JPH02187331A - Base film for flexible printed wiring board - Google Patents

Base film for flexible printed wiring board

Info

Publication number
JPH02187331A
JPH02187331A JP28717288A JP28717288A JPH02187331A JP H02187331 A JPH02187331 A JP H02187331A JP 28717288 A JP28717288 A JP 28717288A JP 28717288 A JP28717288 A JP 28717288A JP H02187331 A JPH02187331 A JP H02187331A
Authority
JP
Japan
Prior art keywords
film
printed wiring
flexible printed
base film
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28717288A
Other languages
Japanese (ja)
Other versions
JP2679174B2 (en
Inventor
Kunihiro Takenaka
邦博 竹中
Tokio Yamamuro
山室 時生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP28717288A priority Critical patent/JP2679174B2/en
Publication of JPH02187331A publication Critical patent/JPH02187331A/en
Application granted granted Critical
Publication of JP2679174B2 publication Critical patent/JP2679174B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a base film, which has soldering heat resistance and extremely small water absorption properties and is excellent in dimensional stability, by a method wherein the film is made of thermoplastic polyester, the melting point of which is 280 deg.C or higher. CONSTITUTION:A film, which is made of thermoplastic polyester having a melting point of 280 deg.C or higher, is used in flexible printed wiring board so as to obtain low cost base film, which has soldering heat resistance and extremely small water absorption properties and, in addition, is resistant to chemicals during the manufacture of the flexible printed wiring board. Since the formable temperature of polyester having high melting point is higher in general and, in some cases, overlaps with the decomposition temperature of ester linkage, preferably thermoplastic polyester, the difference between the forming temperature and decomposition temperature of which is comparatively larger, is used. Concretely, polyester resin consisting of 1,4-cyclohexanedimethanol component and terephthalic acid component (or PCT resin) is exampled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、特定の熱可塑性ポリエステルからなるフレキ
シブルプリント配線基板用ベースフィルムに関する。詳
しくは、本発明は半田耐熱性を有する、フレキシブルプ
リント配線基板に使用されるベースフィルムに関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a base film for a flexible printed wiring board made of a specific thermoplastic polyester. More specifically, the present invention relates to a base film having solder heat resistance and used for flexible printed wiring boards.

〔従来の技術及び課題〕[Conventional technology and issues]

