JPH0219835A - Liquid crystal display element - Google Patents

Liquid crystal display element

Info

Publication number
JPH0219835A
JPH0219835A JP63169017A JP16901788A JPH0219835A JP H0219835 A JPH0219835 A JP H0219835A JP 63169017 A JP63169017 A JP 63169017A JP 16901788 A JP16901788 A JP 16901788A JP H0219835 A JPH0219835 A JP H0219835A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal display
display element
substrate
retardation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63169017A
Other languages
Japanese (ja)
Inventor
Tomiaki Yamamoto
山本 富章
Hitoshi Hado
羽藤 仁
Shinichi Kamagami
信一 鎌上
Susumu Kondo
進 近藤
Akio Murayama
昭夫 村山
Shoichi Matsumoto
正一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63169017A priority Critical patent/JPH0219835A/en
Priority to KR1019890009739A priority patent/KR930002916B1/en
Priority to EP19890112474 priority patent/EP0350063A3/en
Priority to JP1174031A priority patent/JP2809722B2/en
Priority to US07/376,541 priority patent/US4995704A/en
Publication of JPH0219835A publication Critical patent/JPH0219835A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1396Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell
    • G02F1/1397Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell the twist being substantially higher than 90°, e.g. STN-, SBE-, OMI-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/40Materials having a particular birefringence, retardation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/02Number of plates being 2
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/08Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates with a particular optical axis orientation

Abstract

PURPOSE:To obtain inexpensively a liquid crystal display element having a noncolored light background and a wide view field angle by disposing a first and a second optical delay plate between a first substrate and a second polarizing plate and regulating both optical delay plates thereof to have an almost same retardation. CONSTITUTION:A first and a second substrates 1, 1' facing oppositely to each other and a first and a second polarizing plates 3, 4 disposed to both sides of a liquid crystal cell 5 are provided, and a first and a second optical delay plate 10, 11 counted from the second substrate 1' side are arranged between the second substrate 1, and the second polarizing plate 4. The first and the second optical delay plate 10, 11 are regulated to have an almost same retardation, which is within a range between 0.25 to 0.45mum. If the retardation of the optical delay plates 10, 11 are smaller than 0.25mum or larger than 0.45mum, an almost linearly polarized light is not obtd., and colored display is obtd. Thus, a liquid crystal display element having a noncolored light background and a wide view field angle is obtd. inexpensively.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、液晶表示素子に係り、特に背景色を無彩色化
した液晶表示素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a liquid crystal display element, and particularly to a liquid crystal display element whose background color is achromatic.

(従来の技術) 液晶表示素子は、動作モードによりTN型、DS型、G
H型、DAP型および熱書き込み型等があり、なかでも
電卓および計測機器等の表示素子としては、TN型の液
晶表示素子が多く用いられている。
(Prior art) Liquid crystal display elements are classified into TN type, DS type, and G type depending on the operation mode.
There are H type, DAP type, thermal writing type, etc., and among them, TN type liquid crystal display elements are often used as display elements for calculators, measuring instruments, etc.

ところで、近年、ワードプロセッサ、パーソナル・コン
ピュータ等において表示容量の増大化や表示面積の大型
化の要求が高まるにつれ、TN型の液晶表示素子では、
コントラスト不足や視角範囲の狭さ等の問題が出てきて
いるために、新しい動作モードによる液晶表示素子の開
発が急がれていた。
By the way, in recent years, as the demand for increased display capacity and larger display area for word processors, personal computers, etc. has increased, TN type liquid crystal display elements have
Due to problems such as insufficient contrast and narrow viewing angle range, there has been an urgent need to develop liquid crystal display elements with new operating modes.

