JPH02196213A - Formation of buffer layer of waveguide type element - Google Patents

Formation of buffer layer of waveguide type element

Info

Publication number
JPH02196213A
JPH02196213A JP1015790A JP1579089A JPH02196213A JP H02196213 A JPH02196213 A JP H02196213A JP 1015790 A JP1015790 A JP 1015790A JP 1579089 A JP1579089 A JP 1579089A JP H02196213 A JPH02196213 A JP H02196213A
Authority
JP
Japan
Prior art keywords
buffer layer
waveguide
thin film
waveguide type
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1015790A
Other languages
Japanese (ja)
Inventor
Hideaki Okayama
秀彰 岡山
Ryoko Shibuya
渋谷 良子
Akihiro Matoba
的場 昭大
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP1015790A priority Critical patent/JPH02196213A/en
Publication of JPH02196213A publication Critical patent/JPH02196213A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/21Thermal instability, i.e. DC drift, of an optical modulator; Arrangements or methods for the reduction thereof

Abstract

PURPOSE:To suppress the generation of an operating point drift and hysteresis to a low level by executing the heat treatment of the thin oxide film on a waveguide at >=750 deg.C and <=850 deg.C, thereby forming a buffer layer. CONSTITUTION:The buffer layer 12 is formed on an LiNbO3 or LiTaO3 substrate 10 and after the thin film 14 of the oxide is deposited thereon, the thin film 14 is heat-treated to form the buffer layer 16 and an electrode 18 is provided thereon. The characteristics of the buffer layer 16 are improved and the generation of the so-called DC drift (operating point drift) with which the operating voltage of the element changes with time and the generation of hysteresis are suppressed to a lower level if the heat treatment of the thin oxide film 14 is executed at >=700 deg.C and <=850 deg.C at this time. The waveguide type optical element having the excellent characteristics is thus formed.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、LiNbO3又はLiTaO3基板を用い
て形成した導波型光素子の構造中に含まれるバッファ層
の形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for forming a buffer layer included in the structure of a waveguide optical device formed using a LiNbO3 or LiTaO3 substrate.

(従来の技術) 導波型光素子は、薄膜光導波路を用いた、電気的に光の
伝播を制御する機能デバイスであり、この導波型光素子
は例えば位相変調器、光偏向器、光結合器、光スィッチ
等としで形成されで用いられできている。
(Prior Art) A waveguide type optical element is a functional device that uses a thin film optical waveguide to electrically control the propagation of light. It is formed and used as a coupler, optical switch, etc.

先ず、この発明の理解を容易にするため、従来の典型的
な導波型光素子の製造工程を簡単(こ説明する。
First, in order to facilitate understanding of the present invention, the manufacturing process of a typical conventional waveguide type optical device will be briefly explained.

第2図(A)〜(D)は、LiNb○3基板を用いて導
波型光素子の主要製造工程の説明図であり、各図は導波
路の延在方向に沿った部分の断面で概略的に示しである
Figures 2 (A) to (D) are explanatory diagrams of the main manufacturing process of a waveguide type optical device using a LiNb○3 substrate, and each figure is a cross section of a portion along the extending direction of the waveguide. This is schematically shown.

L i N b 03基板10を用意し、この基板10
にTiを適当な条件下で拡散して光の導波路12を形成
する(第2図(A))。
A L i N b 03 substrate 10 is prepared, and this substrate 10
Ti is then diffused under appropriate conditions to form an optical waveguide 12 (FIG. 2(A)).

次ニ、t:ノ導波路12上ニS i 02 、A n 
203又はその他の適当な酸化物の薄膜14ヲ適当な方
法で成膜する(第2図(8))。
Next, t: On the waveguide 12, S i 02 , A n
A thin film 14 of 203 or other suitable oxide is formed by a suitable method (FIG. 2(8)).

次に、この酸化物の薄膜14の熱処理を行い、この熱処
理済みの酸化物の薄膜がバッファ層16となる(第2図
(C))。
Next, this oxide thin film 14 is heat-treated, and this heat-treated oxide thin film becomes the buffer layer 16 (FIG. 2(C)).

次、このバッファ層16上の所要箇所に適当な余慶18
を被着しでバターニングして電極を形成していた(第2
図(D))。
Next, apply appropriate adhesives 18 to the required locations on this buffer layer 16.
was deposited and patterned to form an electrode (second
Figure (D)).