フレキシブルプリント配線基板は、その軽量性、可撓性
、大量生産性等の特徴から近年電子材料の分野でますま
ず重要性をしめつつあり、その生産量も増加し続けてい
る。フレキシブルプリント配線基板はよく知られたよう
に、ベースフィルムに接着剤を介して銅箔を接着し、そ
の後リソグラフィー技術を使用して銅回路を形成するこ
とにより製造されるものであるが、従来そのベースフィ
ルムとしては2軸延伸ポリエチレンテレフタレーI・フ
ィルムあるいはポリイミドフィルム等が主として使用さ
れてきた。ポリエステルフィルムは機械的強度、耐薬品
性、及び電気絶縁性において優れており、さらにコスト
的に安価であるという特徴を有しているのでベースフィ
ルムとして大量に使用されている。しかしながら、プリ
ント基板は回路の接続に半田が専ら使用されており、フ
レキシブルプリントi+aの分野でも半田の使用が熱望
されているが、ポリエチレンテレフタレートよりなるベ
ースフィルムはそもそもその樹脂の融点が255℃であ
ることから、通常使用される半田の温度(約260℃)
では融解してしまうので、かかる目的に使用することが
できず、回路の接続はかしめ等の技術によっている。こ
れに対し、半田耐熱性を有するベースフィルムとしてポ
リイミド樹脂よりなるフィルムがある。ポリイミドフィ
ルムは薬品性が良いのみならず、耐熱性も極めて高く、
260℃の半田浴だけでなく280℃の半田浴において
も融解することがなく、また寸法変化もきわめて小さい
ので現在大量に使用されている。しかし、ポリイミドフ
ィルムは以下に述べるような重大な問題点を抱えている
。すなわち、ポリイミド樹脂は吸水性が大きいので、製
造した配線基板を倉庫等に保管した後半田浴に通すと、
フィルム中に含まれている水分の急激な脱離によって、
フィルム基板表面に発泡が発生する場合があり、製品歩
留まりの低下の原因となっている。更にフィルムの価格
は極めて高く、先に述べたポリエチレンテレフタレート
に比較して現在の所10倍以上にもなっている。このた
めフレキシブルプリント配線基板は、その優れた特徴が
ありながら、高機能性電子機器等にのみ使われ、いま−
歩普及し難い状況にある。このようなポリエチレンテレ
フタレートフィルムとポリイミドフィルムに対する各々
の問題点を解決するために、ポリエーテルサルフォン樹
脂よりなるフィルム、ポリサルフォン樹脂よりなるフィ
ルムあるいはボリアリレート樹脂よりなるフィルム等が
提案されている。しかしながら、かかるフィルムはすべ
て非晶性ポリマーから成膜されているために耐薬品性が
悪く、リソグラフィーあるいは銅箔のエツチング時に使
用される薬品に対して、溶解あるいはクランク発生等の
重大な問題点を有している。さらには260°Cの半田
に対しても必ずしも安定ではなく、また寸法変化はかな
り大きいので、精密な回路基板として使用するには不十
分である。
Flexible printed wiring boards have become increasingly important in the field of electronic materials in recent years due to their light weight, flexibility, mass productivity, and other characteristics, and their production volume continues to increase. As is well known, flexible printed wiring boards are manufactured by bonding copper foil to a base film using an adhesive, and then forming a copper circuit using lithography technology. As the base film, biaxially oriented polyethylene terephthalate I film or polyimide film has mainly been used. Polyester films are used in large quantities as base films because they have excellent mechanical strength, chemical resistance, and electrical insulation properties, and are also inexpensive. However, solder is exclusively used to connect circuits on printed circuit boards, and the use of solder is eagerly anticipated in the field of flexible printing I+A, but the melting point of the resin in the base film made of polyethylene terephthalate is 255°C. Therefore, the temperature of solder normally used (approximately 260℃)
However, since it melts, it cannot be used for such purposes, and circuits are connected using techniques such as caulking. On the other hand, there is a film made of polyimide resin as a base film having solder heat resistance. Polyimide film not only has good chemical resistance, but also has extremely high heat resistance.
It does not melt not only in a 260°C solder bath but also in a 280°C solder bath, and dimensional changes are extremely small, so it is currently used in large quantities. However, polyimide films have serious problems as described below. In other words, since polyimide resin has high water absorption, when the manufactured wiring board is passed through a solder bath stored in a warehouse etc.,
Due to rapid desorption of water contained in the film,
Foaming may occur on the surface of the film substrate, causing a decrease in product yield. Furthermore, the price of the film is extremely high, and is currently more than 10 times as expensive as the aforementioned polyethylene terephthalate. For this reason, although flexible printed wiring boards have excellent characteristics, they are only used in high-performance electronic devices and are currently used in
The situation is such that it is difficult to spread the word. In order to solve the problems of polyethylene terephthalate film and polyimide film, films made of polyether sulfone resin, polysulfone resin, polyarylate resin, etc. have been proposed. However, since all such films are formed from amorphous polymers, they have poor chemical resistance, and they pose serious problems such as dissolution or cracking against chemicals used during lithography or copper foil etching. have. Furthermore, it is not necessarily stable even with soldering at 260°C, and the dimensional changes are quite large, making it insufficient for use as a precision circuit board.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者等はかかる問題点に鑑み、半田耐熱性を有しか
つ吸水性のきわめて少なく、さらにフレキシブル配線基
板を製造する際の薬品に冒されることのない、安価なベ
ースフィルムを得るべく鋭意検討した結果、融点が28
0℃以上である熱可塑性ポリエステルよりなるフィルム
をフレキシブルプリント配線基板として使用することに
よって、上記問題点を完全に解決しうろことを見出し、
本発明に到達した。即ち、本発明の要旨は、融点が28
0℃以上の熱可塑性ポリエステルからなるフレキシブル
プリント配線基板用ベースフィルムニ存する。
In view of these problems, the present inventors have worked diligently to obtain an inexpensive base film that has soldering heat resistance, extremely low water absorption, and is not affected by chemicals used in manufacturing flexible wiring boards. As a result of consideration, the melting point is 28
We have discovered that the above problems can be completely solved by using a film made of thermoplastic polyester with a temperature of 0°C or higher as a flexible printed wiring board,
We have arrived at the present invention. That is, the gist of the present invention is that the melting point is 28
There is a base film for flexible printed wiring boards made of thermoplastic polyester having a temperature of 0°C or higher.