このような要求に応える液晶表示素子として、例えば特
開昭60−10702号公報に記載されている5BE(
スーパーツィステッド・パイアフリジエンス・エフェク
ト)型の複屈折率制御型の液晶表示素子が注目されてい
る。このSBE型の液晶表示素子の構成としては、少な
くとも片面側に透明電極が形成された2枚の透明基板を
対向させ、周囲を封着してセルとし、このセル内にネマ
チック液晶を入れる。対向基板間の距離は、3〜12N
1程度であり、ネマチック液晶としてはシクロヘキサン
系、エステル系、ビフェニール系およびピリミジン系液
晶等が使われている。ネマチック液晶の中にはカイラル
剤が添加され、液晶分子の分子軸が180〜3600の
角度に一対の基板間で捩られている。また液晶分子は、
基板上の配向膜により、その分子軸が基板平面に対し5
°より大きい傾斜のチルト角θを有している。そして、
液晶セルのリタデーシヨンR=△n−d−cos2θは
、0.6〜1,4tJJr1である。
As a liquid crystal display element that meets such demands, for example, 5BE (
Birefringence control type liquid crystal display devices (super twisted pie frigidity effect) are attracting attention. The structure of this SBE type liquid crystal display element is such that two transparent substrates each having a transparent electrode formed on at least one side are placed facing each other, and the periphery is sealed to form a cell, and a nematic liquid crystal is placed in this cell. The distance between the opposing boards is 3 to 12N
1, and cyclohexane-based, ester-based, biphenyl-based, and pyrimidine-based liquid crystals are used as nematic liquid crystals. A chiral agent is added to the nematic liquid crystal, and the molecular axes of the liquid crystal molecules are twisted at an angle of 180 to 3600 between a pair of substrates. In addition, liquid crystal molecules are
Due to the alignment film on the substrate, its molecular axis is oriented at 5° relative to the plane of the substrate.
It has a tilt angle θ of a slope greater than °. and,
The retardation R=Δnd-cos2θ of the liquid crystal cell is 0.6 to 1.4tJJr1.

また、分子軸の捩れが270°のSBE型液晶表示素子
では、好ましくは基板の外側の前面と背面に偏光板を配
しており、前面偏光板の透過軸が前面基板の分子配向方
向に対して右回りに約30”、背面偏光板の透過軸が背
面基板の配向方向に対して左回りに約30°あるいは右
回りに約60”である場合が最もよい構成とされている
。このうち前者の構成は非選択状態で明るい黄色の表示
、選択状態で黒の表示が得られ(イエローモード)、後
者の構成は非選択状態で深い青色の表示が1qられ、選
択状態で透過となる(ブルーモード)。
In addition, in an SBE type liquid crystal display element in which the molecular axis has a twist of 270°, polarizing plates are preferably arranged on the outer front and rear surfaces of the substrate, so that the transmission axis of the front polarizing plate is relative to the molecular orientation direction of the front substrate. The best configuration is when the transmission axis of the rear polarizing plate is approximately 30 degrees counterclockwise or approximately 60 inches clockwise with respect to the alignment direction of the rear substrate. The former configuration provides a bright yellow display in the non-selected state and a black display in the selected state (yellow mode), while the latter provides a deep blue display in the non-selected state and a transparent display in the selected state. Becomes (blue mode).

このような構成をしたSBE型液晶表示素子では、電圧
に対する透過光の変化が急峻でおり、多桁のマルチプレ
ックス駆動をした場合においても、高コントラストで視
野角も広い。
In the SBE type liquid crystal display element having such a configuration, the transmitted light changes sharply with respect to the voltage, and even when multi-digit multiplex driving is performed, the display element has high contrast and a wide viewing angle.

一方、ラビング技術によりプレチルト角を小さくした液
晶表示素子の一例として、液晶の捩れ角を100−20
0’とするいわゆるST(スーパーツイスト)型液晶表
示素子が知られている(SID ”86DIGET、 
p122>。
On the other hand, as an example of a liquid crystal display element whose pretilt angle is reduced by rubbing technology, the twist angle of the liquid crystal is reduced to 100-20.
So-called ST (super twist) type liquid crystal display elements with a
p122>.

また、他の例として特開昭60−73525号公報には
、リタデーシヨンRが0.5〜0.8脚で、液晶分子の
捩れ角が270°のセルに対し前後の偏光板の光軸がほ
ぼ90” とされ、かつ偏光板の光軸がディレクタを2
分する方向が良いとされた液晶表示素子が示されている
As another example, Japanese Patent Application Laid-Open No. 60-73525 discloses that for a cell in which the retardation R is 0.5 to 0.8 legs and the twist angle of the liquid crystal molecules is 270°, the optical axes of the front and rear polarizing plates are approximately 90", and the optical axis of the polarizing plate is 2
A liquid crystal display element is shown in which the direction of separation is considered to be good.

さて、このような液晶表示素子では、いづれち背景色は
無彩色ではなく色付きがおる。このため、黄色の背景に
黒の表示、あるいは青色の背景に白の表示であり、観察
者の視感により視認性評価が異なり、人によってはその
背景色により視認性(コントラスト等)が低下している
と評価する者もいる。また、ST型およびSBE型液晶
表示素子は、ともに複屈折率性を利用しているため、透
明基板間の間隔の違いにより色むらが発生しやすく、視
野角方向からの色変化や温度が変化したときの色変化が
大きかった。
Now, in such liquid crystal display elements, the background color is not achromatic but colored. For this reason, the display is black on a yellow background or white on a blue background, and the visibility evaluation varies depending on the visual sense of the observer, and for some people, visibility (contrast, etc.) may decrease depending on the background color. Some people say that it is. In addition, since both ST type and SBE type liquid crystal display elements utilize birefringence, color unevenness is likely to occur due to differences in the spacing between transparent substrates, and color changes and temperature changes from the viewing angle direction. There was a big color change when I did it.