このバッファ層16は、電極18を直接導波路12上に
形成すると、電極18の金庫が導波路から光を吸収する
恐れがあるため、電極18と導波路12とをM間させる
ために設け1.:層である。このバッファ層16は、従
来は、Sin、とかAl2O2等といった酸化物の成膜
時に酸素欠損を生じているためにこの酸化物の薄膜自体
の抵抗値が小さい。
If the electrode 18 is formed directly on the waveguide 12, the buffer layer 16 is provided to separate the electrode 18 and the waveguide 12 from each other, since there is a risk that the safe of the electrode 18 may absorb light from the waveguide. .. : It is a layer. Conventionally, in this buffer layer 16, oxygen vacancies are generated when an oxide such as Sin or Al2O2 is formed, so that the resistance value of the thin oxide film itself is small.

従って、この酸化物の薄膜士に直接電極を設け、直流電
圧を印加()た場合(こは、電界を打ち消す方向に電荷
が移動するため、素子の動作電圧が時間と共に変化する
、いわゆる直流(DC)ドリフト(動作点ドリフト)を
生ずる。
Therefore, if an electrode is provided directly on this oxide thin film and a DC voltage is applied (), the operating voltage of the device will change over time because the charge moves in the direction of canceling the electric field. DC) drift (operating point drift).

そこで、従来においでf(t、この酸化物の薄膜の成膜
後に、成膜時に生じた酸素欠損を補う目的で、酸素を含
む雰囲気中、例えば水蒸気を含んだ酸素の雰囲気(ウェ
ット雰囲気)或いは酸素だけの雰囲気(ドライ雰囲気)
中、で熱処理を行っていた。そして、この熱処理は、熱
処理すべき試料を、500−600℃に加熱された雰囲
気中に、数時間例えば2〜8時間程度の範囲内の適当な
時間だけ故フして、行っていた。(例えば文献:rFL
EcTORONIcs  LETTER3J(エレクト
ロニクス レターズ)   VOJ2.。
Therefore, in the past, after forming a thin film of this oxide, f(t) was deposited in an oxygen-containing atmosphere, for example, an oxygen atmosphere containing water vapor (wet atmosphere), or an oxygen atmosphere containing water vapor (wet atmosphere). Atmosphere containing only oxygen (dry atmosphere)
Heat treatment was carried out inside. This heat treatment was performed by leaving the sample to be heat treated in an atmosphere heated to 500-600 DEG C. for an appropriate period of time, for example, within a range of about 2 to 8 hours. (For example, literature: rFL
EcTORONics LETTER3J (Electronics Letters) VOJ2. .

22、No、5.(1986)、PP、262−263
9照)。
22, No, 5. (1986), PP, 262-263.
9).

(発明が解決しようとする課題) しかしながら、この従来方法で形成したバッファ層を具
えた導波型光素子では、LiNbO3及びLiTa0:
i基板のいずれを利用して形成した場合であっても、次
のような問題点があった。
(Problem to be Solved by the Invention) However, in a waveguide type optical device including a buffer layer formed by this conventional method, LiNbO3 and LiTa0:
No matter which i-substrate is used for formation, there are the following problems.

■これに長時間直流バイアス電圧を印加しで作動させる
と、なおも、大きな動作点1−制ノフ[〜が生しでいた
。例えば、約600℃の温度の水蒸気を含んだ酸素の雰
囲気(ウェット雰囲気)中に約5時間数百して熱処理を
行って得た、5.5mm長の反転ΔB電極型光スイッヂ
(但し、バー電圧40V)の試料では、4〜8時間で5
v程度の動作点ドリフトを生じでいた。
(2) When this was operated by applying a DC bias voltage for a long period of time, a large operating point 1-noise still occurred. For example, a 5.5 mm long inverted ΔB electrode type optical switch (however, a 5.5 mm long inverted ΔB electrode type optical switch (however, a bar For samples with a voltage of 40 V), 5
This resulted in an operating point drift of about v.

■また、導波型光素子を光スィッチとして構成した場合
、電極への印加電圧を増加した時と低下させた峙とで、
スイッチング特性に大きなヒステリシスが生じていた。
■Also, when the waveguide type optical element is configured as an optical switch, when the voltage applied to the electrode is increased and when it is decreased,
Large hysteresis occurred in the switching characteristics.