以下、本発明の詳細な説明する。本発明において、融点
とはDSC(走査型熱量計)における結晶の融解に相当
する吸熱ピークの頂点が示すときの温度である。かかる
特性を有するポリエステルは260℃においてはその結
晶が融解することなく完全固体として存在するのである
から、そのフィルムを260℃の半田浴に浸漬しても融
解することなくフィルム形状は安定である。かかるポリ
エステル樹脂はその融点が280℃、好ましくは290
℃以上であれば任意に選択することができるが、このよ
うに高い融点を有するポリエステルの成形可能温度は一
般に高く、エステル結合の分解温度とオーバーラツプす
る場合がある。従って、好ましい熱可塑性ポリエステル
としては、成形温度と分解温度の差の比較的大きい樹脂
が用いられる。具体的には、1,4−シクロヘキサンジ
メタツール成分とテレフタル酸成分よりなるポリエステ
ル樹脂(以下PCT樹脂と略す)が挙げられる。
The present invention will be explained in detail below. In the present invention, the melting point is the temperature at which the apex of an endothermic peak corresponding to melting of a crystal appears in a DSC (scanning calorimeter). Polyester having such properties exists as a complete solid at 260° C. without melting its crystals, so even if the film is immersed in a solder bath at 260° C., it will not melt and its shape will remain stable. Such polyester resin has a melting point of 280°C, preferably 290°C.
The molding temperature of a polyester having such a high melting point is generally high, and may overlap with the decomposition temperature of the ester bond, although it can be arbitrarily selected as long as it is above .degree. Therefore, as a preferable thermoplastic polyester, a resin having a relatively large difference in molding temperature and decomposition temperature is used. Specifically, a polyester resin (hereinafter abbreviated as PCT resin) consisting of a 1,4-cyclohexane dimetatool component and a terephthalic acid component can be mentioned.

本発明においては、その融点が280℃より低くない限
り他のジオール成分、あるいはジカルボン酸成分が少量
共重合されていても良い。また、該ポリエステル樹脂に
は、必要に応じて無機フィラー、可塑剤等の通常使用さ
れる充填剤、あるいは少量の他のポリマー等が添加され
ていてもよい。
In the present invention, a small amount of other diol components or dicarboxylic acid components may be copolymerized as long as the melting point is not lower than 280°C. Furthermore, the polyester resin may contain commonly used fillers such as inorganic fillers and plasticizers, or small amounts of other polymers, as required.

次に、本発明のベースフィルムの製造例について述べる
。本発明のフィルムは、延伸または無延伸のもので、結
晶化度が20%以上であるのが好ましい。かかるフィル
ムを成形する場合においては、本目的を達成するために
は次の2種類の加工技術を使用して成膜することが好ま
しい。一つは無延伸結晶化フィルム製造法であり、もう
一つは2軸延伸結晶化フイルム製造法である。無延伸結
晶化フィルムは、T−グイキャスティング法によってま
ず無延伸フィルムを成膜し、ついで加熱された多段ロー
ルを通すことによりヒートセットして結晶化させて得る
ことができる。また、多段ロールの代わりに連続的にフ
ィルムの両端を把持した状態で加熱ゾーンを通過せしめ
ることにより得ることもできる。更にキャスティング時
T−ダイを該樹脂のガラス転移温度以上に加熱すること
によっても無延伸結晶化フィルムを得ることができる。
Next, an example of manufacturing the base film of the present invention will be described. The film of the present invention is preferably stretched or unstretched and has a crystallinity of 20% or more. When forming such a film, it is preferable to use the following two types of processing techniques to achieve this purpose. One is a non-stretched crystallized film manufacturing method, and the other is a biaxially stretched crystallized film manufacturing method. The non-stretched crystallized film can be obtained by first forming a non-stretched film by the T-gui casting method, and then passing it through heated multistage rolls to heat set and crystallize it. Alternatively, instead of using multistage rolls, the film can be obtained by continuously holding both ends of the film and passing it through a heating zone. Furthermore, a non-stretched crystallized film can also be obtained by heating a T-die to a temperature higher than the glass transition temperature of the resin during casting.

半田浴に浸漬した場合の寸法変化を極力小さくするため
には充分結晶化させることが好ましい。
In order to minimize dimensional changes when immersed in a solder bath, it is preferable to sufficiently crystallize the material.