また、TN型液晶表示素子では、カラーフィルタを配設
することによりカラー化が容易であるのに対し、SBE
型液晶表示素子では背景色に色付きがおるためカラー化
が不可能であった。
In addition, in TN type liquid crystal display elements, it is easy to create colors by disposing color filters, whereas SBE
With type liquid crystal display elements, colorization was impossible because the background color was colored.

この点を改良した例としてOMI型液晶表示素子が知ら
れている(ADDl、 Phys、 Lett、50(
5) 19879.236)。すなわち、液晶の捩れ角
が180” 、リタデーシヨンR=△n−d−cos2
θの値が0.5〜0.6趨、偏光板はその一方の透過軸
がラビング軸と平行とされ、2枚の偏光板の吸収軸の角
度は90’ とされている。
An OMI type liquid crystal display element is known as an example that improves this point (ADDl, Phys, Lett, 50 (
5) 19879.236). That is, the twist angle of the liquid crystal is 180'', the retardation R=△n-d-cos2
The value of θ ranges from 0.5 to 0.6, the transmission axis of one of the polarizing plates is parallel to the rubbing axis, and the angle of the absorption axes of the two polarizing plates is 90'.

しかし、このOMI型液晶表示素子では、液晶の捩れ角
が180°でおるため、電圧に対する透過光の変化はあ
まり急峻でなく、駆動デユーティ(duty)比を小さ
くすると、コントラスト不足。
However, in this OMI type liquid crystal display element, the twist angle of the liquid crystal is 180 degrees, so the change in transmitted light with respect to voltage is not very steep, and when the drive duty ratio is reduced, contrast is insufficient.

視角の狭さ、背景の暗さ等の問題があった。There were problems such as a narrow viewing angle and a dark background.

このような背景の暗さやコントラスト不足を解消するも
のとして特開昭57−46227号公報、特開昭57−
96315号公報、特開昭57−125919号公報に
2枚の液晶セルを重ね、その両側に偏光板を置き、白黒
表示とした液晶表示素子が提案され、またこれをSBE
方式のLCDで応用した例がJJAP(2B、NOV、
11.117784(1987)) ニ記載さレテイル
To solve this problem of background darkness and lack of contrast, Japanese Unexamined Patent Publication Nos. 57-46227 and 1983-
No. 96315 and Japanese Unexamined Patent Publication No. 57-125919 propose a liquid crystal display element in which two liquid crystal cells are stacked and polarizing plates are placed on both sides to display a black and white display.
An example of applying this method to an LCD is JJAP (2B, NOV,
11.117784 (1987)).

これらの特徴は、2枚の液晶セルにおいて互いのツイス
ト方向を逆方向とし、それぞれの液晶セルのリタデーシ
ヨンがほぼ等しくしておくものでおる。
These features are such that the twist directions of the two liquid crystal cells are opposite to each other, and the retardation of each liquid crystal cell is approximately equal.

即ち、第6図に示すように、偏光板3を通過した直線偏
光103は、第1の液晶セル5を通過することにより楕
円偏光101′となる。この惰円偏光は、第1の液晶セ
ル5とツイスト角が逆でほぼ等しく、またリタデーシヨ
ンもほぼ等しい第2の液晶セル6を通過することにより
、直線偏光102′となり、第2の偏光板4を通過し、
人間の目に感知される。
That is, as shown in FIG. 6, the linearly polarized light 103 that has passed through the polarizing plate 3 becomes elliptically polarized light 101' by passing through the first liquid crystal cell 5. This circularly polarized light becomes linearly polarized light 102' by passing through the second liquid crystal cell 6, which has an opposite twist angle and is almost equal to that of the first liquid crystal cell 5, and also has a retardation that is almost equal to that of the first liquid crystal cell 5, and becomes linearly polarized light 102'. pass through,
perceptible to the human eye.

ここで重要なのは、第1の液晶セル5と第2の液晶セル
6とに光学的に相補な性質を持たせであることである。
What is important here is that the first liquid crystal cell 5 and the second liquid crystal cell 6 have optically complementary properties.