この出願に係る発明者等は、これら問題点の発生原因の
追求のため、種々の研究及び実験を行ったところ、前述
のように熱処理温度!500〜600℃として作成した
バッファ層に一因があることを見い出し、さらに、種々
の熱処理温度条件でバッファ層を形成する実験を行った
ところ、ある温度範囲内で充分な特性を有するバッファ
層を得ることが出来ることを発見した。
The inventors of this application conducted various studies and experiments in order to investigate the causes of these problems, and found that, as mentioned above, the heat treatment temperature! We found that the buffer layer formed at 500 to 600°C was a contributing factor, and we conducted experiments to form the buffer layer under various heat treatment temperature conditions, and found that the buffer layer had sufficient properties within a certain temperature range. I discovered that it can be obtained.

従って、この発明の目的は、動作点ドリフト及びヒステ
リシスの発生を出来るだけ小さく抑えで特性の優れた導
波型光素子を得ることが出来るバッファ層の形成方法を
提供することにある。
Therefore, an object of the present invention is to provide a method for forming a buffer layer that can suppress operating point drift and hysteresis to a minimum and obtain a waveguide optical device with excellent characteristics.

(課題を解決するための手段) この目的の達成を図るため、この発明によるバッファ層
の形成方法によれば、 酸化物の薄膜の熱処理を700℃以上及び850℃以下
の範囲内の温度で行うこと を精微とする。
(Means for Solving the Problems) In order to achieve this object, according to the method for forming a buffer layer according to the present invention, the oxide thin film is heat-treated at a temperature within the range of 700°C or higher and 850°C or lower. Subtle things.

(作用) このような700〜850℃という温度範囲内の適当な
温度で酸化物の薄膜の熱処理を行うと、その理由は定か
ではないが、バッファ層の特性が良好となり、従って、
従来よりも動作点ドリフト−が小さくしかもヒステリシ
スの小さい導波型光素子を得ることが出来る。
(Function) When the oxide thin film is heat-treated at an appropriate temperature within the temperature range of 700 to 850°C, the characteristics of the buffer layer become better, although the reason is not clear.
It is possible to obtain a waveguide type optical device with smaller operating point drift and smaller hysteresis than conventional ones.

(実施例) 以下、図面を参照して、この発明の導波型光素子のバッ
ファ層の形成方法の実施例につき説明する。
(Example) Hereinafter, with reference to the drawings, an example of a method for forming a buffer layer of a waveguide type optical device of the present invention will be described.

尚、この発明の説明に供する導波型光素子の主要製造工
程は、バッファ層の形成の際の熱処理条件が異なる他は
従来工程と実質的に同一であるので、第2図を用いて説
明する。
The main manufacturing process of the waveguide type optical device used to explain this invention is substantially the same as the conventional process except for the heat treatment conditions for forming the buffer layer, so it will be explained using FIG. 2. do.

先ず、LiNbO3又はし1Ta03基板lOに導波路
12を従来と同様な技術なTiの拡散を用いて形成する
(第2図(A))。
First, a waveguide 12 is formed on a LiNbO3 or 1Ta03 substrate 1O using Ti diffusion, which is a technique similar to the conventional technique (FIG. 2(A)).

次に、CvD、蒸着又はスパッタのうちの適当な技術を
用いて、導波路12が形成されている基板10上に、酸
化物例えば5102、Ag2O3又はその他材料の薄膜
16を、成膜する(第2図(B))、この酸化物の薄l
l116の膜厚は、これら材料及び導波させる光の波長
によって異なるが、通常は2000A〜3500Aの範
囲内の値とするのが製作上及び特性上好適である。
A thin film 16 of an oxide, e.g. Figure 2 (B)), a thin layer of this oxide
The thickness of the l116 film varies depending on the material and the wavelength of the light to be guided, but it is usually suitable for manufacturing and characteristics to have a value within the range of 2000A to 3500A.