2軸延伸結晶化フイルムの製造は、通常ポリエチレンテ
レフタレートフィルムに使用されているテンター法2段
2軸延伸技術を使用して得ることができる。またナイロ
ンフィルム等で使用されているチューブラ法同時2軸延
伸技術によっても得ることができる。延伸温度は該樹脂
のガラス転移温度以上を選択することが好ましい。また
かかる延伸フィルムはヒートセットを充分かけて配向結
晶化を充分進めることが好ましい。かかる方法でえられ
た無延伸結晶化フィルム、及び2軸延伸結晶化フイルム
はいずれもフレキシブル配線基板用ベースフィルムとし
て好適に使用することができる。
The biaxially stretched crystallized film can be produced using the tenter method two-stage biaxially stretching technique that is normally used for polyethylene terephthalate films. It can also be obtained by the tubular simultaneous biaxial stretching technique used for nylon films and the like. The stretching temperature is preferably selected to be at least the glass transition temperature of the resin. Further, it is preferable that such a stretched film is sufficiently heat set to sufficiently promote oriented crystallization. Both the unstretched crystallized film and the biaxially stretched crystallized film obtained by such a method can be suitably used as a base film for a flexible wiring board.

2軸延伸結晶化フイルムは若干寸法収縮が起こる場合が
あるが、半田耐熱性を有しており、透明性が良好でしか
も機械的強度においても優れている。
Although the biaxially stretched crystallized film may undergo some dimensional shrinkage, it has soldering heat resistance, good transparency, and excellent mechanical strength.

無延伸結晶化フィルムは球晶の生成のために透明性が2
軸延伸フイルムに比較して若干劣り、また機械的強度も
少し劣るが、260℃の半田浴に通してもその寸法変化
はきわめて少なく、ポリイミドフィルムに匹敵する特徴
を有している。
The unstretched crystallized film has a transparency of 2 due to the formation of spherulites.
Although it is slightly inferior to an axially stretched film and its mechanical strength is also slightly inferior, there is very little dimensional change even when it is passed through a solder bath at 260°C, and it has characteristics comparable to polyimide films.

本発明のベースフィルムは上に述べたような特徴に加え
、ポリエステル樹脂よりなるため吸水率は極めて小さく
半田浴浸漬時の発泡等の現象がない。また耐薬品性も良
好であり、フレキシブル配線基板作製時に使用される薬
品に冒されることがないという利点をも有する。
In addition to the above-mentioned characteristics, the base film of the present invention is made of polyester resin, so its water absorption rate is extremely low and there is no phenomenon such as foaming when immersed in a solder bath. It also has good chemical resistance and has the advantage of not being affected by chemicals used during the production of flexible wiring boards.

〔実施例〕〔Example〕

以下、本発明を実施例により更に詳細に説明するが、本
発明はその要旨を逸脱しない限り、これら実施例に限定
されるものではない。
Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples unless it departs from the gist thereof.

樹脂製造例 オートクレーブ中に19.4 kgのジメチルテレフタ
レートと17.2 kgの1.4−シクロヘキサンジメ
タツール、更に触媒としてNa  HT 1  (OC
4H1)6のブタノール溶液を加え、窒素雰囲気中で2
20−240℃の温度に保ち脱メタノール反応を行った
。次いで300℃に昇温しで減圧重合を行い、常圧に戻
した後オートクレーブより取り出しPCT樹脂を得た。
Resin production example In an autoclave, 19.4 kg of dimethyl terephthalate and 17.2 kg of 1,4-cyclohexane dimetatool were added, as well as Na HT 1 (OC
4H1) Add a butanol solution of 6 and add 2 in a nitrogen atmosphere.
The demethanol reaction was carried out while maintaining the temperature at 20-240°C. Next, the temperature was raised to 300°C, polymerization was carried out under reduced pressure, and after the pressure was returned to normal pressure, it was taken out from the autoclave to obtain a PCT resin.

該樹脂のηinh。はフェノール/テトラクロロエタン
(50150)容器中、1重量%、30℃で測定した結
果0.75であった。
ηinh of the resin. was measured at 30° C. at 1% by weight in a phenol/tetrachloroethane (50150) container and found to be 0.75.

なお本例に使用した1、4−シクロヘキサンジメタツー
ルモノマーのトランス体の割合は75モル%であった。
The proportion of the trans isomer of the 1,4-cyclohexane dimetatool monomer used in this example was 75 mol%.