これにより、第1の液晶セル5を通過後の楕円の形状の
波長依存性は、第2の液晶セル6による楕円の形状の波
長依存性と相補的となる。この結果、第1.第2の液晶
セル5.6の透過光は波長依存性がなく、色づきのない
無彩色表示が得られる。このことは、可視領域のすべて
の光が表示に使え、明るい表示が得られるということも
示す。
Thereby, the wavelength dependence of the elliptical shape after passing through the first liquid crystal cell 5 becomes complementary to the wavelength dependence of the elliptical shape due to the second liquid crystal cell 6. As a result, 1. The transmitted light of the second liquid crystal cell 5.6 has no wavelength dependence, and an achromatic display without coloration can be obtained. This also shows that all the light in the visible region can be used for display, resulting in a bright display.

このとき、第1の液晶セル5と第2の液晶セル6とが光
学的に相補的になることが必要であるので、それぞれの
液晶セルのリタデーシヨンが、例えば±0.05庫以内
でほぼ同じでおることが必要である。
At this time, it is necessary for the first liquid crystal cell 5 and the second liquid crystal cell 6 to be optically complementary, so the retardation of each liquid crystal cell must be approximately the same, for example within ±0.05. It is necessary to go there.

なお、第1の液晶セル5の基板1,1−に電極を形成し
、通常のドツトマトリクス形液晶表示素子と同様に駆動
を行い、−力筒2の液晶セル6の基板2,2′には電極
を形成せずに液晶を駆動しないで、単に楕円形状の補正
用として用いる。
Note that electrodes are formed on the substrates 1, 1- of the first liquid crystal cell 5, and driven in the same manner as a normal dot matrix type liquid crystal display element, and electrodes are formed on the substrates 2, 2' of the liquid crystal cell 6 of the power cylinder 2. is used simply for correcting the elliptical shape without forming electrodes or driving the liquid crystal.

このようにして、2層セル方式のST型液晶表示素子は
白黒表示で、かつ桁数を増すことができるという長所を
持つが、視野角がSBE型やOMI型に比べ狭く、また
2枚の液晶セルの歩留り等を含めると2枚の液晶セルを
使うことは大変高価になる。
In this way, the two-layer cell type ST type liquid crystal display element has the advantage of being able to display black and white and increase the number of digits, but the viewing angle is narrower than that of the SBE type and OMI type, and the two Using two liquid crystal cells becomes very expensive if the yield of the liquid crystal cells is taken into account.

(発明が解決しようとする課題) 上述のように、捩れ角が180°以上のいわゆるST型
液晶表示素子やSBE型液晶表示素子では背景に色付き
があり、また背景に色付きがない無彩色のOMI型液晶
表示素子場合においては高コントラストで背景が明るい
液晶表示素子を得ることができなかった。
(Problems to be Solved by the Invention) As mentioned above, so-called ST type liquid crystal display elements and SBE type liquid crystal display elements with a twist angle of 180° or more have a colored background, and an achromatic OMI with no colored background. In the case of a type liquid crystal display element, it was not possible to obtain a liquid crystal display element with high contrast and a bright background.

またST型液晶セルを2枚使った液晶表示素子は背景に
色付きのない白黒表示で高コントラストであるが高価で
あった。
In addition, a liquid crystal display element using two ST type liquid crystal cells has a black and white display with no colored background and has high contrast, but is expensive.

本発明は、上記従来の問題点を解決しようとするもので
は、背景が無彩色で明るく、高コントラスト、広視野角
の液晶表示素子を安価に提供することを目的とする。
The present invention is intended to solve the above-mentioned conventional problems, and an object of the present invention is to provide a liquid crystal display element having an achromatic and bright background, high contrast, and a wide viewing angle at a low cost.

[発明の構成] (課題を解決するための手段) 本発明の液晶表示素子は、それぞれ対向面に電極が形成
され、対向設置された第1、第2の基板と、第1の基板
と第2の基板との間で捩れ配向された液晶組成物からな
る液晶セルと、液晶セルの両側に配置された第1、第2
の偏光板とを有する液晶表示装置において、第1の基板
と第1の偏光板の間に、第1の基板側から第1と第2の
光学遅延板を配置してなり、第1と第2の光学遅延板は
ほぼ同一のリタデーシヨンを有し、そのリタデーシヨン
が0.25乃至0.45μmの範囲にあるることを特徴
とする液晶表示素子である。
[Structure of the Invention] (Means for Solving the Problems) The liquid crystal display element of the present invention includes first and second substrates, each having electrodes formed on their opposing surfaces and placed opposite each other, and a first substrate and a second substrate. A liquid crystal cell made of a liquid crystal composition twisted and oriented between a second substrate and a first and second liquid crystal cell arranged on both sides of the liquid crystal cell.
In a liquid crystal display device having a polarizing plate, first and second optical retardation plates are arranged from the first substrate side between the first substrate and the first polarizing plate, and the first and second optical retardation plates are arranged from the first substrate side. The optical retardation plate is a liquid crystal display element characterized in that it has substantially the same retardation, and the retardation is in the range of 0.25 to 0.45 μm.