この酸化物の薄膜14を成膜した後、該酸化物の薄膜の
熱処理を酸素を含む雰囲気中で行って酸化処理を一層促
進させてバッファ層16を形成する(第2図(C))、
この場合、従来と同様に、ドライ雰囲気中或い゛はウェ
ット雰囲気中のいずれ7の雰囲気中で行っても良いが、
この実施例では、水蒸気を含む酸素雰囲気中で行う。
After forming this oxide thin film 14, the oxide thin film is heat-treated in an atmosphere containing oxygen to further accelerate the oxidation treatment and form a buffer layer 16 (FIG. 2(C)).
In this case, as in the past, the process may be carried out in either a dry atmosphere or a wet atmosphere, but
This example is carried out in an oxygen atmosphere containing water vapor.

次に、この熱処理の温度条件につき説明する。Next, the temperature conditions for this heat treatment will be explained.

第1図は、Siをウェット酸素雰囲気中及びドライ酸素
雰囲気中で熱処理した場合のSiの酸化温度−酸化時間
特性を示す曲線図であり、横軸に酸化温yiを℃の単位
とり、縦軸に100OAの厚みだけ酸化するために要す
る時間をh(時間)の単位でとってそれぞれ示しである
0図中、実線はウェット雰囲気中で酸化処理した場合の
特性曲線であり、破線はドライ雰囲気中で酸化処理した
場合の特性曲線である。尚、これら特性曲線はSiにつ
いでであるが、同様な傾向はAβの場合にも成立しSi
の場合と実質的に変わらないので、Aβの特性曲線の図
示は省略する。
FIG. 1 is a curve diagram showing the oxidation temperature-oxidation time characteristics of Si when Si is heat-treated in a wet oxygen atmosphere and a dry oxygen atmosphere. In the figure, the solid line is the characteristic curve when the oxidation treatment is performed in a wet atmosphere, and the broken line is the characteristic curve in the dry atmosphere. This is a characteristic curve when oxidation treatment is performed. Note that although these characteristic curves are second to that of Si, a similar tendency holds true for Aβ as well.
Since this is substantially the same as in the case of , illustration of the characteristic curve of Aβ is omitted.

この第1図の特性曲線からも理解出来るように、ウェッ
ト雰囲気中での酸化処理はSiの膜を100OA酸化す
るに必要な時間は600℃では約100時間程度、70
0℃では約8時間程度、800℃では約1時間30分程
度、900 ’Cでは約1時間30分以下時間となる。
As can be understood from the characteristic curve in Figure 1, the time required for oxidation treatment in a wet atmosphere to oxidize a Si film to 100 OA is approximately 100 hours at 600°C;
At 0°C, it takes about 8 hours, at 800°C, it takes about 1 hour and 30 minutes, and at 900'C, it takes about 1 hour and 30 minutes or less.

一方、ドライ雰囲気中では700℃で100v!間程度
以上とナリ、800℃では約20vf闇程度、900 
”Cでは約4時間程度となる。また、600℃より高温
での酸化処理により、基板中のLiの移動によって、S
iO2の変成が生じてバッファ層の特性が劣化する心配
があるが、実験によれば特性上何等問題が無いことが確
認された。しかしながら、850℃より高温となると、
Liが移動して基板のLiNbO3に変成が生じてしま
うので、この850℃以下の温度での熱処理が好ましい
On the other hand, in a dry atmosphere it is 100V at 700℃! About 20vf at 800℃, 900℃
In addition, the oxidation treatment at a temperature higher than 600°C causes the movement of Li in the substrate, resulting in S
Although there is a concern that iO2 metamorphosis may occur and the properties of the buffer layer deteriorate, experiments have confirmed that there is no problem in terms of properties. However, when the temperature is higher than 850℃,
The heat treatment at a temperature of 850° C. or lower is preferable because Li moves and metamorphosis occurs in the LiNbO3 of the substrate.

従って、この発明では、酸化物の薄膜の熱処理I!70
0℃以上及び850℃以下の範囲内の温度で行うのが良
く、特に800℃程度の温度で行うのが好適である。
Therefore, in this invention, the heat treatment of the oxide thin film I! 70
It is preferable to carry out the process at a temperature within the range of 0°C or higher and 850°C or lower, particularly preferably at a temperature of about 800°C.