DSCにて測定したこの樹脂の融点は292℃であった
・ フィルム製造例−1 樹脂製造例で得られたPCT樹脂を用い、30龍φ押出
し機を使用してT−グイ法によって透明なフィルム(厚
み50μ)を製造した。エックス線回折の測定結果より
このフィルムはほとんど非晶構造よりなっていることを
確認したく非品性無延伸フィルム)。そのフィルムのう
ち一部について、200℃〜275℃に加熱された多段
ロールを通して加熱することにより結晶化したフィルム
を得、比重法(密度勾配管法)によってその結晶化度を
測定したところ、35%であった(結晶化無延伸フィル
ム)。
The melting point of this resin measured by DSC was 292°C. Film Production Example-1 Using the PCT resin obtained in the resin production example, a transparent film was made by the T-Guy method using a 30 Dragon φ extruder. (thickness: 50 μm) was manufactured. Based on the results of X-ray diffraction measurements, it was confirmed that this film has an almost amorphous structure (unstretched film). A part of the film was heated through a multistage roll heated to 200°C to 275°C to obtain a crystallized film, and the degree of crystallinity was measured by the specific gravity method (density gradient tube method). % (crystallized unstretched film).

フィルム製造例−2 フィルム製造例−1でえられた非品性無延伸フィルムに
ついてテンターを使用して延伸温度120℃にて2段2
軸延伸を行い、285℃に加熱されたヒートセットゾー
ンを連続的に通過させることにより結晶化を進行せしめ
た。このときの設定延伸倍率は3×3であった。エック
ス線回折の測定よりこのフィルムはポリマー分子鎖がフ
ィルム面に平行に配向していることが認められた。比重
測定の結果から本フィルムの結晶化度は約40%であっ
た。
Film Production Example-2 The unstretched film obtained in Film Production Example-1 was stretched in two stages at a stretching temperature of 120°C using a tenter.
Axial stretching was performed and the film was continuously passed through a heat set zone heated to 285°C to advance crystallization. The set stretching ratio at this time was 3×3. X-ray diffraction measurements revealed that the polymer molecular chains of this film were oriented parallel to the film surface. Based on the results of specific gravity measurement, the crystallinity of this film was approximately 40%.

実施例=1 フィルム製造例−1で得られた結晶化無延伸フィルムに
ついてウレタン−アクリル系の接着剤を用いて銅箔(厚
み35μ)をラミネートして銅張り積層板を製造した。
Example = 1 The crystallized unstretched film obtained in Film Production Example 1 was laminated with copper foil (thickness: 35 μm) using a urethane-acrylic adhesive to produce a copper-clad laminate.

この積層板について、レジスト法によって銅をエツチン
グしてテスト用回路を形成した、フレキシブル配置%m
基板を作製した。
Regarding this laminate, a test circuit was formed by etching copper using a resist method, and a flexible layout%m
A substrate was prepared.

これについて、レジストインキ(太陽インキ側型、商品
名:AS−4003P:UV硬化型)、レジスト除去剤
(2%カセイソーダ水溶液)及びエツチング液(塩化第
二銅水溶液)に対するクランク等の発生の有無を調べた
が、認められなかった。
Regarding this, we investigated the occurrence of cranks, etc. in resist ink (Taiyo Ink side type, product name: AS-4003P: UV curing type), resist remover (2% caustic soda aqueous solution), and etching solution (cupric chloride aqueous solution). I looked into it, but it wasn't confirmed.

実施例−2 実施例−1で製造したフレキシブル配線基板にソルダー
レジスト(太陽インキ側製、商品名二FQC−800G
K)を塗布した後、260℃にコントロールされた半田
浴中を連続的に通過せしめた。また打ち抜いた回路板を
半田浴に30秒浸漬した。いずれの場合も外観上、およ
び寸法的にまったく変化は認められなかった。フィルム
製造例1でえられた結晶化無延伸フィルム単体について
も同様にして半田浴に30秒浸漬したが寸法変化は認め
られなかった。フィルム製造例−2でえられた結晶化2
軸延伸フイルムについても上記のような半田浴浸漬テス
トを行ったところ、外観上はまったく変化は認められな
かったが、寸法は約1%収縮した。この値はフレキシブ
ルプリント配線基板として充分使用にたえる値である。
Example-2 Solder resist (manufactured by Taiyo Ink, product name 2FQC-800G) was applied to the flexible wiring board manufactured in Example-1.
After applying K), it was continuously passed through a solder bath controlled at 260°C. Further, the punched circuit board was immersed in a solder bath for 30 seconds. In either case, no changes were observed in appearance or dimensions. The single crystallized unstretched film obtained in Film Production Example 1 was similarly immersed in a solder bath for 30 seconds, but no dimensional change was observed. Crystallization 2 obtained in Film Production Example-2
When the axially stretched film was also subjected to the solder bath immersion test as described above, no change was observed in appearance, but the dimensions shrunk by about 1%. This value is sufficient for use as a flexible printed wiring board.