(作 用) 本発明の液晶表示素子の作用を説明する。(for production) The operation of the liquid crystal display element of the present invention will be explained.

第5図は、従来の技術の複屈折効果により表示を行う、
例えばSBE型液晶表示素子やST型液晶表示素子の表
示原理を説明する図である。基板1.1′とその間に挟
持された液晶組成物とからなる液晶セル5の前接に偏光
板3,4が配設されている。偏光板3を通った直線偏光
103は液晶セル5を通過することにより一般に楕円偏
光101′となる。液晶セル5を通過した楕円偏光は、
所定の角度に置かれた偏光板4を通過し、人間の目に感
知される。このときの楕円の形状は、液晶セル5におけ
る液晶分子の捩れ角であるツイスト角軍、リタデーシヨ
ンR=△n−d−cos2θおよび波長人によって決ま
る。ここで、八nは液晶セル5中の液晶組成物の複屈折
率、dはセル厚く基板間隔)、θはチルト角である。
FIG. 5 shows a display using the conventional birefringence effect.
FIG. 2 is a diagram illustrating the display principle of, for example, an SBE type liquid crystal display element or an ST type liquid crystal display element. Polarizing plates 3 and 4 are disposed in front of a liquid crystal cell 5 consisting of a substrate 1.1' and a liquid crystal composition sandwiched therebetween. The linearly polarized light 103 that has passed through the polarizing plate 3 generally becomes elliptically polarized light 101' by passing through the liquid crystal cell 5. The elliptically polarized light that passed through the liquid crystal cell 5 is
The light passes through a polarizing plate 4 placed at a predetermined angle and is detected by the human eye. The shape of the ellipse at this time is determined by the twist angle, which is the twist angle of the liquid crystal molecules in the liquid crystal cell 5, the retardation R=Δnd-cos2θ, and the wavelength. Here, 8n is the birefringence of the liquid crystal composition in the liquid crystal cell 5, d is the cell thickness (the thickness of the cell and the distance between the substrates), and θ is the tilt angle.

一般に、透過率は波長により変化し、透過光に色づきが
ある。液晶セルに電界を印加し、液晶分子の配向を変え
ることにより、複屈折率Δnは実効的に変化し、これに
よりリタデーシヨンRが変化し、透過率が変り、このこ
とを用いて表示を行なう。
Generally, the transmittance changes depending on the wavelength, and the transmitted light is colored. By applying an electric field to the liquid crystal cell and changing the orientation of the liquid crystal molecules, the birefringence Δn is effectively changed, which changes the retardation R and changes the transmittance, which is used to perform display.

前述の2層方式はこのような液晶セルを互いに光学的に
相補な性質を持たせた2枚のセルを用いたことを基本構
成としている。
The basic structure of the above-mentioned two-layer system is to use two such liquid crystal cells each having optically complementary properties.

さて、本発明は、1枚の液晶セルの片側に2枚の光学遅
延板を配置させた構成であり、その作用を第2図を用い
て説明する。偏光板3を通過した直線偏光103は、液
晶セル5を通過することにより楕円偏光101′となる
。液晶セルの上側に光学遅延板10.11を置き、楕円
偏光101′を直線偏光102−にし、偏光板4を介し
て人間の目に感知される。
Now, the present invention has a configuration in which two optical delay plates are arranged on one side of one liquid crystal cell, and its operation will be explained using FIG. 2. The linearly polarized light 103 that has passed through the polarizing plate 3 becomes elliptically polarized light 101' by passing through the liquid crystal cell 5. An optical retardation plate 10.11 is placed above the liquid crystal cell, and the elliptically polarized light 101' is converted into linearly polarized light 102-, which is sensed by the human eye via the polarizing plate 4.

このとき重要なのは、液晶セル5を通過した楕円偏光1
01−を直線偏光、また直線偏光に近い偏光102−に
変換することでおる。
What is important at this time is that the elliptically polarized light 1 that has passed through the liquid crystal cell 5
01- into linearly polarized light or polarized light 102- which is close to linearly polarized light.