この実施例では、酸化物の薄膜(第2図(8)に14で
示す、)7&、水蒸気を含んだ酸素雰囲気(ウェット雰
囲気)中で、2〜5時間、LiNbO3の変成温度であ
る900℃直下の酸化温度である800℃程度の温度で
、熱処理を行って、バッファ層1618得る(第2図(
C))。
In this example, a thin oxide film (indicated by 14 in FIG. 2(8)) was heated to 900° C., which is the metamorphic temperature of LiNbO3, for 2 to 5 hours in an oxygen atmosphere containing water vapor (wet atmosphere). A buffer layer 1618 is obtained by performing heat treatment at a temperature of about 800° C., which is just below the oxidation temperature (see Fig. 2).
C)).

次(こ従来と同様にして、このバッファ層16上に電極
18を形成するC82図(D))。
Next (FIG. C82 (D) in which the electrode 18 is formed on this buffer layer 16 in the same manner as in the conventional method).

上述したようにして形成したバッファ層16を具える導
波型光素子を5.5mm長の反転ΔB電極型光スイッチ
(バー電圧840Vとした。)として瀞成し、この光素
子の動作点ドリフト(DCドリフト)及び電極に印加す
る電圧を増加させた時と低下させた時のスイ・ンチング
特性のヒステリシスについて試験を行った。その結果、
DCドリフトは5〜6時間で1.5v以下であり、従来
の4〜8時間で5vよりも相当中ざくなていることが判
明した。また、ヒステリシスもは従来よりも著しく小さ
くなっており、実質的に問題が生じない程度の大きざで
あることが判明した。
The waveguide type optical device including the buffer layer 16 formed as described above was constructed as a 5.5 mm long inverted ΔB electrode type optical switch (bar voltage was set to 840 V), and the operating point drift of this optical device was (DC drift) and the hysteresis of switching characteristics when increasing and decreasing the voltage applied to the electrodes were tested. the result,
It was found that the DC drift was 1.5V or less for 5 to 6 hours, which was considerably lower than the conventional 5V for 4 to 8 hours. It was also found that the hysteresis was significantly smaller than in the past, and was so large that it did not cause any problems.

この発明は上述した実施例1このみ限定さ′れるもので
はなく、多くの変形又は変更を行えること明らかである
1例えば、酸化物として主としでSin、又はA j2
20 、、jを用いて説明()たが、他の酸化物であっ
ても、酸化温度範囲が700℃−・850℃の節回であ
って1000Aの酸化時間が100@間より、好ましく
は20@間より短ければ良い。
This invention is not limited to the above-mentioned embodiment 1, and it is obvious that many modifications and variations can be made.
20,,j (), but even with other oxides, it is preferable that the oxidation temperature range is between 700℃ and 850℃ and the oxidation time at 1000A is between 100℃ and 100℃. It is fine as long as it is shorter than 20@.

(発明の効果) 上述した説明からも明らかなよう1こ、この発明による
導波型光素子のバラノア層の形成方法(こよれば、動作
点ドリフ[−及びスイッチング特性のヒステリシスの両
者を、従来よりも、相当率ざ〈出来る9従って、このよ
うなバッファ層を導波型光素子に設けることによって特
性の優れた導波型光素子を提供することが出来る、 層の形成方法の説明に供する、Sjの酸化温度酸化時間
特性曲線図、 第2図(A)〜(D)は、この発明及び従来の導波型光
素子のバッファ層の形成方法の説明(こ供する、主要製
造工程図である。
(Effects of the Invention) As is clear from the above description, the method for forming the Balanor layer of the waveguide optical device according to the present invention (accordingly, both the operating point drift [- and the hysteresis of the switching characteristics]) Therefore, by providing such a buffer layer in a waveguide type optical device, it is possible to provide a waveguide type optical device with excellent characteristics. , Sj oxidation temperature and oxidation time characteristic curves, and FIGS. 2(A) to 2(D) are main manufacturing process diagrams for explaining the method of forming the buffer layer of the present invention and the conventional waveguide type optical device. be.

10−1− i N b O3(又はし1Taos)基
板12・・・導波路、     14・・−酸化物の薄
膜16・・・バッファ層、   + 8−・・電極。
10-1-iNbO3 (or 1Taos) substrate 12...waveguide, 14...-oxide thin film 16...buffer layer, +8-...electrode.

