) * 2000-05-02 2001-08-21 Antonio Pio Sgarbi Air conditioning and refrigeration system using a concentrated polar solution
US6362139B1 (en) * 2000-05-02 2002-03-26 Tony Pio Sgarbi Air conditioning and refrigeration system using a sulfur containing polar compound
US6369006B1 (en) * 2000-05-02 2002-04-09 Antonio Pio Sgarbi Air conditioning and refrigeration system using a calcium salt of dialkyl aromatic sulfonic acid
AU2001281027A1 (en) * 2000-08-02 2002-02-13 Mj Research & Development, L.P. Of Which Mjrd, Llc Is A General Partner Transesterified fatty esters for lubricant and refrigerant oil system
US6962665B2 (en) * 2000-12-08 2005-11-08 E. I. Du Pont De Nemours And Company Refrigerant compositions containing a compatibilizer
US6991744B2 (en) * 2000-12-08 2006-01-31 E. I. Du Pont De Nemours And Company Refrigerant compositions containing a compatibilizer
US20040144952A1 (en) * 2001-06-04 2004-07-29 Stewart Charles L Non-halogenated metal conditioner and extreme pressure lubricant
US20040099838A1 (en) * 2002-08-08 2004-05-27 Leck Thomas J Refrigerant compositions comprising performance enhancing additives
US20180216022A1 (en) * 2017-01-27 2018-08-02 Scott Rettberg System and method for reducing friction, torque and drag in artificial lift systems used in oil and gas production wells
US20190137035A1 (en) * 2017-11-03 2019-05-09 Scott Rettberg System and method for reducing friction, torque and drag in artificial lift systems used in oil and gas production wells
CN109536023A (en) * 2018-10-27 2019-03-29 广州领扬科技有限公司 A kind of central air-conditioning compressor Polarization Cooling film coating agent
CN109439156A (en) * 2018-10-27 2019-03-08 广州领扬科技有限公司 A kind of automobile specified compressor Polarization Cooling film coating agent
CN109337578A (en) * 2018-10-27 2019-02-15 广州领扬科技有限公司 A kind of house ornamentation dedicated compressor Polarization Cooling film coating agent

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB634673A (en) * 1946-06-28 1950-03-22 California Research Corp Fluorinated olefin polymers
US3972243A (en) * 1971-04-19 1976-08-03 Sun Research And Development Co. Traction drive with a traction fluid containing gem-structured polar organo compound
US4359394A (en) * 1978-10-30 1982-11-16 Thermo King Corporation Thermally stable lubricants for refrigerator systems
GB2090859B (en) * 1981-01-14 1984-09-12 Ici Plc Halo-hydrocarbons for use in electrical apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018177967A (en) * 2017-04-13 2018-11-15 パナソニックIpマネジメント株式会社 Refrigeration cycle device
JP2022122870A (en) * 2017-04-13 2022-08-23 パナソニックIpマネジメント株式会社 Refrigeration cycle device

Also Published As

Publication number Publication date
AU3068789A (en) 1989-08-25
US4963280A (en) 1990-10-16
WO1989007127A1 (en) 1989-08-10
ZA89672B (en) 1989-10-25
KR900700581A (en) 1990-08-16

Similar Documents

Publication Publication Date Title
JPH02209985A (en) Method and composition for improving energy efficiency in heat pump system
US6644064B2 (en) Refrigerant and refrigerating device
CN101370900A (en) Refrigerant additive compositions containing perfluoropolyethers
US6958126B2 (en) Non-flammable, non-ozone depleting refrigerant mixtures suitable for use in mineral oil (GHGX9)
Pawale et al. Performance analysis of VCRS with nano-refrigerant
JPH01259095A (en) Lubricating oil useful for fluorocarbon compressor
JP2001294886A (en) Lubricant composition for refrigeration unit using carbon dioxide refrigerant, working fluid, refrigeration cycle or heat pump cycle, and refrigeration unit
US5830833A (en) Synthetic ester lubricants for refrigerator systems
US6286323B1 (en) Air conditioning and refrigeration system using a sulfonate containing calcium salt of dialkyl aromatic sulfonic acid and nonylated phenylamine derivatives in a polar compound
Vineyard et al. Refrigerator-freezer energy testing with alternative refrigerants
WO1992012223A1 (en) Freezer for refrigerator
US7320763B2 (en) Refrigerant for low temperature applications
US6369006B1 (en) Air conditioning and refrigeration system using a calcium salt of dialkyl aromatic sulfonic acid
US6276147B1 (en) Air conditioning and refrigeration system using a concentrated polar solution
US6362139B1 (en) Air conditioning and refrigeration system using a sulfur containing polar compound
US20020127161A1 (en) Additive for an air conditioning or refrigeration system
JPS60123577A (en) Refrigerating machine oil composition
KR20040055664A (en) Refrigerating device
WO2004078876A1 (en) Buffered heat transfer fluid for secondary refrigeration systems comprising a formate salt
CA2120237A1 (en) Novel compositions comprising pentafluoroethane and monochlorodifluoromethane
JP3410994B2 (en) Refrigeration equipment
BR102017017568B1 (en) REFRIGERANT FLUID COMPOSITION, USE OF THE COMPOSITION, PACKAGED PRODUCT AND POTTING PROCESS
JPH05263071A (en) Composition for compression type heat transfer device
JPH1180718A (en) Freezing composition
JP2002194369A (en) Working medium composition for air conditioning and air conditioner using the same composition