比較例−1 融点255℃のポリエチレンテレフタレートフィルム及
びポリイミドフィルム(デュポン社製、商品名:カプト
ン)(厚みは各々50μ)について実施例−2と同様の
半田浴浸漬テストを行った。
Comparative Example-1 The same solder bath immersion test as in Example-2 was conducted on a polyethylene terephthalate film and a polyimide film (manufactured by DuPont, trade name: Kapton) (thickness: 50 μm each) having a melting point of 255° C.

その結果、ポリイミドフィルムは外観上変化は認められ
ず、寸法的変化は約0.7%の収縮であった。
As a result, no change was observed in the appearance of the polyimide film, and the dimensional change was about 0.7% shrinkage.

この値はプリント基板として充分使用にたえる値である
。一方ポリエチレンテレフタレートフィルムは浸漬と同
時に収縮し融解してしまった。
This value is sufficient for use as a printed circuit board. On the other hand, the polyethylene terephthalate film shrunk and melted upon immersion.

実施例−3 実施例−1で製造した銅張り積層板を40℃′、90%
RHの環境に10日放置した後実施例−2と同様の半田
浴浸漬テストを行ったところ、フクレ等の発生は認めら
れなかった。
Example-3 The copper-clad laminate manufactured in Example-1 was heated at 40°C' and 90%
After being left in an RH environment for 10 days, the same solder bath immersion test as in Example 2 was conducted, and no blisters were observed.

比較例−2 ポリイミドフィルム(デュポン社製、商品名−カプトン
)を用いた以外は実施例−1と同様にして銅張り積層板
を製造し、これについて実施例−3と同様に40℃、9
0%RHの環境に10日放置した後、半田浴浸潤テスト
を行なった。その結果、フィルムと銅の接着部にフクレ
の発生が認められた。
Comparative Example-2 A copper-clad laminate was manufactured in the same manner as in Example-1 except that a polyimide film (manufactured by DuPont, trade name: Kapton) was used, and this was heated at 40°C and 90°C in the same manner as in Example-3.
After being left in an environment of 0% RH for 10 days, a solder bath infiltration test was conducted. As a result, blistering was observed at the bond between the film and the copper.

〔発明の効果〕〔Effect of the invention〕

本発明の特定の熱可塑性ポリエステルを用いたフレキシ
ブルプリント配線基板用ベースフィルムは、半田耐熱性
を有し、かつ吸水性も極めて少なく、寸法安定性におい
ても優れている。更にはフレキシブルプリント配線基板
を製造する際に薬品に冒されることもなく、また安価で
あるので、工業的にも有利である。
The base film for a flexible printed wiring board using the specific thermoplastic polyester of the present invention has solder heat resistance, extremely low water absorption, and excellent dimensional stability. Furthermore, since the flexible printed wiring board is not affected by chemicals when manufacturing it and is inexpensive, it is also industrially advantageous.

Claims (2)

【特許請求の範囲】[Claims] (1)融点が280℃以上の熱可塑性ポリエステルから
なるフレキシブルプリント配線基板用ベースフィルム。
(1) A base film for flexible printed wiring boards made of thermoplastic polyester with a melting point of 280°C or higher.
(2)熱可塑性ポリエステルが主として、1,4−シク
ロヘキサンジメタノール成分とテレフタル酸成分からな
るものであることを特徴とする、特許請求の範囲第1項
記載のフレキシブルプリント配線基板用ベースフィルム
(2) The base film for a flexible printed wiring board according to claim 1, wherein the thermoplastic polyester mainly consists of a 1,4-cyclohexanedimethanol component and a terephthalic acid component.
JP28717288A 1988-11-14 1988-11-14 Base film for flexible printed wiring boards Expired - Fee Related JP2679174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28717288A JP2679174B2 (en) 1988-11-14 1988-11-14 Base film for flexible printed wiring boards