Claims (1)

【特許請求の範囲】[Claims] (1)LiNbO_3又はLiTaO_3基板に導波路
を形成する工程と、 該導波路上に酸化物の薄膜を被着形成した後、該酸化物
の薄膜の熱処理を酸素を含む雰囲気中で行ってバッファ
層を形成する工程と、 該バッファ層上に電極を形成する工程と を具える導波路型光素子のバッファ層形成方法において
、 酸化物の薄膜の熱処理を700℃以上及び850℃以下
の範囲内の温度で行うこと を特徴とする導波路型光素子のバッファ層形成方法。
(1) Forming a waveguide on a LiNbO_3 or LiTaO_3 substrate; After depositing and forming an oxide thin film on the waveguide, heat treating the oxide thin film in an oxygen-containing atmosphere to form a buffer layer. A method for forming a buffer layer of a waveguide type optical device, which comprises a step of forming a buffer layer, and a step of forming an electrode on the buffer layer, includes heat-treating the oxide thin film at a temperature of 700°C or higher and 850°C or lower. A method for forming a buffer layer of a waveguide type optical device, characterized in that the process is performed at a temperature.
JP1015790A 1989-01-25 1989-01-25 Formation of buffer layer of waveguide type element Pending JPH02196213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1015790A JPH02196213A (en) 1989-01-25 1989-01-25 Formation of buffer layer of waveguide type element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1015790A JPH02196213A (en) 1989-01-25 1989-01-25 Formation of buffer layer of waveguide type element

Publications (1)

Publication Number Publication Date
JPH02196213A true JPH02196213A (en) 1990-08-02

Family

ID=11898633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1015790A Pending JPH02196213A (en) 1989-01-25 1989-01-25 Formation of buffer layer of waveguide type element

Country Status (1)

Country Link
JP (1) JPH02196213A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5404412A (en) * 1991-12-27 1995-04-04 Fujitsu Limited Optical waveguide device
JPH07128624A (en) * 1993-11-01 1995-05-19 Sumitomo Osaka Cement Co Ltd Production of waveguide optical element
WO2002023261A1 (en) * 2000-09-18 2002-03-21 Sumitomo Osaka Cement Co., Ltd. Optical waveguide type optical modulator and production method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5404412A (en) * 1991-12-27 1995-04-04 Fujitsu Limited Optical waveguide device
JPH07128624A (en) * 1993-11-01 1995-05-19 Sumitomo Osaka Cement Co Ltd Production of waveguide optical element
WO2002023261A1 (en) * 2000-09-18 2002-03-21 Sumitomo Osaka Cement Co., Ltd. Optical waveguide type optical modulator and production method therefor
US6956980B2 (en) 2000-09-18 2005-10-18 Sumitomo Osaka Cement Co., Ltd. Optical waveguide type optical modulator and production method therefor

Similar Documents

Publication Publication Date Title
JP3109109B2 (en) Method of manufacturing optical device having periodic domain inversion structure
EP0532969B1 (en) Process for fabricating an optical device for generating a second harmonic optical beam
Ranganath et al. Suppression of Li2O out‐diffusion from Ti‐diffused LiNbO3 optical waveguides
JPH02196213A (en) Formation of buffer layer of waveguide type element
US6282356B1 (en) Optical waveguide device with enhanced stability
US6834151B1 (en) Optical waveguide and fabrication method
JP3710686B2 (en) Electro-optic element
Krätzig et al. Reduction of optical damage effects in LiNbO 3 and LiTaO 3
CA2369673C (en) A method for fabricating an optical waveguide device
JPH05215927A (en) Optical integrated circuit and its production
JP3213619B2 (en) Method for manufacturing optical waveguide device and optical waveguide device
JP2812652B2 (en) Manufacturing method of waveguide type optical element
JP4638883B2 (en) Crystal processing to avoid photoinduced refractive index changes
JPS6161659B2 (en)
US7394588B2 (en) Wavelength converter structure and method for preparing the same
Schreck et al. Enhanced electrical surface conductivity of LiNbO 3 induced by argon-ion bombardment
JP2503880B2 (en) Light control device manufacturing method
JPH06130239A (en) Optical integrated circuit formed by using proton exchange waveguide and its production
JPH03249626A (en) Optical ic element
JPH04249214A (en) Production of optical waveguide-type device
JPS58211106A (en) Formation of waveguide
Buse et al. Light-induced charge transport in photorefractive crystals
JPS6170538A (en) Thin film type optical element and its manufacture
US20090316247A1 (en) Light Polarization Converter
JPS60156038A (en) Optical function element and its manufacture