本発明者等の検討によれば、光学遅延板を2枚積層した
構造が良好であった。なお、光学遅延板を1枚だけ用い
た場合には、偏光102′が完全に直線偏光ではなく多
少楕円であり、黒レベルが完全に黒とならず灰色で、多
少コントラストが劣る。
According to studies conducted by the present inventors, a structure in which two optical delay plates were laminated was favorable. Note that when only one optical delay plate is used, the polarized light 102' is not completely linearly polarized but somewhat elliptical, the black level is not completely black but gray, and the contrast is somewhat inferior.

また、積層数を3枚以上とすると偏光102−は直線偏
光に近くなり、コントラストが非常に高く視認状態も良
好であるが、光学遅延板を3枚以上用いることは、液晶
表示素子を高価にする。
In addition, when the number of laminated layers is three or more, the polarized light 102- becomes close to linearly polarized light, and the contrast is very high and visibility is good. However, using three or more optical delay plates makes the liquid crystal display element expensive. do.

また2枚の積層構造としたとぎは、特に本発明の如く2
枚の光学遅延板のリタデーシヨンは同じとすることが量
産上でか好ましく、この場合には、第1および第2の光
学遅延板のリタデーシヨンが0.25庫乃至0.45間
の範囲において、上記の効果が得られ、高コントラスト
の白黒表示が得られた。
In addition, a sword with a laminated structure of two sheets is particularly suitable for two layers as in the present invention.
It is preferable for mass production that the retardations of the two optical retardation plates be the same, and in this case, the retardation of the first and second optical retardation plates is in the range of 0.25 to 0.45. effect was obtained, and a high contrast black and white display was obtained.

光学遅延板のリタデーシヨンが0.25tI!IIより
小さく、あるいは0.45卯より大きくなると直線偏光
に近い偏光102′を1qることができず、表示色に色
付きが生じてしまう。
The retardation of the optical delay plate is 0.25tI! If it is smaller than II or larger than 0.45 mu, it will not be possible to polarize the polarized light 102', which is close to linearly polarized light, by 1q, and the displayed color will be colored.

なお、電圧に対して液晶分子の配向角が急激に変化する
ように、ツイスト角は大きい方が良く、180°から2
70°の間が良い。
Note that it is better to have a larger twist angle, so that the orientation angle of liquid crystal molecules changes rapidly with respect to voltage.
A value between 70° is good.

また、一方の光学遅延板を一方の基板と兼ねることがで
きる。
Further, one optical delay plate can also serve as one substrate.

(実施例) 〈実施例1〉 以下、本発明に係る液晶表示素子の実施例を第1図およ
び第4図を用いて詳細に説明する。
(Example) <Example 1> Hereinafter, an example of a liquid crystal display element according to the present invention will be described in detail using FIGS. 1 and 4.

第3図は本発明の液晶表示素子の断面図を示す。FIG. 3 shows a cross-sectional view of the liquid crystal display element of the present invention.

透明電極7,7′とポリイミドからなる配向膜8゜8−
が形成された基板1.1′とがほぼ平行に設置されてお
り、この間には液晶組成物9が封入されており、その周
囲はエポキシ接着剤からなるシール剤12で封止固定さ
れており、液晶セル5となっている。この液晶セル5に
おいて、液晶分子は基板1の配向方向r、基板1′の配
向方向r′によって左回りにツイスト角’l/= 24
0”で捩れ配向しており、チルト角θは1.5度であり
、セル厚(基板間隔)dは6.6゛即である。
Transparent electrodes 7, 7' and alignment film 8°8- made of polyimide
A liquid crystal composition 9 is sealed between the substrates 1.1' and 1.1' formed thereon, and a liquid crystal composition 9 is sealed and fixed around the substrate 1.1' with a sealant 12 made of epoxy adhesive. , a liquid crystal cell 5. In this liquid crystal cell 5, the liquid crystal molecules are twisted counterclockwise by the orientation direction r of the substrate 1 and the orientation direction r' of the substrate 1' at a twist angle 'l/=24
The tilt angle θ is 1.5 degrees, and the cell thickness (substrate spacing) d is 6.6 degrees.

液晶セル5には液晶組成物として、ZLI3711(メ
ルク社製)に左回りのカイラル剤として5−81’l 
(E、メルク社製)をd/pt (pt :ピッチ)が
約0.6になる様に添加したものを用いた。この液晶組
成物の複屈折率Δn G(to、 1045であったの
で、リタデーシヨンR=Δn−d−cos2θは約0.
69JJ!Itであった。
In the liquid crystal cell 5, as a liquid crystal composition, ZLI3711 (manufactured by Merck & Co., Ltd.) and 5-81'L as a counterclockwise chiral agent were added.
(E, manufactured by Merck & Co.) was added so that d/pt (pt: pitch) was about 0.6. Since the birefringence Δn G(to, 1045) of this liquid crystal composition, the retardation R=Δn−d−cos2θ was approximately 0.
69JJ! It was.

一方、延伸ポリビニルアルコールからなる厚さ約0.5
IJ!nの第1の光学遅延板10の延伸方向が水平方向
よりA+ =48度となるように配置し、その上に第2
の光学遅延板11の延伸方向が水平方向よりA2−5度
に配置だ。またこのときの第1の光学遅延板10のリタ
デーシヨン値Rは0.365柳、第2の光学遅延板11
のリタデーシヨン値Rは0.365庫であり、また偏光
板の角度はP+=68度、P2=−40度とした(第1
図を参照〉。
On the other hand, it is made of stretched polyvinyl alcohol with a thickness of about 0.5
IJ! The first optical retardation plate 10 of n is arranged so that the stretching direction is A+ = 48 degrees from the horizontal direction, and the second
The stretching direction of the optical delay plate 11 is arranged at an angle of A2-5 degrees from the horizontal direction. Further, at this time, the retardation value R of the first optical retardation plate 10 is 0.365 Yanagi, and the retardation value R of the second optical retardation plate 11 is 0.365 Yanagi.
The retardation value R of the
See figure.

この実施例において、液晶セル5に電圧を印加し、液晶
を点灯、非点灯させたときの透過率の波長依存性を第4
図に示す。同図から分る様に非点灯時、点灯時の透過率
とも、はぼ波形に関係なく平坦で無彩色表示ができ非点
灯時には黒、点灯時には白の表示でいわゆるノーマリブ
ラック・モードであった。た。また、この液晶セルを1
/200デユーテイでマルヂプレタス駆動したときのコ
ントラストは14:1と高く、また視野角も広かった。
In this example, the wavelength dependence of the transmittance when a voltage is applied to the liquid crystal cell 5 and the liquid crystal is turned on and off is measured in the fourth example.
As shown in the figure. As can be seen from the figure, the transmittance when not lit and when lit is flat and achromatic regardless of the waveform, and the display is black when not lit and white when lit, which is the so-called normally black mode. Ta. Ta. In addition, this liquid crystal cell is
The contrast was high at 14:1 when driving the multipretas at /200 duty, and the viewing angle was wide.

〈実施例2〉 実施例1において、第1、第2の光学遅延板と、第1、
第2の偏光板とを次のように配置した。
<Example 2> In Example 1, the first and second optical delay plates, the first,
The second polarizing plate was arranged as follows.

第1の光学遅延板10は延伸方向が水平方向よりA1=
27度となるように配置し、その上に第2の光学遅延板
11の延伸方向が水平方向よりA2=−22度に配置し
た。またこのときの第1の光学遅延板10のリタデーシ
ヨン値Rは0.400/m、第2の光学遅延板11のリ
タデーシヨン値Rは0.400mでおり、また偏光板の
角度はp、=47度、P2= −64度とした。
The stretching direction of the first optical retardation plate 10 is A1=
The second optical retardation plate 11 was placed thereon so that the extending direction of the second optical retardation plate 11 was A2=-22 degrees from the horizontal direction. Further, the retardation value R of the first optical retardation plate 10 at this time is 0.400/m, the retardation value R of the second optical retardation plate 11 is 0.400m, and the angle of the polarizing plate is p,=47 degrees, P2=-64 degrees.

表示は、ノーマリブラック・モードであり、実施例1と
同様に駆動した時、コントラストが約12:1と高く、
また視野角も広い表示が得られた。
The display is in normally black mode, and when driven in the same manner as in Example 1, the contrast is high at approximately 12:1.
In addition, a display with a wide viewing angle was obtained.

[発明の効果] 本発明によれば、背景が無彩色で明るく、高コントラス
ト、広視野角の液晶表示素子が安価に得られる。
[Effects of the Invention] According to the present invention, a liquid crystal display element with a bright, achromatic background, high contrast, and a wide viewing angle can be obtained at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の液晶表示素子における配向
方向、偏光板の吸収軸の方向および光学遅延板の光軸方
向の関係を示す図、第2図は本発明の液晶表示素子の作
用を説明する図、第3図は本発明の一実施例の液晶表示
素子の断面図、第4図は本発明の液晶表示素子の透過率
の波長依存性を示す図、第5図および第6図は従来例の
液晶表示素子を作用をそれぞれ説明する図である。 代理人 弁理士 則 近 憲 佑 同    竹 花 喜久男 γ rコ イ テ rコ J 昂 ■
FIG. 1 is a diagram showing the relationship between the alignment direction, the absorption axis direction of the polarizing plate, and the optical axis direction of the optical retardation plate in a liquid crystal display element according to an embodiment of the present invention, and FIG. FIG. 3 is a cross-sectional view of a liquid crystal display element according to an embodiment of the present invention, FIG. 4 is a diagram showing the wavelength dependence of transmittance of the liquid crystal display element of the present invention, and FIGS. FIG. 6 is a diagram illustrating the operation of a conventional liquid crystal display element. Agent Patent Attorney Nori Chika Ken Yudo Takehana Kikuoγ r Koiteruko J Akira■

Claims (1)

【特許請求の範囲】 それぞれ対向面に電極が形成され、対向設置された第1
、第2の基板と、前記第1の基板と第2の基板との間で
捩れ配向された液晶組成物からなる液晶セルと、前記液
晶セルの両側に配置された第1、第2の偏光板とを有す
る液晶表示装置において、 前記第1の基板と前記第1の偏光板の間に、第1の基板
側から第1と第2の光学遅延板を配置してなり、前記第
1と第2の光学遅延板はほぼ同一のリタデーシヨンを有
し、そのリタデーシヨンが0.25乃至0.45μmの
範囲にあるることを特徴とする液晶表示素子。
[Claims] First electrodes are formed on opposing surfaces, and the first electrodes are arranged opposite to each other.
, a second substrate, a liquid crystal cell made of a liquid crystal composition twisted and oriented between the first substrate and the second substrate, and first and second polarized light disposed on both sides of the liquid crystal cell. In the liquid crystal display device having a plate, first and second optical retardation plates are arranged between the first substrate and the first polarizing plate from the first substrate side, and the first and second optical retardation plates are disposed from the first substrate side. A liquid crystal display device, wherein the optical retardation plates have substantially the same retardation, and the retardation is in the range of 0.25 to 0.45 μm.
JP63169017A 1988-07-08 1988-07-08 Liquid crystal display element Pending JPH0219835A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63169017A JPH0219835A (en) 1988-07-08 1988-07-08 Liquid crystal display element
KR1019890009739A KR930002916B1 (en) 1988-07-08 1989-07-07 Liquid crystal display cell device
EP19890112474 EP0350063A3 (en) 1988-07-08 1989-07-07 Liquid crystal display device
JP1174031A JP2809722B2 (en) 1988-07-08 1989-07-07 Liquid crystal display device
US07/376,541 US4995704A (en) 1988-07-08 1989-07-07 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63169017A JPH0219835A (en) 1988-07-08 1988-07-08 Liquid crystal display element

Publications (1)

Publication Number Publication Date
JPH0219835A true JPH0219835A (en) 1990-01-23

Family

ID=15878789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63169017A Pending JPH0219835A (en) 1988-07-08 1988-07-08 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JPH0219835A (en)

Similar Documents

Publication Publication Date Title
KR930002917B1 (en) Liquid crystal display cell
KR940002194B1 (en) Liquid crystal display devices
KR930002916B1 (en) Liquid crystal display cell device
JP2856401B2 (en) Liquid crystal display device
JP3308154B2 (en) Liquid crystal panel and its driving method
JPH11337929A (en) Reflection type liquid crystal display element
JP3284169B2 (en) Birefringence control type liquid crystal display
JP2666968B2 (en) Liquid crystal display device
JP2815870B2 (en) Liquid crystal display device
JP2908386B2 (en) Liquid crystal display device
JPH0219830A (en) Liquid crystal display element
JPH0219835A (en) Liquid crystal display element
JPH0219828A (en) Liquid crystal display element
JP2809722B2 (en) Liquid crystal display device
JPH04289818A (en) Liquid crystal display
JPH0237318A (en) Liquid crystal display element
JPH0219829A (en) Liquid crystal display element
JP3103223B2 (en) Color liquid crystal display
JP3648572B2 (en) Color liquid crystal display device
JP2000310774A (en) Color liquid crystal display device
JP2666968C (en)
JPH0973105A (en) Color liquid crystal display device
JPH08262434A (en) Color liquid crystal display device
JPH08262399A (en) Color liquid crystal display device
JPH03252620A (en) Liquid crystal display element