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28717288A JP2679174B2 (en) 1988-11-14 1988-11-14 Base film for flexible printed wiring boards

Publications (2)

Publication Number Publication Date
JPH02187331A true JPH02187331A (en) 1990-07-23
JP2679174B2 JP2679174B2 (en) 1997-11-19

Family

ID=17714012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28717288A Expired - Fee Related JP2679174B2 (en) 1988-11-14 1988-11-14 Base film for flexible printed wiring boards

Country Status (1)

Country Link
JP (1) JP2679174B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02164532A (en) * 1988-12-16 1990-06-25 Toray Ind Inc Flexible circuit board
EP0484942A2 (en) * 1990-11-08 1992-05-13 Diafoil Company, Limited Insulating material for air conditioner or refrigerator
JP2005530908A (en) * 2002-06-26 2005-10-13 イーストマン ケミカル カンパニー Biaxially oriented polyester films and their laminates with copper
US7524920B2 (en) 2004-12-16 2009-04-28 Eastman Chemical Company Biaxially oriented copolyester film and laminates thereof
US20220330423A1 (en) * 2019-10-02 2022-10-13 Skc Co., Ltd. Film and laminate for electronic substrate, and electronic substrate including same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102334251B1 (en) * 2019-10-02 2021-12-03 에스케이씨 주식회사 Film and laminate for electronic board, and electronic board comprising same
KR102439134B1 (en) * 2020-10-23 2022-09-02 에스케이씨 주식회사 Film and laminate for electronic board, and electronic board comprising same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02164532A (en) * 1988-12-16 1990-06-25 Toray Ind Inc Flexible circuit board
EP0484942A2 (en) * 1990-11-08 1992-05-13 Diafoil Company, Limited Insulating material for air conditioner or refrigerator
JP2005530908A (en) * 2002-06-26 2005-10-13 イーストマン ケミカル カンパニー Biaxially oriented polyester films and their laminates with copper
US7147927B2 (en) 2002-06-26 2006-12-12 Eastman Chemical Company Biaxially oriented polyester film and laminates thereof with copper
JP2012246485A (en) * 2002-06-26 2012-12-13 Eastman Chemical Co Biaxially oriented polyester film, and its laminate with copper
JP2015178623A (en) * 2002-06-26 2015-10-08 イーストマン ケミカル カンパニー Biaxially oriented polyester film and laminates thereof with copper
US7524920B2 (en) 2004-12-16 2009-04-28 Eastman Chemical Company Biaxially oriented copolyester film and laminates thereof
US20220330423A1 (en) * 2019-10-02 2022-10-13 Skc Co., Ltd. Film and laminate for electronic substrate, and electronic substrate including same

Also Published As

Publication number Publication date
JP2679174B2 (en) 1997-11-19

Similar Documents

Publication Publication Date Title
KR101239995B1 (en) Biaxially oriented copolyester film and laminates thereof with copper
JP2008524396A5 (en)
JP2005096455A (en) Single-layered or multilayered polyester film and its manufacturing method
EP0409466B1 (en) Process for the preparation of a polyimide film
JP2005213500A (en) Polyester film and method for producing the polyester film
JP2005530908A5 (en)
JP2020050872A (en) Film for use in display, and foldable display
JP5847522B2 (en) Plastic film and manufacturing method thereof
JPH02187331A (en) Base film for flexible printed wiring board
JP3659721B2 (en) Liquid crystal polymer film stretched product having adhesive surface or metal surface
CN108350257B (en) Polymer compositions and substrates for high temperature transparent conductive film applications
TW201836854A (en) Biaxially oriented polyester film and method for manufacturing same
JP4946066B2 (en) Aromatic liquid crystal polyester and film obtained therefrom
JPH06266288A (en) Label using polyester film as base material
JPH05169526A (en) Thermal treatment of thermoplastic polyimide stretched film
JP2021161151A (en) Biaxial oriented film
JP3364380B2 (en) Polyester film
JP7133601B2 (en) Polyester film and flexible display device including the same
KR100210236B1 (en) Multi-layered film and process for making the same
JPS62130844A (en) Laminated film
WO2020059813A1 (en) Foldable display
JPH04257444A (en) Carrier tape
JPS58214208A (en) Electrically insulating film
JP2020056016A (en) Display film, and foldable display
JPH06107818A (en) Thermoplastic polyimide film for capacitor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070801

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees